1
|
Yang B, Ma YB, Chu SH. Silencing SATB1 overcomes temozolomide resistance by downregulating MGMT expression and upregulating SLC22A18 expression in human glioblastoma cells. Cancer Gene Ther 2018; 25:309-316. [PMID: 30140041 DOI: 10.1038/s41417-018-0040-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 12/26/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common malignant tumor of the central nervous system and has a very poor prognosis. Currently, patients were treated by resection followed by radiotherapy plus concurrent temozolomide (TMZ) chemotherapy. However, many patients are resistant to TMZ-induced DNA damage because of upregulated expression of the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT). In this study, upregulation of SATB1 and MGMT, and downregulation of SLC22A18 resulted in acquisition of TMZ resistance in GBM U87 cells. Inactivation of special AT-rich sequence-binding protein 1 (SATB1) using short hairpin RNA (shRNA) downregulated MGMT expression and upregulated solute carrier family 22 member 18 (SLC22A18) expression in GBM cells. This suggested SATB1-mediated posttranscriptional regulation of the MGMT and SLC22A18 protein levels. Immunohistochemical analysis of malignant glioma specimens demonstrated a significant positive correlation between the levels of MGMT and SATB1, and a negative correlation between the levels of SLC22A18 and SATB1. Importantly, in recurrent, compared with the primary, lesions in 15 paired identical tumors, the SATB1 and MGMT protein levels were increased and the SLC22A18 levels were decreased. Finally, in TMZ-resistant GBM, SATB1 knockdown enhanced TMZ efficacy. Consequently, SATB1 inhibition might be a promising strategy combined with TMZ chemotherapy to treat TMZ-resistant GBM.
Collapse
Affiliation(s)
- Biao Yang
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Yan-Bin Ma
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Sheng-Hua Chu
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China.
| |
Collapse
|
2
|
Tetramerization of SATB1 is essential for regulating of gene expression. Mol Cell Biochem 2017; 430:171-178. [PMID: 28205095 DOI: 10.1007/s11010-017-2964-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/30/2017] [Indexed: 02/06/2023]
Abstract
Special AT-rich sequence-binding protein 1 (SATB1) functions as a 'genome organizer' in tumorigenesis. Our previous report showed that SATB1 forms a tetramer through its N-terminal ubiquitin like domain rather than the proposed PDZ domain. In the present study, we aim to illustrate whether this oligomerization is critical to its function as a global repressor of gene expression in vivo. Luciferase and GST pull-down assays demonstrated that disrupting SATB1's tetramerization not only affects the activities of promoters but also influences the recruitment of interaction partners. Furthermore, we developed stable cell lines that overexpressed either the SATB1 tetramer or STAB1 dimer (KWN-AAA) and monitored global gene expression. Gene expression profiling revealed that over 1000 genes were significantly upregulated or downregulated upon the overexpression of SATB1 or the SATB1 (KWN-AAA) mutant. These data implied that SATB1 might regulate gene expression through its different oligomerization state. In conclusion, we inferred that the oligomerization of SATB1 is pivotal to its function of different biological processes.
Collapse
|
3
|
Meng WJ, Pathak S, Ding ZY, Zhang H, Adell G, Holmlund B, Li Y, Zhou ZG, Sun XF. Special AT-rich sequence binding protein 1 expression correlates with response to preoperative radiotherapy and clinical outcome in rectal cancer. Cancer Biol Ther 2016; 16:1738-45. [PMID: 26528635 DOI: 10.1080/15384047.2015.1095408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Our recent study showed the important role of special AT-rich sequence binding protein 1 (SATB1) in the progression of human rectal cancer. However, the value of SATB1 in response to radiotherapy (RT) for rectal cancer hasn't been reported so far. Here, SATB1 was determined using immunohistochemistry in normal mucosa, biopsy, primary cancer, and lymph node metastasis from 132 rectal cancer patients: 66 with and 66 without preoperative RT before surgery. The effect of SATB1 knockdown on radiosensitivity was assessed by proliferation-based assay and clonogenic assay. The results showed that SATB1 increased from normal mucosa to primary cancer, whereas it decreased from primary cancer to metastasis in non-RT patients. SATB1 decreased in primary cancers after RT. In RT patients, positive SATB1 was independently associated with decreased response to preoperative RT, early time to metastasis, and worse survival. SATB1 negatively correlated with ataxia telangiectasia mutated (ATM) and pRb2/p130, and positively with Ki-67 and Survivin in RT patients, and their potential interaction through different canonical pathways was identified in network ideogram. Taken together, our findings disclose for the first time that radiation decreases SATB1 expression and sensitizes cancer cells to confer clinical benefit of patients, suggesting that SATB1 is predictive of response to preoperative RT and clinical outcome in rectal cancer.
Collapse
Affiliation(s)
- Wen-Jian Meng
- a Department of Gastrointestinal Surgery ; West China Hospital; Sichuan University ; Chengdu , China.,b Department of Oncology and Department of Clinical and Experimental Medicine ; Linköping University ; Linköping , Sweden
| | - Surajit Pathak
- b Department of Oncology and Department of Clinical and Experimental Medicine ; Linköping University ; Linköping , Sweden
| | - Zhen-Yu Ding
- c Cancer Center and State Key Laboratory of Biotherapy; West China Hospital; Sichuan University ; Chengdu , China
| | - Hong Zhang
- d School of Medicine; Örebro University ; Örebro , Sweden
| | - Gunnar Adell
- e Department of Oncology ; County Council of Östergötland ; Linköping , Sweden
| | - Birgitta Holmlund
- e Department of Oncology ; County Council of Östergötland ; Linköping , Sweden
| | - Yuan Li
- f Institute of Digestive Surgery; State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University ; Chengdu , China
| | - Zong-Guang Zhou
- a Department of Gastrointestinal Surgery ; West China Hospital; Sichuan University ; Chengdu , China.,f Institute of Digestive Surgery; State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University ; Chengdu , China
| | - Xiao-Feng Sun
- b Department of Oncology and Department of Clinical and Experimental Medicine ; Linköping University ; Linköping , Sweden.,f Institute of Digestive Surgery; State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University ; Chengdu , China
| |
Collapse
|
4
|
Inhibition of human glioma U251 cells growth in vitro and in vivo by hydroxyapatite nanoparticle-assisted delivery of short hairpin RNAs against SATB1. Mol Biol Rep 2013; 41:977-86. [DOI: 10.1007/s11033-013-2942-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 12/20/2013] [Indexed: 12/31/2022]
|
5
|
SPARC expression in CML is associated to imatinib treatment and to inhibition of leukemia cell proliferation. BMC Cancer 2013; 13:60. [PMID: 23383963 PMCID: PMC3570354 DOI: 10.1186/1471-2407-13-60] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 01/16/2013] [Indexed: 11/23/2022] Open
Abstract
Background SPARC is a matricellular glycoprotein with growth-inhibitory and antiangiogenic activity in some cell types. The study of this protein in hematopoietic malignancies led to conflicting reports about its role as a tumor suppressor or promoter, depending on its different functions in the tumor microenvironment. In this study we investigated the variations in SPARC production by peripheral blood cells from chronic myeloid leukemia (CML) patients at diagnosis and after treatment and we identified the subpopulation of cells that are the prevalent source of SPARC. Methods We evaluated SPARC expression using real-time PCR and western blotting. SPARC serum levels were detected by ELISA assay. Finally we analyzed the interaction between exogenous SPARC and imatinib (IM), in vitro, using ATP-lite and cell cycle analysis. Results Our study shows that the CML cells of patients at diagnosis have a low mRNA and protein expression of SPARC. Low serum levels of this protein are also recorded in CML patients at diagnosis. However, after IM treatment we observed an increase of SPARC mRNA, protein, and serum level in the peripheral blood of these patients that had already started at 3 months and was maintained for at least the 18 months of observation. This SPARC increase was predominantly due to monocyte production. In addition, exogenous SPARC protein reduced the growth of K562 cell line and synergized in vitro with IM by inhibiting cell cycle progression from G1 to S phase. Conclusion Our results suggest that low endogenous SPARC expression is a constant feature of BCR/ABL positive cells and that IM treatment induces SPARC overproduction by normal cells. This exogenous SPARC may inhibit CML cell proliferation and may synergize with IM activity against CML.
Collapse
|
6
|
Chu SH, Ma YB, Feng DF, Zhang H, Qiu JH, Zhu ZA, Li ZQ, Jiang PC. Relationship between SATB1 expression and prognosis in astrocytoma. J Clin Neurosci 2013; 20:543-7. [PMID: 23317753 DOI: 10.1016/j.jocn.2012.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/30/2012] [Accepted: 05/06/2012] [Indexed: 11/18/2022]
Abstract
Special AT-rich-sequence-binding protein 1 (SATB1), a new type of gene regulator, has been reported to be expressed in various human cancers and may be associated with malignancy. The aim of this study was to investigate the expression of SATB1 in astrocytoma and to determine its prognostic value for the overall survival of patients with astrocytoma. The expression of SATB1 protein and messenger RNA (mRNA) in human astrocytoma specimens was examined using immunohistochemistry and semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). The relationship between SATB1 expression and O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status was also investigated. Spearman's correlation coefficient was used to describe the association between SATB1 expression and the clinical parameters of astrocytoma patients. SATB1 protein and mRNA were expressed at significant levels in astrocytoma specimens. SATB1 expression was positively correlated with astrocytoma pathological grade but negatively correlated with the life span of astrocytoma patients. SATB1 expression was also significantly lower in astrocytoma specimens with MGMT promoter methylation than in those without MGMT promoter methylation. Our findings suggest that SATB1 may have an important role as a positive regulator of astrocytoma development and progression and that SATB1 might be a useful molecular marker for predicting the prognosis of patients with astrocytoma and could be a novel target for treating astrocytoma.
Collapse
Affiliation(s)
- Sheng-Hua Chu
- Department of Neurosurgery, No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 280 Mo He Road, Bao Shan District, Shanghai 201900, China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Endo K, Shackelford J, Aga M, Yoshizaki T, Pagano JS. Upregulation of special AT-rich-binding protein 1 by Epstein-Barr virus latent membrane protein 1 in human nasopharyngeal cells and nasopharyngeal cancer. J Gen Virol 2012; 94:507-513. [PMID: 23223620 DOI: 10.1099/vir.0.046243-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A global regulator of chromatin remodelling and gene expression, special AT-rich-binding protein 1 (SATB1) has been implicated in promotion of growth and metastasis of a number of cancers. Here, we demonstrate that the principal oncogene of Epstein-Barr virus (EBV), latent membrane protein 1 (LMP1) upregulates SATB1 RNA and protein expression in human nasopharyngeal cell lines. Silencing of endogenously expressed SATB1 with specific short hairpin RNA decreases cell proliferation and resistance to apoptosis induced by growth factor withdrawal. Additionally, we provide evidence that LMP1-mediated expression of Survivin, a multifunctional protein involved in promoting cell growth and survival, is mediated at least in part by SATB1 in human nasopharyngeal cells. Finally, we show that SATB1 protein levels are elevated in tissue samples from patients with nasopharyngeal carcinoma (NPC), and are directly correlated with the expression of LMP1. Taken together, our results suggest that SATB1 functions as a pro-metastatic effector of LMP1 signalling in EBV-positive NPC.
Collapse
Affiliation(s)
- Kazuhira Endo
- Division of Otolaryngology, Graduate School of Medicine, Kanazawa University, Kanazawa, 920-8641, Japan.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | - Julia Shackelford
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | - Mitsuharu Aga
- Division of Otolaryngology, Graduate School of Medicine, Kanazawa University, Kanazawa, 920-8641, Japan.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | - Tomokazu Yoshizaki
- Division of Otolaryngology, Graduate School of Medicine, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Joseph S Pagano
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| |
Collapse
|
8
|
SPARC promotes the development of erythroid progenitors. Exp Hematol 2012; 40:828-36. [DOI: 10.1016/j.exphem.2012.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/26/2012] [Accepted: 06/05/2012] [Indexed: 12/20/2022]
|
9
|
Chu SH, Ma YB, Feng DF, Zhang H, Zhu ZA, Li ZQ, Jiang PC. Upregulation of SATB1 is associated with the development and progression of glioma. J Transl Med 2012; 10:149. [PMID: 22839214 PMCID: PMC3492129 DOI: 10.1186/1479-5876-10-149] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/16/2012] [Indexed: 02/08/2023] Open
Abstract
Background Special AT-rich sequence-binding protein-1 (SATB1) has been reported to be expressed in several human cancers and may have malignant potential. This study was aimed at investigating the expression and potential role of SATB1 in human glioma. Method The relationship between SATB1 expression, clinicopathological parameters, Ki67 expression and MGMT promoter methylation status was evaluated, and the prognostic value of SATB1 expression in patients with gliomas was analyzed. SATB1-specific shRNA sequences were synthesized, and U251 cells were transfected with SATB1 RNAi plasmids. Expression of SATB1 mRNA and protein was investigated by RT-PCR and immunofluoresence staining and western blotting. The expression of c-Met, SLC22A18, caspase-3 and bcl-2 protein was determined by western blotting. U251 cell growth and adherence was detected by methyl thiazole tetrazolium assay. The apoptosis of U251 cells was examined with a flow cytometer. The adherence, invasion, and in vitro angiogenesis assays of U251 cells were done. The growth and angiogenesis of SATB1 low expressing U251 cells was measured in an in vivo xenograft model. Results Of 70 tumors, 44 (62.9%) were positive for SATB1 expression. SATB1 expression was significantly associated with a high histological grade and with poor survival in univariate and multivariate analyses. SATB1 expression was also positively correlated with Ki67 expression but negatively with MGMT promoter methylation in glioma tissues. SATB1 shRNA expression vectors could efficiently induce the expression of SLC22A18 protein, increase the caspase-3 protein, inhibit the expression of SATB1, c-Met and bcl-2 protein, the growth, invasion, metastasis and angiogenesis of U251 cells, and induce apoptosis in vitro. Furthermore, the tumor growth of U251 cells expressing SATB1 shRNA were inhibited in vivo, and immunohistochemical analyses of tumor sections revealed a decreased vessel density in the animals where shRNA against SATB1 were expressed. Conclusions SATB1 may have an important role as a positive regulator of glioma development and progression, and that SATB1 might be a useful molecular marker for predicting the prognosis of glioma.
Collapse
Affiliation(s)
- Sheng-Hua Chu
- Department of Neurosurgery, NO 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 280 Mo He Road, Bao Shan District, Shanghai 201900, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Cai R, Cai X, Chen B, Xu W, Lu J. C/EBPε participates in all-trans retinoic acid induction of PI3Kγ in U937 cells via an intronic matrix attachment region sequence. Mol Biol Rep 2010; 37:3795-800. [PMID: 20661648 DOI: 10.1007/s11033-010-0034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 02/24/2010] [Indexed: 11/29/2022]
Abstract
ATRA (all-trans retinoic acid) regulates gene expression by binding as a ligand to its specific receptors like C/EBPε which is directly induced. In the U937 cell line, PI3Kγ is selectively induced over other PI3Ks by ATRA, although the mechanism is still unclear. Here, we show that C/EBPε and PI3Kγ are induced in U937 cells by ATRA both in levels of mRNA and protein. Reporter gene assay revealed that C/EBPε is able to interact with a previously identified 2 kb MAR (matrix attachment region) sequence in the last intron of PI3Kγ gene, and increases its linked heterogeneous reporter gene expression. ChIP assay showed that induction of endogenous PI3Kγ is at least partially caused by enhanced, direct C/EBPε binding to a 15 bp sequence at nucleotides 1428-1442 within this MAR sequence, and EMSA analysis confirmed this binding in vitro. The results above collectively show that C/EBPε participates in ATRA induction of PI3Kγ.
Collapse
Affiliation(s)
- Rong Cai
- Department of Molecular and Cellular Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280# Chongqing Road(S), Shanghai, 200025, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Iorns E, Hnatyszyn HJ, Seo P, Clarke J, Ward T, Lippman M. The role of SATB1 in breast cancer pathogenesis. J Natl Cancer Inst 2010; 102:1284-96. [PMID: 20595686 DOI: 10.1093/jnci/djq243] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND SATB1 has been previously proposed as a key protein that controls the development and progression of breast cancer. We explored the potential of the SATB1 protein as a therapeutic target and prognostic marker for human breast cancer. METHODS We used aggressive (MDA-MB-231 and BT549) and nonaggressive (SKBR3 and MCF7) breast cancer cell lines to investigate the potential of SATB1 as a therapeutic target. SATB1 mRNA expression was silenced in aggressive cells by use of short hairpin RNAs against SATB1. SATB1 was overexpressed in nonaggressive cells by use of SATB1 expression vectors. We assessed the effect of modifying SATB1 expression on the transformed phenotype by examining anchorage-independent cell proliferation, acinar morphology on matrigel, and migration by wound healing in cultured cells. We examined tumor formation and metastasis, respectively, by use of orthotopic mammary fat pad and tail vein xenograft mouse models (mice were used in groups of six, and in total, 96 mice were used). SATB1 mRNA expression was compared with outcome for patients with primary breast cancer from six previous microarray studies that included a total of 1170 patients. All statistical tests were two-sided. RESULTS The transformed phenotype was not suppressed by SATB1 silencing in aggressive cells and was not enhanced by ectopic expression of SATB1 in nonaggressive cells. Modifying SATB1 expression did not alter anchorage-independent cell proliferation, invasive acinar morphology, or cell migration in cultured cells and did not affect tumor formation or metastasis in xenograft mouse models. In addition, SATB1 expression was not associated with decreased overall survival of patients with primary breast cancer in six previous independent microarray studies (overall odds ratio = 0.80, 95% confidence interval = 0.62 to 1.03, P = .10). CONCLUSION In contrast to previous studies, we found that SATB1 expression did not promote breast cancer progression and was not associated with breast cancer outcome.
Collapse
Affiliation(s)
- Elizabeth Iorns
- Department of Medicine, University of Miami Miller School of Medicine, 1550 NW 10th Ave (PAP 403), Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
12
|
Delany AM, Hankenson KD. Thrombospondin-2 and SPARC/osteonectin are critical regulators of bone remodeling. J Cell Commun Signal 2009; 3:227-38. [PMID: 19862642 PMCID: PMC2778593 DOI: 10.1007/s12079-009-0076-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 10/01/2009] [Indexed: 12/31/2022] Open
Abstract
Thrombospondin-2 (TSP2) and osteonectin/BM-40/SPARC are matricellular proteins that are highly expressed by bone cells. Mice deficient in either of these proteins show phenotypic alterations in the skeleton, and these phenotypes are most pronounced under conditions of altered bone remodeling. For example, TSP2-null mice have higher cortical bone volume and are resistant to bone loss associated with ovariectomy, whereas SPARC-null mice have decreased trabecular bone volume and fail to demonstrate an increase in bone mineral density in response to a bone-anabolic parathyroid hormone treatment regimen. In vitro, marrow stromal cell (MSC) osteoprogenitors from TSP2-null mice have increased proliferation but delayed formation of mineralized matrix. Similarly, in cultures of SPARC-null MSCs, osteoblastic differentiation and mineralized matrix formation are decreased. Overall, both TSP2 and SPARC positively influence osteoblastic differentiation. Intriguingly, both of these matricellular proteins appear to impact MSC fate through mechanisms that could involve the Notch signaling system. This review provides an overview of the role of TSP2 and SPARC in regulating bone structure, function, and remodeling, as determined by both in vitro and in vivo studies.
Collapse
Affiliation(s)
- Anne M. Delany
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, CT USA
| | - Kurt David Hankenson
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 311 Hill Pavilion, 380 S. University Ave, Philadelphia, PA 19104-4539 USA
| |
Collapse
|
13
|
Cai R, Xu W, Dai B, Cai X, Xu R, Lu J. SATB1 binds an intronic MAR sequence in human PI3kgamma in vitro. Mol Biol Rep 2009; 37:1461-5. [PMID: 19430959 DOI: 10.1007/s11033-009-9538-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 02/03/2009] [Indexed: 11/26/2022]
Abstract
In our previous study, an intronic MAR sequence in human PI3Kgamma gene (PIMAR) was identified using bioinformatics and biochemical methods. We used MatInspector software to identify potential binding sites for MAR-binding proteins in PIMAR. In this study, a tissue-specific MAR-binding protein (SATB1) was used to characterize the potential binding sites. Southwestern blot analysis indicates that recombinant SATB1 directly binds PIMAR sequence in vitro. Reporter gene assay showed that overexpression of SATB1 downregulates the luciferase reporter linked with reversed PIMAR by approximately threefold in the NIH-3T3 cell line. These results indicate that SATB1 may play antagonistic roles in PI3Kgamma transcriptional regulation.
Collapse
Affiliation(s)
- Rong Cai
- Department of Biochemistry and Molecular Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Zheng J. Is SATB1 a Master Regulator in Breast Cancer Growth and Metastasis? WOMENS HEALTH 2008; 4:329-32. [DOI: 10.2217/17455057.4.4.329] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evaluation of: Han HJ, Russo J, Kohwi Y et al.: SATB1 reprogrammes gene expression to promote breast tumor growth and metastasis. Nature 452(7184), 187–193 (2008). Metastasis is the most common cause of death in cancer patients. However, the genetic mechanisms involved in the master control genes of metastasis remain unclear. In this study, the authors found that special AT-rich sequence-binding protein 1 (SATB1) expression contributed to breast cancer growth and metastasis. SATB1 expression is detected in aggressive breast cancer cells rather than nonaggressive breast cancer cells. Moreover, by introducing the SATB1 gene into nonmetastatic breast cancer cells, invasive tumors can be induced in mice; whereas, silencing of SATB1 in metastatic cells not only abolishes metastasis and tumor growth in mice, but also returns cells to their normal appearance. These effects are related as SATB1 upregulates metastasis-associated genes while downregulating tumor-suppressor genes through epigenetic modification. The research suggests that SATB1 is a master regulator in the metastasis of breast cancer and, therefore, can be considered as an independent prognostic factor and a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Jie Zheng
- Southeast University, Department of Pathology, School of Medicine, Nanjing 210009, Jiangsu, The People's Republic of China, Tel.: +86 258 327 2358; Fax: +86 258 332 4887
| |
Collapse
|