1
|
Wyatt J, Chan YK, Hess M, Tavassoli M, Müller MM. Semisynthesis reveals apoptin as a tumour-selective protein prodrug that causes cytoskeletal collapse. Chem Sci 2023; 14:3881-3892. [PMID: 37035694 PMCID: PMC10074440 DOI: 10.1039/d2sc04481a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
Apoptin is a small viral protein capable of inducing cell death selectively in cancer cells. Despite its potential as an anticancer agent, relatively little is known about its mechanism of toxicity and cancer-selectivity. Previous experiments suggest that cancer-selective phosphorylation modulates apoptin toxicity, although a lack of chemical tools has hampered the dissection of underlying mechanisms. Here, we describe structure-function studies with site-specifically phosphorylated apoptin (apoptin-T108ph) in living cells which revealed that Thr108 phosphorylation is the selectivity switch for apoptin toxicity. Mechanistic investigations link T108ph to actin binding, cytoskeletal disruption and downstream inhibition of anoikis-resistance as well as cancer cell invasion. These results establish apoptin as a protein pro-drug, selectively activated in cancer cells by phosphorylation, which disrupts the cytoskeleton and promotes cell death. We anticipate that this mechanism provides a framework for the design of next generation anticancer proteins with enhanced selectivity and potency.
Collapse
Affiliation(s)
- Jasmine Wyatt
- Department of Molecular Oncology, King's College London Guy's Hospital Campus, Hodgkin Building London SE1 1UL UK
- Department of Chemistry, King's College London Britannia House, 7 Trinity Street London SE1 1DB UK
| | - Yuen Ka Chan
- Department of Molecular Oncology, King's College London Guy's Hospital Campus, Hodgkin Building London SE1 1UL UK
| | - Mateusz Hess
- Department of Chemistry, King's College London Britannia House, 7 Trinity Street London SE1 1DB UK
| | - Mahvash Tavassoli
- Department of Molecular Oncology, King's College London Guy's Hospital Campus, Hodgkin Building London SE1 1UL UK
| | - Manuel M Müller
- Department of Chemistry, King's College London Britannia House, 7 Trinity Street London SE1 1DB UK
| |
Collapse
|
2
|
Viral Proteins as Emerging Cancer Therapeutics. Cancers (Basel) 2021; 13:cancers13092199. [PMID: 34063663 PMCID: PMC8125098 DOI: 10.3390/cancers13092199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary This review is focused on enlisting viral proteins from different host sources, irrespective of their origin, that may act as future cancer curatives. Unlike the viral proteins that are responsible for tumor progression, these newly emerged viral proteins function as tumor suppressors. Their ability to regulate various cell signaling mechanisms specifically in cancer cells makes them interesting candidates to explore their use in cancer therapy. The discussion about such viral components may provide new insights into cancer treatment in the absence of any adverse effects to normal cells. The study also highlights avian viral proteins as a substitute to human oncolytic viruses for their ability to evade pre-existing immunity. Abstract Viruses are obligatory intracellular parasites that originated millions of years ago. Viral elements cover almost half of the human genome sequence and have evolved as genetic blueprints in humans. They have existed as endosymbionts as they are largely dependent on host cell metabolism. Viral proteins are known to regulate different mechanisms in the host cells by hijacking cellular metabolism to benefit viral replication. Amicable viral proteins, on the other hand, from several viruses can participate in mediating growth retardation of cancer cells based on genetic abnormalities while sparing normal cells. These proteins exert discreet yet converging pathways to regulate events like cell cycle and apoptosis in human cancer cells. This property of viral proteins could be harnessed for their use in cancer therapy. In this review, we discuss viral proteins from different sources as potential anticancer therapeutics.
Collapse
|
3
|
Malla WA, Arora R, Khan RIN, Mahajan S, Tiwari AK. Apoptin as a Tumor-Specific Therapeutic Agent: Current Perspective on Mechanism of Action and Delivery Systems. Front Cell Dev Biol 2020; 8:524. [PMID: 32671070 PMCID: PMC7330108 DOI: 10.3389/fcell.2020.00524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide in humans and animals. Conventional treatment regimens often fail to produce the desired outcome due to disturbances in cell physiology that arise during the process of transformation. Additionally, development of treatment regimens with no or minimum side-effects is one of the thrust areas of modern cancer research. Oncolytic viral gene therapy employs certain viral genes which on ectopic expression find and selectively destroy malignant cells, thereby achieving tumor cell death without harming the normal cells in the neighborhood. Apoptin, encoded by Chicken Infectious Anemia Virus' VP3 gene, is a proline-rich protein capable of inducing apoptosis in cancer cells in a selective manner. In normal cells, the filamentous Apoptin becomes aggregated toward the cell margins, but is eventually degraded by proteasomes without harming the cells. In malignant cells, after activation by phosphorylation by a cancer cell-specific kinase whose identity is disputed, Apoptin accumulates in the nucleus, undergoes aggregation to form multimers, and prevents the dividing cancer cells from repairing their DNA lesions, thereby forcing them to undergo apoptosis. In this review, we discuss the present knowledge about the structure of Apoptin protein, elaborate on its mechanism of action, and summarize various strategies that have been used to deliver it as an anticancer drug in various cancer models.
Collapse
Affiliation(s)
- Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Richa Arora
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Sonalika Mahajan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ashok Kumar Tiwari
- Division of Biological Standardisation, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
4
|
Feng C, Liang Y, Teodoro JG. The Role of Apoptin in Chicken Anemia Virus Replication. Pathogens 2020; 9:pathogens9040294. [PMID: 32316372 PMCID: PMC7238243 DOI: 10.3390/pathogens9040294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022] Open
Abstract
Apoptin is the Vp3 protein of chicken anemia virus (CAV), which infects the thymocytes and erythroblasts in young chickens, causing chicken infectious anemia and immunosuppression. Apoptin is highly studied for its ability to selectively induce apoptosis in human tumor cells and, thus, is a protein of interest in anti-tumor therapy. CAV apoptin is known to localize to different subcellular compartments in transformed and non-transformed cells, depending on the DNA damage response, and the phosphorylation of several identified threonine residues. In addition, apoptin interacts with molecular machinery such as the anaphase promoting complex/cyclosome (APC/C) to inhibit the cell cycle and induce arrest in G2/M phase. While these functions of apoptin contribute to the tumor-selective effect of the protein, they also provide an important fundamental framework to apoptin’s role in viral infection, pathogenesis, and propagation. Here, we reviewed how the regulation, localization, and functions of apoptin contribute to the viral life cycle and postulated its importance in efficient replication of CAV. A model of the molecular biology of infection is critical to informing our understanding of CAV and other related animal viruses that threaten the agricultural industry.
Collapse
Affiliation(s)
- Cynthia Feng
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Yingke Liang
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jose G. Teodoro
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Goodman Cancer Research Centre, Montreal, QC H3G 1A1, Canada
- Correspondence:
| |
Collapse
|
5
|
Zhang L, Zhao H, Cui Z, Lv Y, Zhang W, Ma X, Zhang J, Sun B, Zhou D, Yuan L. A peptide derived from apoptin inhibits glioma growth. Oncotarget 2018; 8:31119-31132. [PMID: 28415709 PMCID: PMC5458194 DOI: 10.18632/oncotarget.16094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 03/02/2017] [Indexed: 01/24/2023] Open
Abstract
Glioblastoma (GBM) is associated with poor prognosis due to its resistance to surgery, irradiation, and conventional chemotherapy. Thus, efficient therapeutic approaches for the treatment of GBM are urgently needed. HSP70 is an antiapoptotic protein that participates in the inhibition of both mitochondrial and membrane receptor apoptosis pathways and is highly expressed in glioma tissues. Here, we investigated a derivative of apoptin; specifically, a chicken anemia viral protein with selective toxicity toward cancer cells that can inhibit hyperactive molecules, including HSP70. Our earlier studies demonstrated that apoptin directly binds to the promoter of HSP70 and inhibits HSP70 transcription, which contributes to HSP70 downregulation. This study provides the first demonstration of the therapeutic potential of an apoptin-derived peptide for the treatment of GBM by identifying the minimal region of the apoptin domain required for interaction with the heat-shock element (HSE). This apoptin-derived peptide (ADP) inhibits glioma cell proliferation and tumor growth as well as exhibits an increased ability to promote apoptosis in GBM cells compared with rapamycin and temozolomide. ADP treatment inhibited xenograft tumor growth and increased the overall health and survival of nude mice implanted with GBM cells. These effects were measured in tumors obtained from cell lines and were observed in both intracranial and subcutaneous xenografts. In conclusion, we provide the first demonstration that ADP has therapeutic potential for the treatment of human GBM. Specifically, this study suggests that ADP is a potent candidate for drug development based on its favorable toxicity and pharmacokinetic profiles as well as its time- and cost-saving benefits.
Collapse
Affiliation(s)
- Liqiu Zhang
- Teaching Experiment Center of Biotechnology, Harbin Medical University, Harbin, P.R. China
| | - Hengyu Zhao
- Daqing Oilfield General Hospital, Daqing, P.R. China
| | - Zhongqi Cui
- Department of Biochemistry and Molecular Biology, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, Daqing, P.R. China
| | - Yueshan Lv
- Department of Immunology, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, Daqing, P.R. China
| | - Wenjia Zhang
- Daqing Oilfield General Hospital, Daqing, P.R. China
| | - Xiaoyu Ma
- Beijing Sun Palace Community Health Center, P.R. China
| | - Jianan Zhang
- Department of Biochemistry and Molecular Biology, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, Daqing, P.R. China
| | - Banghao Sun
- Department of Biochemistry and Molecular Biology, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, Daqing, P.R. China
| | - Danyang Zhou
- Department of Biochemistry and Molecular Biology, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, Daqing, P.R. China
| | - Lijie Yuan
- Department of Biochemistry and Molecular Biology, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, Daqing, P.R. China
| |
Collapse
|
6
|
Lai GH, Lien YY, Lin MK, Cheng JH, Tzen JT, Sun FC, Lee MS, Chen HJ, Lee MS. VP2 of Chicken Anaemia Virus Interacts with Apoptin for Down-regulation of Apoptosis through De-phosphorylated Threonine 108 on Apoptin. Sci Rep 2017; 7:14799. [PMID: 29093508 PMCID: PMC5665943 DOI: 10.1038/s41598-017-14558-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/11/2017] [Indexed: 12/18/2022] Open
Abstract
Chicken anaemia virus (CAV) is an important contagious agent that causes immunosuppressive disease in chickens. CAV Apoptin is a nucleoplasmic shuffling protein that induces apoptosis in chicken lymphoblastoid cells. In the present study, confocal microscopy revealed co-localisation of expressed CAV non-structural protein VP2 with Apoptin in the nucleus of MDCC-MSB1 cells and the nucleoplasmic compartment of CHO-K1 cells. In vitro pull-down and ex vivo biomolecular fluorescent complementation (BiFC) assays further showed that the VP2 protein directly interacts with Apoptin. Transient co-expression of VP2 and Apoptin in MDCC-MSB1 cells significantly decreased the rate of apoptosis compared with that in cells transfected with the Apoptin gene alone. In addition, the phosphorylation status of threonine 108 (Thr108) of Apoptin was found to decrease upon interaction with VP2. Although dephosphorylated Thr108 did not alter the subcellular distribution of Apoptin in the nucleus of MDCC-MSB1 cells, it did suppress apoptosis. These findings provide the first evidence that VP2 directly interacts with Apoptin in the nucleus to down-regulate apoptosis through alterations in the phosphorylation status of the latter. This information will be useful to further elucidate the underlying mechanism of viral replication in the CAV life cycle.
Collapse
Affiliation(s)
- Guan-Hua Lai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40402, Taiwan
| | - Yi-Yang Lien
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Ming-Kuem Lin
- Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung, 40402, Taiwan
| | - Jai-Hong Cheng
- Center for Shockwave Medicine and Tissue Engineering, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Jason Tc Tzen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40402, Taiwan
| | - Fang-Chun Sun
- Department of Bioresources, Da-Yeh University, Changhua, 515, Taiwan
| | - Meng-Shiunn Lee
- Research Assistance Center, Show Chwan Memorial Hospital, Changhua, 500, Taiwan
| | - Hsi-Jien Chen
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei, 24301, Taiwan
| | - Meng-Shiou Lee
- Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
7
|
Activation of the Chicken Anemia Virus Apoptin Protein by Chk1/2 Phosphorylation Is Required for Apoptotic Activity and Efficient Viral Replication. J Virol 2016; 90:9433-45. [PMID: 27512067 DOI: 10.1128/jvi.00936-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Chicken anemia virus (CAV) is a single-stranded circular DNA virus that carries 3 genes, the most studied of which is the gene encoding VP3, also known as apoptin. This protein has been demonstrated to specifically kill transformed cells while leaving normal cells unharmed in a manner that is independent of p53 status. Although the mechanistic basis for this differential activity is unclear, it is evident that the subcellular localization of the protein is important for the difference. In normal cells, apoptin exists in filamentous networks in the cytoplasm, whereas in transformed cells, apoptin is present in the nucleus and appears as distinct foci. We have previously demonstrated that DNA damage signaling through the ataxia telangiectasia mutated (ATM) pathway induces the translocation of apoptin from the cytoplasm to the nucleus, where it induces apoptosis. We found that apoptin contains four checkpoint kinase consensus sites and that mutation of either threonine 56 or 61 to alanine restricts apoptin to the cytoplasm. Furthermore, treatment of tumor cells expressing apoptin with inhibitors of checkpoint kinase 1 (Chk1) and Chk2 causes apoptin to localize to the cytoplasm. Importantly, silencing of Chk2 rescues cancer cells from the cytotoxic effects of apoptin. Finally, treatment of virus-producing cells with Chk inhibitor protects them from virus-mediated toxicity and reduces the titer of progeny virus. Taken together, our results indicate that apoptin is a sensor of DNA damage signaling through the ATM-Chk2 pathway, which induces it to migrate to the nucleus during viral replication. IMPORTANCE The chicken anemia virus (CAV) protein apoptin is known to induce tumor cell-specific death when expressed. Therefore, understanding its regulation and mechanism of action could provide new insights into tumor cell biology. We have determined that checkpoint kinase 1 and 2 signaling is important for apoptin regulation and is a likely feature of both tumor cells and host cells producing virus progeny. Inhibition of checkpoint signaling prevents apoptin toxicity in tumor cells and attenuates CAV replication, suggesting it may be a future target for antiviral therapy.
Collapse
|
8
|
Creation of an apoptin-derived peptide that interacts with SH3 domains and inhibits glioma cell migration and invasion. Tumour Biol 2016; 37:15229-15240. [PMID: 27686608 DOI: 10.1007/s13277-016-5404-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive tumor of the central nervous system characterized by high rates of recurrence, morbidity, and mortality. This study investigated the antitumor effects of an apoptin-derived peptide (ADP) on glioma cells and explored the underlying mechanisms. The U251, U87, and C6 glioma cell lines were used in the present study, and the expression of p-Akt, Akt, and MMP-9 was determined through Western blotting, quantitative real-time PCR, and hematoxylin and eosin (HE) staining. Tumor growth was evaluated by magnetic resonance imaging, and cell viability was assessed through an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay. Glioma cell metastasis was evaluated using transwell migration, invasion, and scratch-wound assays. An ADP was designed and synthesized based on the results of a domain-based analysis of the structure of apoptin. The ADP inhibited glioma cell viability, invasion and migration, and treatment with the synthesized ADP led to downregulation of p-Akt and MMP-9 and inhibited MMP-9 translation. The ADP also inhibited glioma invasion and migration in vivo, and HE staining showed decreases in the satellite-like invasion of cell masses and apoptotic cell populations after treatment with the ADP. Our findings demonstrate that treatment with an ADP can suppress glioma cell migration and invasion via the PI3K/Akt/MMP-9 signaling pathway and provide a new platform for the development of drugs for treating glioma.
Collapse
|
9
|
Gupta SK, Tiwari AK, Gandham RK, Sahoo AP. Combined administration of the apoptin gene and poly (I:C) induces potent anti-tumor immune response and inhibits growth of mouse mammary tumors. Int Immunopharmacol 2016; 35:163-173. [PMID: 27064544 DOI: 10.1016/j.intimp.2016.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Many viral proteins exhibit selective cytotoxicity for tumor cells without affecting the normal diploid cells. The apoptin protein of chicken infectious anemia virus is one of such proteins, which has been shown to kill tumor cells specifically. However, an effective cancer treatment strategy also requires assistance from the immune system. Recently, poly (I:C) has been shown to be an effective cancer vaccine adjuvant. AIM In this study, we assessed the anti-tumor potential of apoptin gene transfer alone and in combination with poly (I:C) in a 4T1 mouse mammary tumor model. METHODS 4T1 cells were used to induce mammary tumor in Balb/c mice. Mice bearing tumors were divided into 6 groups, and each group received six intratumoral injections during a period of one month. After the last immunization, the animals were sacrificed, and peripheral blood, spleen, lungs, liver, heart, kidney and tumor tissues were collected for immunological, molecular and pathological analysis. RESULTS We report that intratumoral administration of apoptin plasmid along with poly (I:C) not only significantly inhibited the growth of mammary tumor, but also induced a potent anti-tumor immune response as indicated by the increase in blood CD4+, CD8+ cells and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed increased secretion of Th1 cytokines (IFN-γ and IL-2). CONCLUSIONS The results of our study demonstrate that the inclusion of poly (I:C) significantly enhanced the anti-tumor activity of apoptin mainly by inducing a potent anti-tumor immune response. Therefore, we report the use of apoptin and poly (I:C) combination as a novel and powerful strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP, India.
| | - Ashok K Tiwari
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP, India.
| | - Ravi Kumar Gandham
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP, India
| | - A P Sahoo
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP, India
| |
Collapse
|
10
|
Lezhnin YN, Kravchenko YE, Frolova EI, Chumakov PM, Chumakov SP. Oncotoxic proteins in cancer therapy: Mechanisms of action. Mol Biol 2015. [DOI: 10.1134/s0026893315020077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Gupta SK, Gandham RK, Sahoo AP, Tiwari AK. Viral genes as oncolytic agents for cancer therapy. Cell Mol Life Sci 2015; 72:1073-94. [PMID: 25408521 PMCID: PMC11113997 DOI: 10.1007/s00018-014-1782-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 10/29/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022]
Abstract
Many viruses have the ability to modulate the apoptosis, and to accomplish it; viruses encode proteins which specifically interact with the cellular signaling pathways. While some viruses encode proteins, which inhibit the apoptosis or death of the infected cells, there are viruses whose encoded proteins can kill the infected cells by multiple mechanisms, including apoptosis. A particular class of these viruses has specific gene(s) in their genomes which, upon ectopic expression, can kill the tumor cells selectively without affecting the normal cells. These genes and their encoded products have demonstrated great potential to be developed as novel anticancer therapeutic agents which can specifically target and kill the cancer cells leaving the normal cells unharmed. In this review, we will discuss about the viral genes having specific cancer cell killing properties, what is known about their functioning, signaling pathways and their therapeutic applications as anticancer agents.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - Ravi Kumar Gandham
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. P. Sahoo
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. K. Tiwari
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| |
Collapse
|
12
|
Rosenkranz AA, Ulasov AV, Slastnikova TA, Khramtsov YV, Sobolev AS. Use of intracellular transport processes for targeted drug delivery into a specified cellular compartment. BIOCHEMISTRY (MOSCOW) 2014; 79:928-46. [DOI: 10.1134/s0006297914090090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Rollano Peñaloza OM, Lewandowska M, Stetefeld J, Ossysek K, Madej M, Bereta J, Sobczak M, Shojaei S, Ghavami S, Łos MJ. Apoptins: selective anticancer agents. Trends Mol Med 2014; 20:519-28. [PMID: 25164066 DOI: 10.1016/j.molmed.2014.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/17/2014] [Accepted: 07/17/2014] [Indexed: 12/20/2022]
Abstract
Therapies that selectively target cancer cells for death have been the center of intense research recently. One potential therapy may involve apoptin proteins, which are able to induce apoptosis in cancer cells leaving normal cells unharmed. Apoptin was originally discovered in the Chicken anemia virus (CAV); however, human gyroviruses (HGyV) have recently been found that also harbor apoptin-like proteins. Although the cancer cell specific activity of these apoptins appears to be well conserved, the precise functions and mechanisms of action are yet to be fully elucidated. Strategies for both delivering apoptin to treat tumors and disseminating the protein inside the tumor body are now being developed, and have shown promise in preclinical animal studies.
Collapse
Affiliation(s)
- Oscar M Rollano Peñaloza
- Department Clinical & Experimental Medicine, Division of Cell Biology, and Integrative Regenerative Medical Center, Linköping University, Linköping, Sweden; Instituto de Biologia Molecular y Biotecnologia, La Paz, Bolivia
| | | | - Joerg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Karolina Ossysek
- Department of Cell Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mariusz Madej
- Department of Cell Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mateusz Sobczak
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Shahla Shojaei
- Department of Biochemistry, Recombinant Protein Laboratory, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Ghavami
- Department of Human Anatomy & Cell Science, College of Medicine, Faculty of Health Sciences, and Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Canada; Health Policy Research Centre, Shiraz University of Medical Science, Shiraz, Iran
| | - Marek J Łos
- Department Clinical & Experimental Medicine, Division of Cell Biology, and Integrative Regenerative Medical Center, Linköping University, Linköping, Sweden; Department of Pathology, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
14
|
Abstract
The virus-derived protein Apoptin has the ability to induce p53-independent apoptosis in a variety of human cancer cells while leaving normal cells unharmed. It thus represents a potential anti-cancer therapeutic agent of the future but a proper understanding of Apoptin-induced signalling events is necessary prior to clinical application. The tumor-specific nuclear translocation and phosphorylation of Apoptin by a cellular kinase such as protein kinase C seem to be required for its function but otherwise the mode of tumor selectivity remains unknown. Apoptin has been shown to interact with several cellular proteins including Akt and the anaphase-promoting complex that regulate its activity and promote caspase-dependent apoptosis. This chapter summarizes the available data on tumor-specific pathways sensed by Apoptin and the mechanism of Apoptin-induced cell death.
Collapse
Affiliation(s)
- Jessica Bullenkamp
- Kings College London, Guy's Hospital, Floor 2 Room 2.66S, Hodgkin Building, London, UK
| | | |
Collapse
|
15
|
Shen Ni L, Allaudin ZNB, Mohd Lila MAB, Othman AMB, Othman FB. Selective apoptosis induction in MCF-7 cell line by truncated minimal functional region of Apoptin. BMC Cancer 2013; 13:488. [PMID: 24144306 PMCID: PMC4015422 DOI: 10.1186/1471-2407-13-488] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 09/30/2013] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Chicken Anemia Virus (CAV) VP3 protein (also known as Apoptin), a basic and proline-rich protein has a unique capability in inducing apoptosis in cancer cells but not in normal cells. Five truncated Apoptin proteins were analyzed to determine their selective ability to migrate into the nucleus of human breast adenocarcinoma MCF-7 cells for inducing apoptosis. METHODS For identification of the minimal selective domain for apoptosis, the wild-type Apoptin gene had been reconstructed by PCR to generate segmental deletions at the N' terminal and linked with nuclear localization sites (NLS1 and NLS2). All the constructs were fused with maltose-binding protein gene and individually expressed by in vitro Rapid Translation System. Standardized dose of proteins were delivered into human breast adenocarcinoma MCF-7 cells and control human liver Chang cells by cytoplasmic microinjection, and subsequently observed for selective apoptosis effect. RESULTS Three of the truncated Apoptin proteins with N-terminal deletions spanning amino acid 32-83 retained the cancer selective nature of wild-type Apoptin. The proteins were successfully translocated to the nucleus of MCF-7 cells initiating apoptosis, whereas non-toxic cytoplasmic retention was observed in normal Chang cells. Whilst these truncated proteins retained the tumour-specific death effector ability, the specificity for MCF-7 cells was lost in two other truncated proteins that harbor deletions at amino acid 1-31. The detection of apoptosing normal Chang cells and MCF-7 cells upon cytoplasmic microinjection of these proteins implicated a loss in Apoptin's signature targeting activity. CONCLUSIONS Therefore, the critical stretch spanning amino acid 1-31 at the upstream of a known hydrophobic leucine-rich stretch (LRS) was strongly suggested as one of the prerequisite region in Apoptin for cancer targeting. Identification of this selective domain provides a platform for developing small targets to facilitating carrier-mediated-transport across cellular membrane, simultaneously promoting protein delivery for selective and effective breast cancer therapy.
Collapse
Affiliation(s)
- Lim Shen Ni
- Institute of Biosciences, Universiti Putra, Serdang, Malaysia
| | - Zeenathul Nazariah bt Allaudin
- Institute of Biosciences, Universiti Putra, Serdang, Malaysia
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Mohd Azmi b Mohd Lila
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | | | | |
Collapse
|
16
|
Zhao J, Han SX, Ma JL, Ying X, Liu P, Li J, Wang L, Zhang Y, Ma J, Zhang L, Zhu Q. The role of CDK1 in apoptin-induced apoptosis in hepatocellular carcinoma cells. Oncol Rep 2013; 30:253-9. [PMID: 23619525 DOI: 10.3892/or.2013.2426] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/05/2013] [Indexed: 11/05/2022] Open
Abstract
Apoptin, a small protein derived from the chicken anemia virus, specifically induces apoptosis in transformed cells or tumor cells but not in normal cells. Thus, apoptin is involved in a general, tumor-specific pathway. Apoptin-induced apoptosis presumably requires additional interaction partners that activate specific signaling pathways in cancer cells. A number of molecules interact with apoptin and play an important role in the nuclear localization of apoptin or its tumor-selective cytotoxicity. Our data indicated that apoptin selectively kills HepG2 hepatocellular carcinoma (HCC) cells but has no effect on the normal liver cell line HL-7702. Analyses of human HCC tissue samples confirmed that CDK1 (cyclin-dependent kinase 1) activity was detected in primary malignancies but not in healthy paraneoplastic tissues. shRNA knockdown of CDK1 significantly reduced the tumor-specific killing effects of apoptin, suggesting that CDK1 plays an important role in the regulation of apoptin-induced apoptosis. Furthermore, the majority of apoptin translocated to the cytoplasm from the nucleus after knockdown of CDK1. Collectively, our results revealed for the first time that apoptin interacts with CDK1 in the complex process of tumorigenesis. The link between CDK1 and apoptin may be a novel cellular signaling pathway to modulate apoptosis in cancer; therefore, apoptin may have pharmacological potential to be directly employed for cancer therapy.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University Medical college, Xi'an, Shaanxi 710061, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Taebunpakul P, Sayan BS, Flinterman M, Klanrit P, Gäken J, Odell EW, Melino G, Tavassoli M. Apoptin induces apoptosis by changing the equilibrium between the stability of TAp73 and ΔNp73 isoforms through ubiquitin ligase PIR2. Apoptosis 2012; 17:762-76. [PMID: 22484480 DOI: 10.1007/s10495-012-0720-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Apoptin, a protein derived from the chicken anaemia virus, induces cell death in various cancer cells but shows little or no cytotoxicity in normal cells. The mechanism of apoptin-induced cell death is currently unknown but it appears to induce apoptosis independent of p53 status. Here we show that p73, a p53 family member, is important in apoptin-induced apoptosis. In p53 deficient and/or mutated cells, apoptin induced the expression of TAp73 leading to the induction of apoptosis. Knockdown of p73 using siRNA resulted in a significant reduction in apoptin-induced cytotoxicity. The p53 and p73 pro-apoptotic target PUMA plays an important role in apoptin-induced cell death as knockdown of PUMA significantly reduced cell sensitivity to apoptin. Importantly, apoptin expression resulted in a marked increase in TAp73 protein stability. Investigation into the mechanisms of TAp73 stability showed that apoptin induced the expression of the ring finger domain ubiquitin ligase PIR2 which is involved in the degradation of the anti-apoptotic ∆Np73 isoform. Collectively, our results suggest a novel mechanism of apoptin-induced apoptosis through increased TAp73 stability and induction of PIR2 resulting in the degradation of ∆Np73 and activation of pro-apoptotic targets such as PUMA causing cancer cell death.
Collapse
Affiliation(s)
- P Taebunpakul
- Head and Neck Oncology Group, King's College London Dental Institute, Floor 28 Tower Wing, Guy's Hospital Campus, London, SE1 9RT, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Mechanisms of Apoptin-induced cell death. Med Oncol 2011; 29:2985-91. [DOI: 10.1007/s12032-011-0119-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 11/09/2011] [Indexed: 12/22/2022]
|
19
|
Lanz HL, Florea BI, Noteborn MHM, Backendorf C. Development and application of an in vitro apoptin kinase assay. Anal Biochem 2011; 421:68-74. [PMID: 22080040 DOI: 10.1016/j.ab.2011.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/07/2011] [Accepted: 10/17/2011] [Indexed: 10/16/2022]
Abstract
Apoptin, a protein derived from chicken anemia virus (CAV), induces apoptosis selectively in human tumor cells as compared with normal cells. This activity depends on phosphorylation and relocation of apoptin to the nucleus of cancer cells. Here, we describe an in vitro kinase assay that allows the biochemical characterization of apoptin kinase activity in tumor cells. The kinase phosphorylates apoptin in a strictly ATP-dependent fashion and in a broad salt range. The kinase activity is present constitutively in both cytoplasm and nucleus of various human tumor cells. Q-column chromatography showed that both cytoplasmic and nuclear fractions have identical fractionation characteristics, suggesting that the same kinase is present in both cellular compartments. Kinase activity derived from positive Q-column fractions bound to amylose-maltose-binding protein (MBP)-apoptin and could be eluted with ATP only in the presence of the cofactor Mg(2+). Apparently, unphosphorylated apoptin interacts with the kinase and is released only after phosphorylation has occurred, proving that our assay recognizes the genuine apoptin kinase. This is further corroborated by the finding that apoptin is phosphorylated in vitro at positions Thr108 and Thr107, in concert with earlier in vivo observations. Our assay excludes cyclin-dependent kinase 2 (CDK2) and protein kinase C beta (PKC-β), previously nominated by two separate studies as being the genuine apoptin kinase.
Collapse
Affiliation(s)
- Henriëtte L Lanz
- Department of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | | | | | | |
Collapse
|
20
|
DNA damage response signaling triggers nuclear localization of the chicken anemia virus protein Apoptin. J Virol 2011; 85:12638-49. [PMID: 21937663 DOI: 10.1128/jvi.05009-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The chicken anemia virus (CAV) protein Apoptin is a small, 13.6-kDa protein that has the intriguing activity of inducing G(2)/M arrest and apoptosis specifically in cancer cells by a mechanism that is independent of p53. The activity of Apoptin is regulated at the level of localization. Whereas Apoptin is cytoplasmic in primary cells and does not affect cell growth, in transformed cells it localizes to the nucleus, where it induces apoptosis. The properties of cancer cells that are responsible for activating the proapoptotic activities of Apoptin remain unclear. In the current study, we show that DNA damage response (DDR) signaling is required to induce Apoptin nuclear localization in primary cells. Induction of DNA damage in combination with Apoptin expression was able to induce apoptosis in primary cells. Conversely, chemical or RNA interference (RNAi) inhibition of DDR signaling by ATM and DNA-dependent protein kinase (DNA-PK) was sufficient to cause Apoptin to localize in the cytoplasm of transformed cells. Furthermore, the nucleocytoplasmic shuttling activity of Apoptin is required for DDR-induced changes in localization. Interestingly, nuclear localization of Apoptin in primary cells was able to inhibit the formation of DNA damage foci containing 53BP1. Apoptin has been shown to bind and inhibit the anaphase-promoting complex/cyclosome (APC/C). We observe that Apoptin is able to inhibit formation of DNA damage foci by targeting the APC/C-associated factor MDC1 for degradation. We suggest that these results may point to a novel mechanism of DDR inhibition during viral infection.
Collapse
|
21
|
Wang C, Zhang Y. Apoptin gene transfer via modified wheat histone H4 facilitates apoptosis of human ovarian cancer cells. Cancer Biother Radiopharm 2011; 26:121-6. [PMID: 21355783 DOI: 10.1089/cbr.2010.0858] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nonviral approaches have been used extensively for intracellular gene transfer and gene therapy. A modified wheat histone H4 protein, H4TL (H4-TAT-LHRH), as a protein-based gene delivery vector that was able to form stable complexes with plasmid DNA and increase gene delivery efficiency has been described previously. In this study, H4TL has been used to deliver apoptin gene into a human ovarian carcinoma cell line HO8910. After transfection, increased expression of apoptin at both mRNA and protein levels was detected in HO8910 cells, accompanied by reduced rate of growth of HO8910 cells in vitro and the loss of mitochondrial membrane potential in these cells. These data demonstrate that H4TL-mediated transfer of apoptin initiates mitochondrial death pathway in ovarian cancer cells and suggest a novel therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Biochemistry and Molecular Biology, College of Animal Science and Veterinary, Jilin University, Changchun, China
| | | |
Collapse
|
22
|
Jiang J, Cole D, Westwood N, Macpherson L, Farzaneh F, Mufti G, Tavassoli M, Gäken J. Crucial Roles for Protein Kinase C Isoforms in Tumor-Specific Killing by Apoptin. Cancer Res 2010; 70:7242-52. [DOI: 10.1158/0008-5472.can-10-1204] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Pan Y, Fang L, Fan H, Luo R, Zhao Q, Chen H, Xiao S. Antitumor effects of a recombinant pseudotype baculovirus expressing Apoptin in vitro and in vivo. Int J Cancer 2010; 126:2741-51. [PMID: 19824041 DOI: 10.1002/ijc.24959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Apoptin, a chicken anemia virus-derived, p53-independent, bcl-2-insenstive apoptotic protein with the ability to specifically induce apoptosis in tumor or transformed cells, is a promising tool for cancer gene therapy. In this study, pseudotype baculovirus, a recently developed alternative gene delivery system, was used as a vector to express Apoptin. The resultant recombinant baculovirus (BV-Apoptin) efficiently expressed the Apoptin protein and induced apoptosis in HepG2 and H22 cells. Studies in vivo showed that intratumoral injection of BV-Apoptin into a xenogeneic tumor (derived from H22 murine hepatoma cells in C57BL/6 mice) significantly suppressed tumor growth, and significantly prolonged the survival of tumor-bearing mice compared to a control pseudotype baculovirus that expressed EGFP. Taken together, these results suggest that Apoptin, expressed from the pseudotype baculovirus vector, has the potential to become a therapeutic agent for the treatment of solid tumors.
Collapse
Affiliation(s)
- Yongfei Pan
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
Nuclear drug delivery to target tumour cells. Eur J Pharmacol 2009; 625:174-80. [DOI: 10.1016/j.ejphar.2009.06.069] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 06/05/2009] [Accepted: 06/22/2009] [Indexed: 01/12/2023]
|
25
|
Sun J, Yan Y, Wang XT, Liu XW, Peng DJ, Wang M, Tian J, Zong YQ, Zhang YH, Noteborn MHM, Qu S. PTD4-apoptin protein therapy inhibits tumor growth in vivo. Int J Cancer 2009; 124:2973-81. [PMID: 19326452 DOI: 10.1002/ijc.24279] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Apoptin protein harbors tumor-selective cell death activity, which makes it a potential anticancer therapy candidate. This study reports an apoptin therapy approach based on protein transduction domain 4 (PTD4)-mediated transduction of recombinant apoptin protein. In vitro, the PTD4-apoptin fusion protein is located in the nucleus and induces cell death in, e.g., human hepatocarcinoma HepG2 cells. In normal human L-02 hepatocytes, PTD4-apoptin protein retained mainly cytoplasmic and did not induce detectable levels of cell death, illustrating that the PTD4 domain does not affect apoptin's tumor-selective characteristics. In vivo, liver, cervix and gastric carcinoma xenografts treated with PTD4-apoptin protein for 6 days via the tumor epidermis exhibited a significant tumor growth inhibition because of apoptin-mediated cell death. In addition, treatment of human hepatocarcinoma xenografts during 3 weeks showed that PTD4-apoptin protein has significant anticancer activity, whereas control treatment with PTD4-enhanced green fluorescence protein or saline did not. Cell death and disruption of the tumor integrity were apparent in the PTD4-apoptin transduced xenografted tumors. As important, although PTD4-apoptin protein could be detected in the epidermal tissue covering the subcutaneous tumor tissue and in several organs, such as liver and brain, of the treated mice, no tissue disruption or signs of cell death could be detected. Our in vivo data reveal that apoptin protein delivery constitutes a novel powerful and safe anticancer therapy.
Collapse
Affiliation(s)
- Jun Sun
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Apoptin, a tumor-selective killer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1335-42. [PMID: 19374922 DOI: 10.1016/j.bbamcr.2009.04.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/05/2009] [Accepted: 04/07/2009] [Indexed: 01/21/2023]
Abstract
Apoptin, a small protein from chicken anemia virus, has attracted great attention, because it specifically kills tumor cells while leaving normal cells unharmed. The subcellular localization of apoptin appears to be crucial for this tumor-selective activity. In normal cells, apoptin resides in the cytoplasm, whereas in cancerous cells it translocates into the nucleus. The nuclear translocation of apoptin is largely controlled by its phosphorylation. In tumor cells, apoptin causes the nuclear accumulation of survival kinases including Akt and is phosphorylated by CDK2. Thereby, apoptin redirects survival signals into cell death responses. Apoptin also binds as a multimeric complex to DNA and interacts with several nuclear targets, such as the anaphase-promoting complex, resulting in a G2/M phase arrest. The proapoptotic signal of apoptin is then transduced from the nucleus to cytoplasm by Nur77, which triggers a p53-independent mitochondrial death pathway. In this review, we summarize recent discoveries of apoptin's mechanism of action that might provide intriguing insights for the development of novel tumor-selective anticancer drugs.
Collapse
|
27
|
de Smit MH, Noteborn MHM. Apoptosis-inducing proteins in chicken anemia virus and TT virus. Curr Top Microbiol Immunol 2009; 331:131-49. [PMID: 19230562 DOI: 10.1007/978-3-540-70972-5_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Torque teno viruses (TTVs) share several genomic similarities with the chicken anemia virus (CAV). CAV encodes the protein apoptin that specifically induces apoptosis in (human) tumor cells. Functional studies reveal that apoptin induces apoptosis in a very broad range of (human) tumor cells. A putative TTV open reading frame (ORF) in TTV genotype 1, named TTV apoptosis inducing protein (TAIP), it induces, like apoptin, p53-independent apoptosis in various human hepatocarcinoma cell lines to a similar level as apoptin. In comparison to apoptin, TAIP action is less pronounced in several analyzed human non-hepatocarcinoma-derived cell lines. Detailed sequence analysis has revealed that the TAIP ORF is conserved within a limited group of the heterogeneous TTV population. However, its N-terminal half, N-TAIP, is rather well conserved in a much broader set of TTV isolates. The similarities between apoptin and TAIP, and their relevance for the development and treatment of diseases is discussed.
Collapse
Affiliation(s)
- M H de Smit
- Department of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | | |
Collapse
|
28
|
Hino S, Prasetyo AA. Relationship of Torque teno virus to chicken anemia virus. Curr Top Microbiol Immunol 2009; 331:117-30. [PMID: 19230561 DOI: 10.1007/978-3-540-70972-5_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter examines the correlation between Torque teno virus (TTV) and chicken anemia virus (CAV). Each has a circular single-stranded (ss)DNA genome with every one of its known open reading frames (ORF) on its antigenomic strand. This structure is distinct from those of circoviruses. The genomic sizes of TTV and CAV are different, 3.8 kb and 2.3 kb, respectively. While the spectrum of the TTV genome is enormously diverse, that of the CAV genome is quite narrow. Although a 36-nt stretch near the replication origin of TA278 TTV possesses more than 80% similarity to that of CAV, the sequence of the other genomic regions does not exhibit a significant similarity. Nevertheless, the relative allocation of ORFs on each frame in these viruses mimics each other. Three or more messenger RNA (mRNAs) are generated by transcription in both of them. The structural protein with the replicase domain is coded for by frame 1 in each virus, and a nonstructural protein with a phosphatase domain is coded for by frame 2. A protein on frame 3 in each virus induces apoptosis in transformed cells. Recently, we confirmed that apoptin is necessary for the replication of CAV. TTV has been proposed to constitute a new family, Anelloviridae. Considering these similarities and dissimilarities between CAV and TTV, it seems more reasonable to place CAV, the only member of genus Gyrovirus, into Anelloviridae together with TTV, or into a new independent family.
Collapse
Affiliation(s)
- S Hino
- Division of Virology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan.
| | | |
Collapse
|
29
|
Prasetyo AA, Kamahora T, Kuroishi A, Murakami K, Hino S. Replication of chicken anemia virus (CAV) requires apoptin and is complemented by VP3 of human torque teno virus (TTV). Virology 2008; 385:85-92. [PMID: 19091368 DOI: 10.1016/j.virol.2008.10.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/18/2008] [Accepted: 10/27/2008] [Indexed: 11/17/2022]
Abstract
To test requirement for apoptin in the replication of chicken anemia virus (CAV), an apoptin-knockout clone, pCAV/Ap(-), was constructed. DNA replication was completely abolished in cells transfected with replicative form of CAV/Ap(-). A reverse mutant competent in apoptin production regained the full level of DNA replication. DNA replication and virus-like particle (VLP) production of CAV/Ap(-) was fully complemented by supplementation of the wild-type apoptin. The virus yield of a point mutant, CAV/ApT(108)I, was 1/40 that of the wild type, even though its DNA replication level was full. The infectious titer of CAV was fully complemented by supplementing apoptin. Progeny virus was free from reverse mutation for T(108)I. To localize the domain within apoptin molecule inevitable for CAV replication, apoptin-mutant expressing plasmids, pAp1, pAp2, pAp3, and pAp4, were constructed by deleting amino acids 10-36, 31-59, 59-88 and 80-112, respectively. While Ap1 and Ap2 were preferentially localized in nuclei, Ap3 and Ap4 were mainly present in cytoplasm. Although complementation capacity of Ap3 and Ap4 was 1/10 of the wild type, neither of them completely lost its activity. VP3 of TTV did fully complement the DNA replication and VLP of CAV/Ap(-). These data suggest that apoptin is inevitable not only for DNA replication but also VLP of CAV. The common feature of apoptin and TTV-VP3 presented another evidence for close relatedness of CAV and TTV.
Collapse
|
30
|
Han SX, Ma JL, Lv Y, Huang C, Liang HH, Duan KM. Secretory Transactivating Transcription-apoptin fusion protein induces apoptosis in hepatocellular carcinoma HepG2 cells. World J Gastroenterol 2008; 14:3642-9. [PMID: 18595131 PMCID: PMC2719227 DOI: 10.3748/wjg.14.3642] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether SP-TAT-apoptin induces apoptosis and also maintains its tumor cell specificity.
METHODS: In this study, we designed a secretory protein by adding a secretory signal peptide (SP) to the N terminus of Transactivating Transcription (TAT)-apoptin (SP-TAT-apoptin), to test the hypothesis that it gains an additive bystander effect as an anti-cancer therapy. We used an artificial human secretory SP whose amino acid sequence and corresponding cDNA sequence were generated by the SP hidden Markov model.
RESULTS: In human liver carcinoma HepG2 cells, SP-TAT-apoptin expression showed a diffuse pattern in the early phase after transfection. After 48 h, however, it translocated into the nuclear compartment and caused massive apoptotic cell death, as determined by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and annexin-V binding assay. SP-TAT-apoptin did not, however, cause any cell death in non-malignant human umbilical vein endothelial cells (HUVECs). Most importantly, the conditioned medium from Chinese hamster ovary (CHO) cells transfected with SP-TAT-apoptin also induced significant cell death in HepG2 cells, but not in HUVECs.
CONCLUSION: The data demonstrated that SP-TAT-apoptin induces apoptosis only in malignant cells, and its secretory property might greatly increase its potency once it is delivered in vivo for cancer therapy.
Collapse
|
31
|
Backendorf C, Visser AE, de Boer AG, Zimmerman R, Visser M, Voskamp P, Zhang YH, Noteborn M. Apoptin: therapeutic potential of an early sensor of carcinogenic transformation. Annu Rev Pharmacol Toxicol 2008; 48:143-69. [PMID: 17848136 DOI: 10.1146/annurev.pharmtox.48.121806.154910] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The avian virus-derived protein apoptin induces p53-independent apoptosis in a tumor-specific way. Apoptin acts as a multimeric complex and forms superstructures upon binding to DNA. In tumor cells, apoptin is phosphorylated and mainly nuclear, whereas in normal cells it is unphosphorylated, cytoplasmic, and becomes readily neutralized. Interestingly, apoptin phosphorylation, nuclear translocation, and apoptosis can transiently be induced in normal cells by cotransfecting SV40 large T oncogene, indicating that apoptin recognizes early stages of oncogenic transformation. In cancer cells, apoptin appears to recognize survival signals, which it is able to redirect into cell death impulses. Apoptin targets include DEDAF, Nur77, Nmi, Hippi, and the potential drug target APC1. Apoptin-transgenic mice and animal tumor models have revealed apoptin as a safe and efficient antitumor agent, resulting in significant tumor regression. Future antitumor therapies could use apoptin either as a therapeutic bullet or as an early sensor of druggable tumor-specific processes.
Collapse
Affiliation(s)
- Claude Backendorf
- Molecular Genetics, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Heckl S, Regenbogen M, Sturzu A, Gharabaghi A, Feil G, Beck A, Echner H, Nagele T. Value of apoptin’s 40-amino-acid C-terminal fragment for the differentiation between human tumor and non-tumor cells. Apoptosis 2008; 13:495-508. [DOI: 10.1007/s10495-007-0174-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|