1
|
Petersen B, Frenzel A, Lucas-Hahn A, Herrmann D, Hassel P, Klein S, Ziegler M, Hadeler KG, Niemann H. Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes. Xenotransplantation 2016; 23:338-46. [PMID: 27610605 DOI: 10.1111/xen.12258] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/01/2016] [Accepted: 08/12/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Xenotransplantation is considered to be a promising solution to the growing demand for suitable donor organs for transplantation. Despite tremendous progress in the generation of pigs with multiple genetic modifications thought to be necessary to overcoming the severe rejection responses after pig-to-non-human primate xenotransplantation, the production of knockout pigs by somatic cell nuclear transfer (SCNT) is still an inefficient process. Producing genetically modified pigs by intracytoplasmic microinjection of porcine zygotes is an alluring alternative. The porcine GGTA1 gene encodes for the α1,3-galactosyltransferase that synthesizes the Gal epitopes on porcine cells which constitute the major antigen in a xenotransplantation setting. GGTA1-KO pigs have successfully been produced by transfecting somatic cells with zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), or CRISPR/Cas targeting GGTA1, followed by SCNT. METHODS Here, we microinjected a CRISPR/Cas9 vector coding for a single-guide RNA (sgRNA) targeting exon 8 of the GGTA1 gene into the cytoplasm of 97 in vivo-derived porcine zygotes and transferred 86 of the microinjected embryos into three hormonally synchronized recipients. Fetuses and piglets were analyzed by flow cytometry for remaining Gal epitopes. DNA was sequenced to detect mutations at the GGTA1 locus. RESULTS Two of the recipients remained pregnant as determined by ultrasound scanning on day 25 of gestation. One pregnancy was terminated on day 26, and six healthy fetuses were recovered. The second pregnancy was allowed to go to term and resulted in the birth of six healthy piglets. Flow cytometry analysis revealed the absence of Gal epitopes in four of six fetuses (66%), indicating a biallelic KO of GGTA1. Additionally, three of the six live-born piglets (50%) did not express Gal epitopes on their cell surface. Two fetuses and two piglets showed a mosaicism with a mixed population of Gal-free and Gal-expressing cells. Only a single piglet did not have any genomic modifications. Genomic sequencing revealed indel formation at the GGTA1 locus ranging from +17 bp to -20 bp. CONCLUSIONS These results demonstrate the efficacy of CRISPR/Cas to generate genetic modifications in pigs by simplified technology, such as intracytoplasmic microinjection into zygotes, which would significantly facilitate the production of genetically modified pigs suitable for xenotransplantation. Importantly, this simplified injection protocol avoids the penetration of the vulnerable pronuclear membrane, and is thus compatible with higher survival rates of microinjected embryos, which in turn facilitates production of genetically modified piglets.
Collapse
Affiliation(s)
- Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany.
| | - Antje Frenzel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Andrea Lucas-Hahn
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Doris Herrmann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Petra Hassel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Sabine Klein
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Maren Ziegler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Klaus-Gerd Hadeler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany.
| |
Collapse
|
2
|
Wang X, Zhou J, Cao C, Huang J, Hai T, Wang Y, Zheng Q, Zhang H, Qin G, Miao X, Wang H, Cao S, Zhou Q, Zhao J. Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs. Sci Rep 2015; 5:13348. [PMID: 26293209 PMCID: PMC4543986 DOI: 10.1038/srep13348] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/22/2015] [Indexed: 12/26/2022] Open
Abstract
Genetic engineering in livestock was greatly enhanced by the emergence of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), which can be programmed with a single-guide RNA (sgRNA) to generate site-specific DNA breaks. However, the uncertainties caused by wide variations in sgRNA activity impede the utility of this system in generating genetically modified pigs. Here, we described a single blastocyst genotyping system to provide a simple and rapid solution to evaluate and compare the sgRNA efficiency at inducing indel mutations for a given gene locus. Assessment of sgRNA mutagenesis efficiencies can be achieved within 10 days from the design of the sgRNA. The most effective sgRNA selected by this system was successfully used to induce site-specific insertion through homology-directed repair at a frequency exceeding 13%. Additionally, the highly efficient gene deletion via the selected sgRNA was confirmed in pig fibroblast cells, which could serve as donor cells for somatic cell nuclear transfer. We further showed that direct cytoplasmic injection of Cas9 mRNA and the favorable sgRNA into zygotes could generate biallelic knockout piglets with an efficiency of up to 100%. Thus, our method considerably reduces the uncertainties and expands the practical possibilities of CRISPR/Cas9-mediated genome engineering in pigs.
Collapse
Affiliation(s)
- Xianlong Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinwei Zhou
- College of Veterinary Medicine, Sichuan Agriculture University, Ya’an, Sichuan 625014, China
| | - Chunwei Cao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaojiao Huang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tang Hai
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfang Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiantao Zheng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyong Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guosong Qin
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangnan Miao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongmei Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agriculture University, Ya’an, Sichuan 625014, China
| | - Qi Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianguo Zhao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Cui XS, Shen XH, Sun SC, Cho SW, Heo YT, Kang YK, Wakayama T, Kim NH. Identifying MicroRNA and mRNA expression profiles in embryonic stem cells derived from parthenogenetic, androgenetic and fertilized blastocysts. J Genet Genomics 2013; 40:189-200. [PMID: 23618402 DOI: 10.1016/j.jgg.2013.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are a class of highly conserved small non-coding RNA molecules that play a pivotal role in several cellular functions. In this study, miRNA and messenger RNA (mRNA) profiles were examined by Illumina microarray in mouse embryonic stem cells (ESCs) derived from parthenogenetic, androgenetic, and fertilized blastocysts. The global analysis of miRNA-mRNA target pairs provided insight into the role of miRNAs in gene expression. Results showed that a total of 125 miRNAs and 2394 mRNAs were differentially expressed between androgenetic ESCs (aESCs) and fertilized ESCs (fESCs), a total of 42 miRNAs and 87 mRNAs were differentially expressed between parthenogenetic ESCs (pESCs) and fESCs, and a total of 99 miRNAs and 1788 mRNAs were differentially expressed between aESCs and pESCs. In addition, a total of 575, 5 and 376 miRNA-mRNA target pairs were observed in aESCs vs. fESCs, pESCs vs. fESCs, and aESCs vs. pESCs, respectively. Furthermore, 15 known imprinted genes and 16 putative uniparentally expressed miRNAs with high expression levels were confirmed by both microarray and real-time RT-PCR. Finally, transfection of miRNA inhibitors was performed to validate the regulatory relationship between putative maternally expressed miRNAs and target mRNAs. Inhibition of miR-880 increased the expression of Peg3, Dyrk1b, and Prrg2 mRNA, inhibition of miR-363 increased the expression of Nfat5 and Soat1 mRNA, and inhibition of miR-883b-5p increased Nfat5, Tacstd2, and Ppapdc1 mRNA. These results warrant a functional study to fully understand the underlying regulation of genomic imprinting in early embryo development.
Collapse
Affiliation(s)
- Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Gaeshin-dong, Cheongju, Chungbuk 361-763, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Derussi AAP, de Souza RWA, Volpato R, Guaitolini CRF, Ackermann CL, Taffarel MO, Cardoso GS, Dal-Pai-Silva M, Lopes MD. Progesterone (PR), Oestrogen (ER-α and ER-β) and Oxytocin (OTR) Gene Expression in the Oviduct and Uterus of Pregnant and Non-pregnant Bitches. Reprod Domest Anim 2012; 47 Suppl 6:197-9. [DOI: 10.1111/rda.12015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/17/2012] [Indexed: 11/29/2022]
Affiliation(s)
- AAP Derussi
- School of Veterinary Medicine and Animal Science; UNESP; Botucatu; São Paulo; Brazil
| | - RWA de Souza
- Institute of Biosciences; IBB; UNESP; Botucatu; São Paulo; Brazil
| | - R Volpato
- School of Veterinary Medicine and Animal Science; UNESP; Botucatu; São Paulo; Brazil
| | - CRF Guaitolini
- School of Veterinary Medicine and Animal Science; UNESP; Botucatu; São Paulo; Brazil
| | - CL Ackermann
- School of Veterinary Medicine and Animal Science; UNESP; Botucatu; São Paulo; Brazil
| | - MO Taffarel
- School of Veterinary Medicine and Animal Science; UNESP; Botucatu; São Paulo; Brazil
| | - GS Cardoso
- School of Veterinary Medicine and Animal Science; UNESP; Botucatu; São Paulo; Brazil
| | - M Dal-Pai-Silva
- Institute of Biosciences; IBB; UNESP; Botucatu; São Paulo; Brazil
| | - MD Lopes
- School of Veterinary Medicine and Animal Science; UNESP; Botucatu; São Paulo; Brazil
| |
Collapse
|
5
|
Naturil-Alfonso C, Vicente JS, Peñaranda DS, Marco-Jiménez F. Up-regulation of insulin-like growth factor I and uteroglobin in in vivo-developed parthenogenetic embryos. Reprod Domest Anim 2012; 48:126-30. [PMID: 22594490 DOI: 10.1111/j.1439-0531.2012.02047.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Parthenote embryos are being considered as an alternative source of embryonic stem cells. However, as there is still a dearth of knowledge of this kind of embryos, a better understanding of their biology is needed for their application. In this work, we studied the differences and similarities between parthenotes and normal embryos at the blastocyst stage in vivo developed. We analysed the expression of factor OCT-4, vascular endothelial growth factor (VEGF), insulin-like growth factor I (IGF-I) and uteroglobin (UG) by real-time PCR. To do so, oocytes were recovered and after activation procedure were transferred by ventral middle laparoscopy to receptive does to undergo completely in vivo development. Does were slaughtered 6 days post-ovulation induction, and parthenote and normal embryos were recovered for mRNA expression analysis. Our results reported that parthenotes and normal embryos showed similar mRNA expression for OCT-4 and VEGF. However, IGF-I and UG showed to be over-expressed in parthenote embryos. Thus, our study highlights that despite the in vivo development of parthenotes, they still seem to have an altered expression and, therefore, to be different to normal embryos. The altered expression pattern of parthenote embryos suggests that these embryos should be studied carefully before future application.
Collapse
Affiliation(s)
- C Naturil-Alfonso
- Instituto de Ciencia y Tecnología Animal. Universidad Politécnica de Valencia, Valencia, Spain
| | | | | | | |
Collapse
|
6
|
Naturil-Alfonso C, Saenz-de-Juano MD, Peñaranda DS, Vicente JS, Marco-Jiménez F. Parthenogenic blastocysts cultured under in vivo conditions exhibit proliferation and differentiation expression genes similar to those of normal embryos. Anim Reprod Sci 2011; 127:222-8. [PMID: 21890291 DOI: 10.1016/j.anireprosci.2011.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 08/05/2011] [Accepted: 08/11/2011] [Indexed: 12/16/2022]
Abstract
Parthenote embryos offer multiple possibilities in biotechnological investigation, such as stem cell research. However, there is still a dearth of knowledge of this kind of embryo. In this study, development and ploidy were analysed in parthenotes under in vitro and in vivo culture conditions. Subsequently, using real-time PCR, the expressions of factor OCT-4, Vascular Endothelial Growth Factor, Epidermal Growth Factor Receptor 3 and Transforming Growth Factor β2 genes were analysed to compare the embryo types at the blastocyst stage. Development and implantation of parthenote embryos were described after transfer at day 10 of pregnancy. Parthenotes showed similar blastocyst development for both culture conditions and most of the parthenotes produced were diploid. However, parthenotes developed under in vivo conditions showed similar mRNA expression of OCT-4, VEGF and TGF-β2 to 5 and 6 day old blastocysts. In contrast, parthenotes developed under in vitro conditions had altered the expression pattern of these genes, except for erbB3 mRNA. Finally, transferred parthenotes had the ability to implant but showed severe growth retardation and lesser size. This is the first demonstration of the influence of culture conditions on parthenote mRNA expression. Our study highlights the importance of culture conditions in subsequent uses of parthenotes, such as the production of stem cell lines.
Collapse
Affiliation(s)
- C Naturil-Alfonso
- Instituto de Ciencia y Tecnología Animal, Universidad Politécnica de Valencia, Valencia 46022, Spain
| | | | | | | | | |
Collapse
|
7
|
Cui XS, Xu YN, Shen XH, Zhang LQ, Zhang JB, Kim NH. Trichostatin A Modulates Apoptotic-Related Gene Expression and Improves Embryo Viability in Cloned Bovine Embryos. Cell Reprogram 2011; 13:179-89. [DOI: 10.1089/cell.2010.0060] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Xiang-Shun Cui
- Center for Laboratory Animal, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yong-Nan Xu
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Xing-Hui Shen
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Li-Qun Zhang
- Reproductive Medical Center, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jia-Bao Zhang
- Center for Laboratory Animal, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Korea
| |
Collapse
|
8
|
Arnold GJ, Frohlich T. Dynamic proteome signatures in gametes, embryos and their maternal environment. Reprod Fertil Dev 2011; 23:81-93. [DOI: 10.1071/rd10223] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Comprehensive molecular analysis at the level of proteins represents a technically demanding, but indispensable, task since several post-transcriptional regulation mechanisms disable a valid prediction of quantitative protein expression profiles from transcriptome analysis. In crucial steps of gamete and early embryo development, de novo transcription is silenced, meaning that almost all macromolecular events take place at the level of proteins. In this review, we describe selected examples of dynamic proteome signatures addressing capacitation of spermatozoa, in vitro maturation of oocytes, effect of oestrous cycle on oviduct epithelial cells and embryo-induced alterations to the maternal environment. We also present details of the experimental strategies applied and the experiments performed to verify quantitative proteomic data. Far from being comprehensive, examples were selected to cover several mammalian species as well as the most powerful proteomic techniques currently applied. To enable non-experts in the field of proteomics to appraise published proteomic data, our examples are preceded by a customised description of quantitative proteomic methods, covering 2D difference gel electrophoresis (2D-DIGE), nano-liquid chromatography combined with tandem mass spectrometry, and label-free as well as stable-isotope labelling strategies for mass spectrometry-based quantifications.
Collapse
|
9
|
Labrecque R, Sirard MA. Gene expression analysis of bovine blastocysts produced by parthenogenic activation or fertilisation. Reprod Fertil Dev 2011; 23:591-602. [DOI: 10.1071/rd10243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 12/17/2010] [Indexed: 11/23/2022] Open
Abstract
The processes underlying the very first moments of embryonic development are still not well characterised in mammals. To better define the kinetics of events taking place following fertilisation, it would be best to have perfect synchronisation of sperm entry. With fertilisation occurring during a time interval of 6 to 12 h in the same group of fertilised oocytes, this causes a major variation in the time of activation of embryonic development. Bovine parthenogenesis could potentially result in better synchronisation and, if so, would offer a better model for studying developmental competence. In the present study, bovine oocytes were either parthenogenetically activated or fertilised and cultured in vitro for 7 days. Gene expression analysis for those two groups of embryos at early and expanded stages was performed with BlueChip, a customised 2000-cDNA array developed in our laboratory and enriched in clones from various stages of bovine embryo development. The microarray data analysis revealed that only a few genes were differentially expressed, showing the relative similarity between those two kinds of embryos. Nevertheless, the fact that we obtained a similar diversity of developmental stages with parthenotes suggests that synchronisation is more oocyte-specific than sperm entry-time related. We then analysed our data with Ingenuity pathway analysis. Networks of genes involved in blastocyst implantation but also previous stages of embryo development, like maternal-to-embryonic transition, were identified. This new information allows us to better understand the regulatory mechanisms of embryonic development associated with embryo status.
Collapse
|
10
|
Sembon S, Fuchimoto DI, Iwamoto M, Suzuki SI, Onishi A. Ploidy assessment of porcine haploid and diploid parthenogenetic embryos by fluorescent in situ hybridization detecting a chromosome 1-specific sequence, Sus scrofa Mc1 satellite DNA. J Reprod Dev 2010; 57:307-11. [PMID: 21157121 DOI: 10.1262/jrd.10-156m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the present study was to examine the feasibility of fluorescent in situ hybridization (FISH) for detecting a chromosome 1-specific sequence as a means of assessing the ploidy of porcine parthenotes. In vitro-matured oocytes with the first polar body (PB) were electrically activated; some were treated with cytochalasin B to prevent second PB extrusion (1PB embryos), and the others extruded the second PB (2PB embryos). At the 2-cell stage, one and two FISH signals were detected in each nucleus of 2PB and 1PB embryos, respectively. Almost all cells of blastocysts derived from 1PB embryos retained two signals. In contrast, cells of blastocysts derived from 2PB embryos had two signals. These data demonstrate that FISH analysis allows precise ploidy assessment of porcine parthenogenetic embryos, hence providing a practical means of detecting ploidy transition during parthenogenetic embryogenesis.
Collapse
Affiliation(s)
- Shoichiro Sembon
- Transgenic Animal Research Center, National Institute of Agrobiological Sciences, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
11
|
Gupta MK, Jang JM, Jung JW, Uhm SJ, Kim KP, Lee HT. Proteomic analysis of parthenogenetic and in vitro fertilized porcine embryos. Proteomics 2009; 9:2846-60. [PMID: 19405025 DOI: 10.1002/pmic.200800700] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteomic data from embryos are essential for the completion of whole proteome catalog due to embryo-specific expression of certain proteins. In this study, using reverse phase LC-MS/MS combined with 1-D SDS-PAGE, we identified 1625 mammalian and 735 Sus scrofa proteins from porcine zygotes that included both cytosolic and membranous proteins. We also found that the global protein profiles of parthenogenetically activated (PA) and in vitro fertilized (IVF) zygotes were similar but differences in expression of individual proteins were also evident. These differences were not due to culture conditions, polyspermy or non-activation of oocytes, as the same culture method was used in both groups, the frequency of polyspermy was 24.3+/-3.0% and the rates of oocyte activation did not differ (p>0.05) between PA and IVF embryos. Consistent with proteomic data, fluorescent Hoechst 33 342 staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay also revealed that PA embryos were of poor quality as they contained less cells per blastocyst and were more predisposed to apoptosis (p<0.05), although their in vitro development rates were similar. To our knowledge, this is the first report on global peptide sequencing and quantification of protein in PA and IVF embryos by LC-MS/MS that may be useful as a reference map for future studies.
Collapse
Affiliation(s)
- Mukesh Kumar Gupta
- Department of Animal Biotechnology, Bio-Organ Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The mouse is the most widely used model of preimplantation embryo development, but is it a good model? Its small size, prolificacy and ease of handling make the mouse a relatively low cost, readily available and attractive alternative when embryos from other species are difficult or expensive to obtain. However, the real power of the mouse as a model lies in mouse genetics. The development of inbred mouse strains facilitated gene discovery as well as our understanding of gene function and regulation while the development of tools to introduce precise genetic modifications uniquely positioned the mouse as a powerful model system for uncovering gene function. However, all models have limitations; the small size of the mouse limits tissue availability and manipulations that can be performed and differences in physiology among species may make it inappropriate to extrapolate from the mouse to other species. Thus, rather than extrapolating directly from the mouse to other species, it may be more useful to use the mouse as a model system for developing and refining hypotheses to be tested directly in species of interest. In this brief review, the value of the preimplantation mouse embryo as a model is considered, both as a model for other species and as a model for the mouse, as understanding the virtues and limitations of the mouse as a model system is essential to its appropriate use.
Collapse
|