1
|
Sadeghian I, Akbarpour M, Chafjiri FMA, Chafjiri PMA, Heidari R, Morowvat MH, Sadeghian R, Raee MJ, Negahdaripour M. Potential of oligonucleotide- and protein/peptide-based therapeutics in the management of toxicant/stressor-induced diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1275-1310. [PMID: 37688622 DOI: 10.1007/s00210-023-02683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Exposure to toxicants/stressors has been linked to the development of many human diseases. They could affect various cellular components, such as DNA, proteins, lipids, and non-coding RNAs (ncRNA), thereby triggering various cellular pathways, particularly oxidative stress, inflammatory responses, and apoptosis, which can contribute to pathophysiological states. Accordingly, modulation of these pathways has been the focus of numerous investigations for managing related diseases. The involvement of various ncRNAs, such as small interfering RNA (siRNA), microRNAs (miRNA), and long non-coding RNAs (lncRNA), as well as various proteins and peptides in mediating these pathways, provides many target sites for pharmaceutical intervention. In this regard, various oligonucleotide- and protein/peptide-based therapies have been developed to treat toxicity-induced diseases, which have shown promising results in vitro and in vivo. This comprehensive review provides information about various aspects of toxicity-related diseases including their causing factors, main underlying mechanisms and intermediates, and their roles in pathophysiological states. Particularly, it highlights the principles and mechanisms of oligonucleotide- and protein/peptide-based therapies in the treatment of toxicity-related diseases. Furthermore, various issues of oligonucleotides and proteins/peptides for clinical usage and potential solutions are discussed.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Akbarpour
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Shaghaghi Z, Alvandi M, Nosrati S, Hadei SK. Potential utility of peptides against damage induced by ionizing radiation. Future Oncol 2021; 17:1219-1235. [PMID: 33593084 DOI: 10.2217/fon-2020-0577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Radioprotection is the process whereby biological systems are aided against undesirable radiation hazards. Primitive radioprotectors suffered from either having crucial side effects or low efficacy in clinical applications. Therefore, the search for less toxic but more capable radioprotectants has continued for decades. Peptides have been investigated as radioprotectants in a variety of preclinical models both in vitro and in vivo. Peptides exert their influence through scavenging free radicals, modifying cell signaling and inhibiting cell apoptosis. Demonstrating potential in vivo properties, peptide radiation countermeasures might find enough credit for use in humans in the future. This article reviews the potential therapeutic value of currently known radioprotective peptides and attempts to provide a comprehensive source for further scientific research in this area.
Collapse
Affiliation(s)
- Zahra Shaghaghi
- Department of Nuclear Medicine and Molecular Imaging, Clinical Development Research Unit of Farshchian Heart Center, Hamadan University of Medical Sciences, Hamadan, 517839131, Iran
| | - Maryam Alvandi
- Department of Nuclear Medicine and Molecular Imaging, Clinical Development Research Unit of Farshchian Heart Center, Hamadan University of Medical Sciences, Hamadan, 517839131, Iran
| | - Sahar Nosrati
- Institute of Nuclear Chemistry and Technology, Dorona 16 Str, 03-195, Warsaw, Poland
| | - Seyed Kamaledin Hadei
- Department of Radiology, School of Medicine, Farshchian Cardiovascular Subspecialty Medical Center, Hamadan University of Medical Sciences, Hamadan, 6517839131, Iran
| |
Collapse
|
3
|
Vervliet T, Gerasimenko JV, Ferdek PE, Jakubowska MA, Petersen OH, Gerasimenko OV, Bultynck G. BH4 domain peptides derived from Bcl-2/Bcl-XL as novel tools against acute pancreatitis. Cell Death Discov 2018; 4:58. [PMID: 29760956 PMCID: PMC5945673 DOI: 10.1038/s41420-018-0054-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 02/06/2023] Open
Abstract
Biliary acute pancreatitis (AP) is a serious condition, which currently has no specific treatment. Taurolithocholic acid 3-sulfate (TLC-S) is one of the most potent bile acids causing cytosolic Ca2+ overload in pancreatic acinar cells (PACs), which results in premature activation of digestive enzymes and necrosis, hallmarks of AP. The inositol 1,4,5-trisphosphate receptor (IP3R) and the ryanodine receptor (RyR) play major roles in intracellular Ca2+ signaling. Inhibition of these endoplasmic reticulum-located channels suppresses TLC-S-induced Ca2+ release and necrosis, decreasing the severity of AP. Anti-apoptotic B-cell lymphoma (Bcl)-2-family members, such as Bcl-2 and Bcl-XL, have emerged as important modulators of IP3Rs and RyRs. These proteins contain four Bcl-2 homology (BH) domains of which the N-terminal BH4 domain exerts critical roles in regulating intracellular Ca2+ release channels. The BH4 domain of Bcl-2, but not of Bcl-XL, binds to and inhibits IP3Rs, whereas both BH4 domains inhibit RyRs. Although clear cytoprotective effects have been reported for these BH4 domains, it remains unclear whether they are capable of inhibiting pathological Ca2+-overload, associated with AP. Here we demonstrate in PACs that the BH4 domains of Bcl-2 and Bcl-XL inhibit RyR activity in response to the physiological agonist cholecystokinin. In addition, these BH4 domains inhibit pathophysiological TLC-S-induced Ca2+ overload in PACs via RyR inhibition, which in turn protects these cells from TLC-S-induced necrosis. This study shows for the first time the therapeutic potential of BH4 domain function by inhibiting pathological RyR-mediated Ca2+ release and necrosis, events that trigger AP.
Collapse
Affiliation(s)
- Tim Vervliet
- Department of Cellular and Molecular Medicine, Laboratory of Molecular and Cellular Signaling, KU Leuven, Leuven, 3000 Belgium
| | - Julia V. Gerasimenko
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX UK
| | - Pawel E. Ferdek
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX UK
| | - Monika A. Jakubowska
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX UK
| | - Ole H. Petersen
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX UK
| | - Oleg V. Gerasimenko
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX UK
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine, Laboratory of Molecular and Cellular Signaling, KU Leuven, Leuven, 3000 Belgium
| |
Collapse
|
4
|
Gabellini C, Trisciuoglio D, Del Bufalo D. Non-canonical roles of Bcl-2 and Bcl-xL proteins: relevance of BH4 domain. Carcinogenesis 2017; 38:579-587. [PMID: 28203756 DOI: 10.1093/carcin/bgx016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/14/2017] [Indexed: 02/07/2023] Open
Abstract
Bcl-2 protein family is constituted by multidomain members originally identified as modulators of programmed cell death and whose expression is frequently misbalanced in cancer cells. The lead member Bcl-2 and its homologue Bcl-xL proteins are characterized by the presence of all four conserved BH domain and exert their antiapoptotic role mainly through the involvement of BH1, BH2 and BH3 homology domains, that mediate the interaction with the proapoptotic members of the same Bcl-2 family. The N-terminal BH4 domain of Bcl-2 and Bcl-xL is responsible for the interaction with other proteins that do not belong to Bcl-2 protein family. Beyond a classical role in inhibiting apoptosis, BH4 domain has been characterized as a crucial regulator of other important cellular functions attributed to Bcl-2 and Bcl-xL, including proliferation, autophagy, differentiation, DNA repair, cell migration, tumor progression and angiogenesis. During the last two decades a strong effort has been made to dissect the molecular pathways involved the capability of BH4 domain to regulate the canonical antiapoptotic and the non-canonical activities of Bcl-2 and Bcl-xL, creating the basis for the development of novel anticancer agents targeting this domain. Indeed, recent evidences obtained on in vitro and in vivo model of different cancer histotypes are confirming the promising therapeutic potential of BH4 domain inhibitors supporting their future employment as a novel anticancer strategy.
Collapse
Affiliation(s)
- Chiara Gabellini
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Daniela Trisciuoglio
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy and.,Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
5
|
Li KP, Shanmuganad S, Carroll K, Katz JD, Jordan MB, Hildeman DA. Dying to protect: cell death and the control of T-cell homeostasis. Immunol Rev 2017; 277:21-43. [PMID: 28462527 PMCID: PMC5416827 DOI: 10.1111/imr.12538] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
T cells play a critical role in immune responses as they specifically recognize peptide/MHC complexes with their T-cell receptors and initiate adaptive immune responses. While T cells are critical for performing appropriate effector functions and maintaining immune memory, they also can cause autoimmunity or neoplasia if misdirected or dysregulated. Thus, T cells must be tightly regulated from their development onward. Maintenance of appropriate T-cell homeostasis is essential to promote protective immunity and limit autoimmunity and neoplasia. This review will focus on the role of cell death in maintenance of T-cell homeostasis and outline novel therapeutic strategies tailored to manipulate cell death to limit T-cell survival (eg, autoimmunity and transplantation) or enhance T-cell survival (eg, vaccination and immune deficiency).
Collapse
Affiliation(s)
- Kun-Po Li
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sharmila Shanmuganad
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kaitlin Carroll
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jonathan D. Katz
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Endocrinology, Diabetes Research Center, Cincinnati, OH 45229, USA
| | - Michael B. Jordan
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children’s Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | |
Collapse
|
6
|
Won JS, Singh AK, Singh I. Biochemical, cell biological, pathological, and therapeutic aspects of Krabbe's disease. J Neurosci Res 2016; 94:990-1006. [PMID: 27638584 PMCID: PMC5812347 DOI: 10.1002/jnr.23873] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/01/2016] [Accepted: 07/14/2016] [Indexed: 12/14/2022]
Abstract
Krabbe's disease (KD; also called globoid cell leukodystrophy) is a genetic disorder involving demyelination of the central (CNS) and peripheral (PNS) nervous systems. The disease may be subdivided into three types, an infantile form, which is the most common and severe; a juvenile form; and a rare adult form. KD is an autosomal recessive disorder caused by a deficiency of galactocerebrosidase activity in lysosomes, leading to accumulation of galactoceramide and neurotoxic galactosylsphingosine (psychosine [PSY]) in macrophages (globoid cells) as well as neural cells, especially in oligodendrocytes and Schwann cells. This ultimately results in damage to myelin in both CNS and PNS with associated morbidity and mortality. Accumulation of PSY, a lysolipid with detergent-like properties, over a threshold level could trigger membrane destabilization, leading to cell lysis. Moreover, subthreshold concentrations of PSY trigger cell signaling pathways that induce oxidative stress, mitochondrial dysfunction, apoptosis, inflammation, endothelial/vascular dysfunctions, and neuronal and axonal damage. From the time the "psychosine hypothesis" was proposed, considerable efforts have been made in search of an effective therapy for lowering PSY load with pharmacological, gene, and stem cell approaches to attenuate PSY-induced neurotoxicity. This Review focuses on the recent advances and prospective research for understanding disease mechanisms and therapeutic approaches for KD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Je-Seong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Avtar K. Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
- Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
7
|
Vervliet T, Lemmens I, Vandermarliere E, Decrock E, Ivanova H, Monaco G, Sorrentino V, Kasri NN, Missiaen L, Martens L, De Smedt H, Leybaert L, Parys JB, Tavernier J, Bultynck G. Ryanodine receptors are targeted by anti-apoptotic Bcl-XL involving its BH4 domain and Lys87 from its BH3 domain. Sci Rep 2015; 5:9641. [PMID: 25872771 PMCID: PMC4397538 DOI: 10.1038/srep09641] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 03/13/2015] [Indexed: 11/29/2022] Open
Abstract
Anti-apoptotic B-cell lymphoma 2 (Bcl-2) family members target several intracellular Ca(2+)-transport systems. Bcl-2, via its N-terminal Bcl-2 homology (BH) 4 domain, inhibits both inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), while Bcl-XL, likely independently of its BH4 domain, sensitizes IP3Rs. It remains elusive whether Bcl-XL can also target and modulate RyRs. Here, Bcl-XL co-immunoprecipitated with RyR3 expressed in HEK293 cells. Mammalian protein-protein interaction trap (MAPPIT) and surface plasmon resonance (SPR) showed that Bcl-XL bound to the central domain of RyR3 via its BH4 domain, although to a lesser extent compared to the BH4 domain of Bcl-2. Consistent with the ability of the BH4 domain of Bcl-XL to bind to RyRs, loading the BH4-Bcl-XL peptide into RyR3-overexpressing HEK293 cells or in rat hippocampal neurons suppressed RyR-mediated Ca(2+) release. In silico superposition of the 3D-structures of Bcl-2 and Bcl-XL indicated that Lys87 of the BH3 domain of Bcl-XL could be important for interacting with RyRs. In contrast to Bcl-XL, the Bcl-XL(K87D) mutant displayed lower binding affinity for RyR3 and a reduced inhibition of RyR-mediated Ca(2+) release. These data suggest that Bcl-XL binds to RyR channels via its BH4 domain, but also its BH3 domain, more specific Lys87, contributes to the interaction.
Collapse
Affiliation(s)
- Tim Vervliet
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Irma Lemmens
- University of Gent, Cytokine Receptor Lab, VIB Department of Medical Protein Research, B-9000 Gent, Belgium
| | - Elien Vandermarliere
- University of Gent, Computational Omics and Systems Biology Group, VIB Department of Medical Protein Research, B-9000 Gent, Belgium
| | - Elke Decrock
- University of Gent, Physiology Group, Department of Basic Medical Sciences, B-9000 Gent, Belgium
| | - Hristina Ivanova
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Giovanni Monaco
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Vincenzo Sorrentino
- University of Siena, Molecular Medicine Section, Department of Molecular and Developmental Medicine, and Interuniversitary Institute of Myology, 53100 Siena, Italy
| | - Nael Nadif Kasri
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Department of Human Genetics, 6500HB Nijmegen, The Netherlands
| | - Ludwig Missiaen
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Lennart Martens
- University of Gent, Computational Omics and Systems Biology Group, VIB Department of Medical Protein Research, B-9000 Gent, Belgium
| | - Humbert De Smedt
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Luc Leybaert
- University of Gent, Physiology Group, Department of Basic Medical Sciences, B-9000 Gent, Belgium
| | - Jan B. Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Jan Tavernier
- University of Gent, Cytokine Receptor Lab, VIB Department of Medical Protein Research, B-9000 Gent, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| |
Collapse
|
8
|
Li X, Wang L, Wang Z. Radioprotective activity of neutral polysaccharides isolated from the fruiting bodies of Hohenbuehelia serotina. Phys Med 2015; 31:352-9. [PMID: 25703009 DOI: 10.1016/j.ejmp.2015.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 01/14/2023] Open
Abstract
In this study, the radioprotective effect of neutral polysaccharides from Hohenbuehelia serotina (NTHSP) against the damages induced by (60)Co-γ radiation was investigated. The results showed that NTHSP could significantly improve the activity of glutathione peroxidase (GSH-Px) and increase the contents of glutathione (GSH) and ceruloplasmin in plasma after treated with 6 Gy-radiation compared with the radiation controls (p < 0.05). Furthermore, administration with NTHSP could effectively increase the quantity of marrow DNA (p < 0.05) and reduce the rates of chromosome aberration and micronuclei (p < 0.01) in bone marrows of mice. In addition, NTHSP could markedly inhibit the expressions of Bax protein and promote the expressions of Bcl-2 protein, accordingly inhibit the releases of cytochrome c and expressions of activated Caspase-3, and therefore block the mitochondrial apoptotic pathway of splenocytes in mice induced by (60)Co-γ radiation. These results suggested that NTHSP might be a natural radioprotective agent against the injuries induced by radiation.
Collapse
Affiliation(s)
- Xiaoyu Li
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| | - Lu Wang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhenyu Wang
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
9
|
Construction of human LRIG1-TAT fusions and TAT-mediated LRIG1 protein delivery. Biomed Pharmacother 2014; 69:396-401. [PMID: 25661388 DOI: 10.1016/j.biopha.2014.12.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/10/2014] [Indexed: 11/23/2022] Open
Abstract
Human leucine-rich repeats and immunoglobulin-like domains (LRIG1) is a tumor suppressor in animals and also functions as an endogenous suppressor in human tumor. The level of LRIG1 expression is highly associated with patient survival in clinic. The exploration of LRIG1 as a protein drug is an important task. HIV-1 transactivator of transcription peptide (TAT) is an excellent candidate for protein transduction. In this study, human LRIG1 was cloned and LRIG1-TAT fusion gene was constructed. The fusion proteins were produced by an Escherichia coli strain and purified by Ni(2+)-resin. Western blot assay and immunofluorescence microscopy were employed for monitoring LRIG1-TAT protein transduction into human neuroblastoma cells. Cell proliferation and invasion were measured for evaluating the effect of LRIG1-TAT on neuroblastoma cell. Our data showed that LRIG1 protein can be delivered into cells or organs in living animals by TAT. One-time transduction of LRIG1 proteins into human neuroblastoma cells enhanced cell proliferation and increased cell invasion. In vivo transduction showed that LRIG1-TAT protein can be presented in living animal organs. Our experiments provide a new vision on LRIG1 applications and also offer a therapy window for revealing the intrinsic function of LRIG1 on cells.
Collapse
|
10
|
Abstract
We hypothesized that nucleophosmin (NPM), a nucleolar phosphoprotein, is critical for Bax-mediated cell death. To test this hypothesis, Bax activation was induced by metabolic stress. During stress, nucleolar NPM translocated into the cytosol, NPM-Bax complexes formed, and both NPM and Bax accumulated in mitochondria. Expression of a cytosol-restricted NPM mutant (NPM-ΔNLS), but not a nucleus-restricted NPM mutant, increased NPM-Bax complex formation, mitochondrial NPM and Bax accumulation, mitochondrial membrane injury, caspase 3 activation, and ischemia-induced cell death. Coexpression of NPM-ΔNLS with constitutively active Bax mutants caused nearly universal cell death in the absence of metabolic stress, whereas expression of active Bax or NPM-ΔNLS alone did not. A Bax peptide that disrupts NPM-Bax interaction significantly reduced cell death caused by exposure to metabolic inhibitors in vitro and preserved kidney function after ischemia in vivo. Thus, NPM-Bax interaction enhances mitochondrial Bax accumulation, organelle injury, and cell death. NPM-Bax complex formation is a novel target for preventing ischemic tissue injury.
Collapse
|
11
|
Roles of group I metabotropic glutamate receptors under physiological conditions and in neurodegeneration. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Guo Q, Zhao G, Hao F, Guan Y. Effects of the TAT peptide orientation and relative location on the protein transduction efficiency. Chem Biol Drug Des 2012; 79:683-90. [PMID: 22188730 DOI: 10.1111/j.1747-0285.2011.01315.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
To understand the protein transduction domain (PTD)-mediated protein transduction behavior and to explore its potential in delivering biopharmaceutic drugs, we prepared four TAT-EGFP conjugates: TAT(+)-EGFP, TAT(-)-EGFP, EGFP-TAT(+) and EGFP-TAT(-), where TAT(+) and TAT(-) represent the original and the reversed TAT sequence, respectively. These four TAT-EGFP conjugates were incubated with HeLa and PC12 cells for in vitro study as well as injected intraperitoneally to mice for in vivo study. Flow cytometric results showed that four TAT-EGFP conjugates were able to traverse HeLa and PC12 cells with almost equal transduction efficiency. The in vivo study showed that the TAT-EGFP conjugates could be delivered into different organs of mice with different transduction capabilities. Bioinformatic analyses and CD spectroscopic data revealed that the TAT peptide has no defined secondary structure, and conjugating the TAT peptide to the EGFP cargo protein would not alter the native structure and the function of the EGFP protein. These results conclude that the sequence orientation, the spatial structure, and the relative location of the TAT peptide have much less effect on the TAT-mediated protein transduction. Thus, the TAT-fused conjugates could be constructed in more convenient and flexible formats for a wide range of biopharmaceutical applications.
Collapse
Affiliation(s)
- Qingguo Guo
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | | | | | | |
Collapse
|
13
|
Drouet M, Hérodin F. Radiation victim management and the haematologist in the future: time to revisit therapeutic guidelines? Int J Radiat Biol 2010; 86:636-48. [PMID: 20597842 DOI: 10.3109/09553001003789604] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The use of nuclear/radiation devices against the civilian population is now a realistic scenario. Haematopoietic syndrome is the primary therapeutic challenge in the case of whole body acute exposure over 2 Grays (Gy) whereas burns and combined injuries would be frequently observed in myelo-suppressed patients. Optimisation of scoring and treatments are important goals to achieve. CONCLUSION The European Response Category (RC) concept represents an attempt to integratively assess haematological/extrahematological radiation-induced lesions. Based on the frequently observed heterogeneity of bone marrow damage in accidental/intentional irradiations, the stimulation of residual stem cells using granulocyte Colony-stimulating factor remains the therapeutic standard after exposure to less than the lethal dose 50 % (Haematopoietic[H] score 3-H3). Allogeneic stem cell transplantation is indicated in case of medullary eradication (Haematopoietic score 4-H4) whereas extramedullary toxicity may determine the outcome. Especially in case of numerous casualties exhibiting acute radiation syndrome, the administration of survival factor combinations remains questionable, at least as a palliative treatment. In addition pleiotropic cytokines injection such as erythropoietin and keratinocyte growth factor and grafting multipotent mesenchymal stem cells - from underexposed bone marrow areas or fat tissues - could be proposed to prevent multiple organ failure syndrome development. Multi-disciplinary teams should be prepared to manage such patients.
Collapse
|
14
|
Soto P, Smith LC. BH4 peptide derived from Bcl-xL and Bax-inhibitor peptide suppresses apoptotic mitochondrial changes in heat stressed bovine oocytes. Mol Reprod Dev 2009; 76:637-46. [PMID: 19062170 DOI: 10.1002/mrd.20986] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mitochondria play an important role in the integration and transmission of cell death signals mediated by the Bcl-2 family proteins. Experiments were conducted to determine whether the anti-apoptotic peptides BH4 domain of Bcl-xL (TAT-BH4) and Bax inhibitor peptide (BIP) suppresses heat stress (HS) injury in oocytes by reduction of apoptotic-like events. Cumulus-oocyte complexes (COCs) were matured at 39 degrees C (control) or 41 degrees C (HS) for 21 hr then placed in maturation medium containing 0 or 100 microM BIP in water and 0 or 1 microM TAT-BH4 in dimethyl sulfoxide (DMSO), or a combination of both peptides (BIP + BH4). Peptide effects on embryo development, DNA fragmentation, mitochondrial membrane potential (Delta(Psi)m), and mitochondrial DNA (mtDNA) copy number were measured. All groups were fertilized and cultured in vitro at 39 degrees C for 8 days. Compared to control, HS-treated oocytes induced a decrease in embryo development (P < 0.05), increase in proportion of TUNEL-positive chromatin in oocytes and blastocysts (P < 0.05), and loss of oocyte Delta(Psi)m (P < 0.001). In the presence of BIP or BIP + BH4, development of HS-treated oocytes into blastocysts was increased (P < 0.05). Conversely, COCs matured with TAT-BH4 at 41 degrees C showed reduced embryonic development (P < 0.05). Exposure of HS-treated to each or both peptides resulted in a reduction of TUNEL frequency in oocytes and blastocysts cells derived from these oocytes (P < 0.05). The loss of Delta(Psi)m in HS-treated oocytes was not restored by exposure to BIP + BH4 and there was no effect in mtDNA copy number. In conclusion, the present results show that HS-induced apoptosis in bovine oocytes involves Bax and BH4 domain-dependent pathways.
Collapse
Affiliation(s)
- Paolete Soto
- Centre de Recherche en Reproduction Animale, Université de Montréal, St-Hyacinthe, QC J2S7C6, Canada
| | | |
Collapse
|
15
|
Simon PO, McDunn JE, Kashiwagi H, Chang K, Goedegebuure PS, Hotchkiss RS, Hawkins WG. Targeting AKT with the proapoptotic peptide, TAT-CTMP: a novel strategy for the treatment of human pancreatic adenocarcinoma. Int J Cancer 2009; 125:942-51. [PMID: 19405118 DOI: 10.1002/ijc.24424] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pancreatic adenocarcinoma carries an ominous prognosis and has little effective treatment. Several studies have demonstrated that the potently antiapoptotic phosphatidyl inositol 3'-kinase (PI3K)-protein kinase B/AKT pathway is active in pancreas cancer. A recent study identified an endogenous AKT antagonist, carboxyl terminal modulator protein (CTMP). CTMP inhibits the phosphorylation of AKT, preventing full activation of the kinase. We screened several cell permeable peptides from the N-terminal domain of CTMP (termed TAT-CTMP1-4) in vitro and found one that caused significant apoptosis in pancreatic adenocarcinoma cell lines. An inactive variant of this peptide was synthesized and used as a negative control. In all cell lines tested, TAT-CTMP4 induced a dose-dependent increase in apoptosis as detected by %-TUNEL positive cells and %-active caspase-3 (% active caspase-3 ranged from 31.2 to 61.9 at the highest dose tested (10 microM). A screening of various cell and tissue types revealed that the proapoptotic activity was highest in pancreatic adenocarcinoma. TAT-CTMP induced similar levels of active caspase-3 as several other known inducers of apoptosis: gemcitabine, radiation therapy, wortmannin and recombinant tumor necrosis factor (TNF)-alpha. No apoptosis was observed in donor human peripheral blood mononuclear cells (PBMC, p < 0.01). We further showed that TAT-CTMP4 could augment either gemcitabine chemotherapy or radiation therapy, standard therapies for pancreas cancer. Pancreatic adenocarcinoma xenografts treated with a single dose of TAT-CTMP4 demonstrated a marked increase in caspase-3 positive tumor cells when compared with untreated controls. Additionally, pancreatic adenocarcinoma allografts treated with intratumoral TAT-CTMP and systemic gemcitabine displayed a significantly smaller tumor burden while undergoing treatment than mice in control groups (p < 0.001). These data indicate that inhibiting AKT with CTMP may be of therapeutic benefit in the treatment of pancreatic adenocarcinoma and, when combined with established therapies, may result in an increase in tumor cell death.
Collapse
Affiliation(s)
- Peter O Simon
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
McDunn JE, Muenzer JT, Dunne B, Zhou A, Yuan K, Hoekzema A, Hilliard C, Chang KC, Davis CG, McDonough J, Hunt C, Grigsby P, Piwnica-Worms D, Hotchkiss RS. An anti-apoptotic peptide improves survival in lethal total body irradiation. Biochem Biophys Res Commun 2009; 382:657-62. [PMID: 19303399 DOI: 10.1016/j.bbrc.2009.03.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 03/09/2009] [Indexed: 11/19/2022]
Abstract
Cell penetrating peptides (CPPs) have been used to deliver the anti-apoptotic Bcl-xL-derived BH4 peptide to prevent injury-induced apoptosis both in vitro and in vivo. Here we demonstrate that the nuclear localization sequence (NLS) from the SV40 large T antigen has favorable properties for BH4 domain delivery to lymphocytes compared to sequences based on the HIV-1 TAT sequence. While both TAT-BH4 and NLS-BH4 protected primary human mononuclear cells from radiation-induced apoptotic cell death, TAT-BH4 caused persistent membrane damage and even cell death at the highest concentrations tested (5-10 microM) and correlated with in vivo toxicity as intravenous administration of TAT-BH4 caused rapid death. The NLS-BH4 peptide has significantly attenuated toxicity compared to TAT-BH4 and we established a dosing regimen of NLS-BH4 that conferred a significant survival advantage in a post-exposure treatment model of LD90 total body irradiation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/metabolism
- Antigens, Polyomavirus Transforming/pharmacology
- Apoptosis/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Humans
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Nuclear Localization Signals/genetics
- Nuclear Localization Signals/metabolism
- Nuclear Localization Signals/pharmacology
- Peptides/pharmacology
- Protein Structure, Tertiary
- Whole-Body Irradiation
- bcl-X Protein/genetics
- bcl-X Protein/metabolism
- bcl-X Protein/pharmacology
- tat Gene Products, Human Immunodeficiency Virus/genetics
- tat Gene Products, Human Immunodeficiency Virus/metabolism
- tat Gene Products, Human Immunodeficiency Virus/pharmacology
Collapse
Affiliation(s)
- Jonathan E McDunn
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rong YP, Barr P, Yee VC, Distelhorst CW. Targeting Bcl-2 based on the interaction of its BH4 domain with the inositol 1,4,5-trisphosphate receptor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:971-8. [PMID: 19056433 DOI: 10.1016/j.bbamcr.2008.10.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/28/2008] [Accepted: 10/29/2008] [Indexed: 01/03/2023]
Abstract
Bcl-2 is the founding member of a large family of apoptosis regulating proteins. Bcl-2 is a prime target for novel therapeutics because it is elevated in many forms of cancer and contributes to cancer progression and therapy resistance based on its ability to inhibit apoptosis. Bcl-2 interacts with proapoptotic members of the Bcl-2 family to inhibit apoptosis and small molecules that disrupt this interaction have already entered the cancer therapy arena. A separate function of Bcl-2 is to inhibit Ca2+ signals that promote apoptosis. This function is mediated through interaction of the Bcl-2 BH4 domain with the inositol 1,4,5-trisphosphate receptor (IP3R) Ca2+ channel. A novel peptide inhibitor of this interaction enhances proapoptotic Ca2+ signals. In preliminary experiments this peptide enhanced ABT-737 induced apoptosis in chronic lymphocytic leukemia cells. These findings draw attention to the BH4 domain as a potential therapeutic target. This review summarizes what is currently known about the BH4 domain of Bcl-2, its interaction with the IP3R and other proteins, and the part it plays in Bcl-2's anti-apoptotic function. In addition, we speculate on how the BH4 domain of Bcl-2 can be targeted therapeutically not only for diseases associated with apoptosis resistance, but also for diseases associated with accelerated cell death.
Collapse
Affiliation(s)
- Yi-Ping Rong
- Department of Medicine, Comprehensive Cancer Center and University Hospital of Cleveland, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
18
|
PTD-mediated delivery of anti-cell death proteins/peptides and therapeutic enzymes. Adv Drug Deliv Rev 2008; 60:499-516. [PMID: 18093693 DOI: 10.1016/j.addr.2007.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 09/12/2007] [Indexed: 01/28/2023]
Abstract
Millions of unnecessary cells are removed from our body everyday by apoptosis to ensure our survivals. Apoptosis is a highly coordinated process. Failure in apoptotic regulation results in disease. A large number of studies have demonstrated that accelerated apoptosis is involved in degenerative diseases, ischemic injuries, immunodeficiency and infertility. These studies have also revealed the molecular mechanisms of apoptosis signal transduction to provide therapeutic targets. On the other hand, protein transduction technology has been developed to deliver full-length proteins to various tissues including the brain. So far, many studies have shown that in vivo delivery of therapeutic proteins/peptides, including anti-apoptotic proteins, an anti-oxidant enzyme, a neuroprotectant, enzymes involved in purine or tyrosine metabolism, caspase inhibitors, c-Jun N-terminal kinase inhibitors and an NF-kappaB inhibitor, by protein transduction technology mitigates various diseases in animal models.
Collapse
|
19
|
Baudry M. New neuroprotective approaches for stroke: use of decoy peptides targeting specific molecular events. FUTURE NEUROLOGY 2007. [DOI: 10.2217/14796708.2.4.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Michel Baudry
- University of Southern California, Neuroscience Program, Los Angeles, CA 90089-2520, USA
| |
Collapse
|