1
|
Bye-A-Jee H, Zaru R, Magrane M, Orchard S. Caenorhabditis elegans phosphatase complexes in UniProtKB and Complex Portal. FEBS J 2020; 287:2664-2684. [PMID: 31944606 DOI: 10.1111/febs.15213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/25/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Phosphatases play an essential role in the regulation of protein phosphorylation. Less abundant than kinases, many phosphatases are components of one or more macromolecular complexes with different substrate specificities and specific functionalities. The expert scientific curation of phosphatase complexes for the UniProt and Complex Portal databases supports the whole scientific community by collating and organising small- and large-scale experimental data from the scientific literature into context-specific central resources, where the data can be freely accessed and used to further academic and translational research. In this review, we discuss how the diverse biological functions of phosphatase complexes are presented in UniProt and the Complex Portal, and how understanding the biological significance of phosphatase complexes in Caenorhabditis elegans offers insight into the mechanisms of substrate diversity in a variety of cellular and molecular processes.
Collapse
Affiliation(s)
- Hema Bye-A-Jee
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Rossana Zaru
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Michele Magrane
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | -
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.,SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva 4, Switzerland.,Protein Information Resource, Georgetown University Medical Center, Washington, DC, USA.,Protein Information Resource, University of Delaware, Newark, DE, USA
| |
Collapse
|
2
|
Kim SH, Jung H, Ahnn J, Lee SK. Calcineurin tax-6 regulates male ray development and counteracts with kin-29 kinase in Caenorhabditis elegans. Anim Cells Syst (Seoul) 2019; 23:399-406. [PMID: 31853377 PMCID: PMC6913648 DOI: 10.1080/19768354.2019.1687584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/08/2019] [Accepted: 10/24/2019] [Indexed: 11/24/2022] Open
Abstract
Phosphorylation is one of the critical protein modifications, which can lead to changing the activity of the proteins and regulating a variety of biological processes. Therefore, it is essential to properly maintain the phosphorylation level on proteins by balancing the activity of kinases and phosphatases. In this study, we report that calcineurin, a serine/threonine phosphatase, counteracts with a salt inducible kinase (SIK) to control male tail development in Caenorhabditis elegans. The counteracting regulation is cell lineage-dependent; the number of defective rays from T lineage in animals lacking calcineurin tax-6 is decreased by knock-down of SIK kin-29. This result is in contrast with the knock-down of bone marrow protein (BMP) receptor kinase sma-6, which slightly aggravates the T lineage defect. Also, sma-6 knock-down results in modest defect in ray 1 of V5 lineage in the absence of tax-6 activity. Finally, knock-down of a tyrosine phosphatase cdc-25.3 does not affect the defective ray phenotype of calcineurin tax-6 loss-of-function(lf) mutants. Altogether, these results suggest that balanced phosphorylation mediated by tax-6 and kin-29 is required for proper development of T lineage rays, and tax-6 and sma-6 may function in a parallel pathway in the developmental process of V5 lineage ray 1. This study emphasizes the elaborated developmental process of male ray formation, in which carefully coordinated expression of various genes is essential.
Collapse
Affiliation(s)
- Seung Hyun Kim
- Department of Life Sciences, Hanyang University, Seoul, Republic of Korea
| | - Hana Jung
- Department of Life Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Joohong Ahnn
- Department of Life Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Sun-Kyung Lee
- Department of Life Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Feldmann KG, Chowdhury A, Becker JL, McAlpin N, Ahmed T, Haider S, Richard Xia JX, Diaz K, Mehta MG, Mano I. Non-canonical activation of CREB mediates neuroprotection in a Caenorhabditis elegans model of excitotoxic necrosis. J Neurochem 2018; 148:531-549. [PMID: 30447010 DOI: 10.1111/jnc.14629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/26/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Excitotoxicity, caused by exaggerated neuronal stimulation by Glutamate (Glu), is a major cause of neurodegeneration in brain ischemia. While we know that neurodegeneration is triggered by overstimulation of Glu-receptors (GluRs), the subsequent mechanisms that lead to cellular demise remain controversial. Surprisingly, signaling downstream of GluRs can also activate neuroprotective pathways. The strongest evidence involves activation of the transcription factor cAMP response element-binding protein (CREB), widely recognized for its importance in synaptic plasticity. Canonical views describe CREB as a phosphorylation-triggered transcription factor, where transcriptional activation involves CREB phosphorylation and association with CREB-binding protein. However, given CREB's ubiquitous cross-tissue expression, the multitude of cascades leading to CREB phosphorylation, and its ability to regulate thousands of genes, it remains unclear how CREB exerts closely tailored, differential neuroprotective responses in excitotoxicity. A non-canonical, alternative cascade for activation of CREB-mediated transcription involves the CREB co-factor cAMP-regulated transcriptional co-activator (CRTC), and may be independent of CREB phosphorylation. To identify cascades that activate CREB in excitotoxicity we used a Caenorhabditis elegans model of neurodegeneration by excitotoxic necrosis. We demonstrated that CREB's neuroprotective effect was conserved, and seemed most effective in neurons with moderate Glu exposure. We found that factors mediating canonical CREB activation were not involved. Instead, phosphorylation-independent CREB activation in nematode excitotoxic necrosis hinged on CRTC. CREB-mediated transcription that depends on CRTC, but not on CREB phosphorylation, might lead to expression of a specific subset of neuroprotective genes. Elucidating conserved mechanisms of excitotoxicity-specific CREB activation can help us focus on core neuroprotective programs in excitotoxicity. Cover Image for this issue: doi: 10.1111/jnc.14494.
Collapse
Affiliation(s)
- K Genevieve Feldmann
- Department of Molecular, Cellular and Biomedical Sciences, CDI Cluster on Neural Development and Repair, The CUNY School of Medicine, City College (CCNY), The City University of New York (CUNY), New York City, New York, USA.,The CUNY Neuroscience Collaborative PhD Program, CUNY Graduate Center, New York City, New York, USA
| | - Ayesha Chowdhury
- Department of Molecular, Cellular and Biomedical Sciences, CDI Cluster on Neural Development and Repair, The CUNY School of Medicine, City College (CCNY), The City University of New York (CUNY), New York City, New York, USA.,The CUNY Neuroscience Collaborative PhD Program, CUNY Graduate Center, New York City, New York, USA
| | - Jessica L Becker
- Undergraduate Program in Biology, CCNY, CUNY, New York City, New York, USA
| | - N'Gina McAlpin
- Undergraduate Program in Biology, CCNY, CUNY, New York City, New York, USA
| | - Taqwa Ahmed
- The Sophie Davis BS/MD program, CUNY School of Medicine, New York City, New York, USA
| | - Syed Haider
- Undergraduate Program in Biology, CCNY, CUNY, New York City, New York, USA
| | - Jian X Richard Xia
- The Sophie Davis BS/MD program, CUNY School of Medicine, New York City, New York, USA
| | - Karina Diaz
- The Sophie Davis BS/MD program, CUNY School of Medicine, New York City, New York, USA
| | - Monal G Mehta
- Robert Wood Johnson Medical School, Rutgers - The State University of New Jersey, Piscataway, New Jersey, USA
| | - Itzhak Mano
- Department of Molecular, Cellular and Biomedical Sciences, CDI Cluster on Neural Development and Repair, The CUNY School of Medicine, City College (CCNY), The City University of New York (CUNY), New York City, New York, USA.,The CUNY Neuroscience Collaborative PhD Program, CUNY Graduate Center, New York City, New York, USA.,The Sophie Davis BS/MD program, CUNY School of Medicine, New York City, New York, USA
| |
Collapse
|
4
|
Tuck S. The control of cell growth and body size in Caenorhabditis elegans. Exp Cell Res 2013; 321:71-6. [PMID: 24262077 DOI: 10.1016/j.yexcr.2013.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 01/02/2023]
Abstract
One of the most important ways in which animal species vary is in their size. Individuals of the largest animal ever thought to have lived, the blue whale (Balaenoptera musculus), can reach a weight of 190 t and a length of over 30 m. At the other extreme, among the smallest multicellular animals are males of the parasitic wasp, Dicopomorpha echmepterygis, which even as adults are just 140 μm in length. In terms of volume, these species differ by more than 14 orders of magnitude. Since size has such profound effects on an organism's ecology, anatomy and physiology, an important task for evolutionary biology and ecology is to account for why organisms grow to their characteristic sizes. Equally, a full description of an organism's development must include an explanation of how its growth and body size are regulated. Here I review research on how these processes are controlled in the nematode, Caenorhabditis elegans. Analyses of small and long mutants have revealed that in the worm, DBL-1, a ligand in the TGFβ superfamily family, promotes growth in a dose-dependent manner. DBL-1 signaling affects body size by stimulating the growth of syncytial hypodermal cells rather than controlling cell division. Signals from chemosensory neurons and from the gonad also modulate body size, in part, independently of DBL-1-mediated signaling. Organismal size and morphology is heavily influenced by the cuticle, which acts as the exoskeleton. Finally, I summarize research on several genes that appear to regulate body size by cell autonomously regulating cell growth throughout the worm.
Collapse
Affiliation(s)
- Simon Tuck
- Umeå Center for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
5
|
Abstract
Transforming Growth Factor-β (TGF-β) superfamily ligands regulate many aspects of cell identity, function, and survival in multicellular animals. Genes encoding five TGF-β family members are present in the genome of C. elegans. Two of the ligands, DBL-1 and DAF-7, signal through a canonical receptor-Smad signaling pathway; while a third ligand, UNC-129, interacts with a noncanonical signaling pathway. No function has yet been associated with the remaining two ligands. Here we summarize these signaling pathways and their biological functions.
Collapse
Affiliation(s)
- Tina L Gumienny
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX 77843, USA
| | | |
Collapse
|
6
|
Lee JI, Mukherjee S, Yoon K, Dwivedi M, Bandyopadhyay J. The multiple faces of calcineurin signaling in Caenorhabditis elegans: Development, behaviour and aging. J Biosci 2013; 38:417-31. [DOI: 10.1007/s12038-013-9319-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Fernando T, Flibotte S, Xiong S, Yin J, Yzeiraj E, Moerman DG, Meléndez A, Savage-Dunn C. C. elegans ADAMTS ADT-2 regulates body size by modulating TGFβ signaling and cuticle collagen organization. Dev Biol 2011; 352:92-103. [PMID: 21256840 DOI: 10.1016/j.ydbio.2011.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 01/05/2011] [Accepted: 01/13/2011] [Indexed: 01/26/2023]
Abstract
Organismal growth and body size are influenced by both genetic and environmental factors. We have utilized the strong molecular genetic techniques available in the nematode Caenorhabditis elegans to identify genetic determinants of body size. In C. elegans, DBL-1, a member of the conserved family of secreted growth factors known as the Transforming Growth Factor β superfamily, is known to play a major role in growth control. The mechanisms by which other determinants of body size function, however, is less well understood. To identify additional genes involved in body size regulation, a genetic screen for small mutants was previously performed. One of the genes identified in that screen was sma-21. We now demonstrate that sma-21 encodes ADT-2, a member of the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family of secreted metalloproteases. ADAMTS proteins are believed to remodel the extracellular matrix and may modulate the activity of extracellular signals. Genetic interactions suggest that ADT-2 acts in parallel with or in multiple size regulatory pathways. We demonstrate that ADT-2 is required for normal levels of expression of a DBL-1-responsive transcriptional reporter. We further demonstrate that adt-2 regulatory sequences drive expression in glial-like and vulval cells, and that ADT-2 activity is required for normal cuticle collagen fibril organization. We therefore propose that ADT-2 regulates body size both by modulating TGFβ signaling activity and by maintaining normal cuticle structure.
Collapse
Affiliation(s)
- Thilini Fernando
- Department of Biology, Queens College, and The Graduate School and University Center, City University of New York, Flushing, NY 11367, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Lee SU, Song HO, Lee W, Singaravelu G, Yu JR, Park WY. Identification and characterization of a putative basic helix-loop-helix (bHLH) transcription factor interacting with calcineurin in C. elegans. Mol Cells 2009; 28:455-61. [PMID: 19855932 DOI: 10.1007/s10059-009-0145-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 08/31/2009] [Indexed: 11/26/2022] Open
Abstract
Calcineurin is a Ca(2+)/Calmodulin activated Ser/Thr phosphatase that is well conserved from yeast to human. It is composed of catalytic subunit A (CnA) and regulatory subunit B (CnB). C. elegans homolog of CnA and CnB has been annotated to tax-6 and cnb-1, respectively and in vivo function of both genes has been intensively studied. In C. elegans, calcineurin play roles in various signaling pathways such as fertility, movement, body size regulation and serotonin-mediated egg laying. In order to understand additional signaling pathway(s) in which calcineurin functions, we screened for binding proteins of TAX-6 and found a novel binding protein, HLH-11. The HLH-11, a member of basic helix-loop-helix (bHLH) proteins, is a putative counterpart of human AP4 transcription factor. Previously bHLH transcription factors have been implicated to regulate many developmental processes such as cell proliferation and differentiation, sex determination and myogenesis. However, the in vivo function of hlh-11 is largely unknown. Here, we show that hlh-11 is expressed in pharynx, intestine, nerve cords, anal depressor and vuvla muscles where calcineurin is also expressed. Mutant analyses reveal that hlh-11 may have role(s) in regulating body size and reproduction. More interestingly, genetic epistasis suggests that hlh-11 may function to regulate serotonin-mediated egg laying at the downstream of tax-6.
Collapse
Affiliation(s)
- Soo-Ung Lee
- Department of Environmental and Tropical Medicine, Konkuk University School of Medicine, Seoul 143-701, Korea
| | | | | | | | | | | |
Collapse
|
9
|
Cai Q, Wang W, Gao Y, Yang Y, Zhu Z, Fan Q. Ce-wts-1plays important roles inCaenorhabditis elegansdevelopment. FEBS Lett 2009; 583:3158-64. [DOI: 10.1016/j.febslet.2009.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/02/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
|
10
|
Guo L, Urban JF, Zhu J, Paul WE. Elevating calcium in Th2 cells activates multiple pathways to induce IL-4 transcription and mRNA stabilization. THE JOURNAL OF IMMUNOLOGY 2008; 181:3984-93. [PMID: 18768853 DOI: 10.4049/jimmunol.181.6.3984] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PMA and ionomycin cause T cell cytokine production. We report that ionomycin alone induces IL-4 and IFN-gamma, but not IL-2, from in vivo- and in vitro-generated murine Th2 and Th1 cells. Ionomycin-induced cytokine production requires NFAT, p38, and calmodulin-dependent kinase IV (CaMKIV). Ionomycin induces p38 phosphorylation through a calcium-dependent, cyclosporine A-inhibitable pathway. Knocking down ASK1 inhibits ionomycin-induced p38 phosphorylation and IL-4 production. Ionomycin also activates CaMKIV, which, together with p38, induces AP-1. Cooperation between AP-1 and NFAT leads to Il4 gene transcription. p38 also regulates IL-4 production by mRNA stabilization. TCR stimulation also phosphorylates p38, partially through the calcium-dependent pathway; activated p38 is required for optimal IL-4 and IFN-gamma.
Collapse
Affiliation(s)
- Liying Guo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|