1
|
Harrison RL, Rowley DL, Mowery J, Bauchan GR, Theilmann DA, Rohrmann GF, Erlandson MA. The Complete Genome Sequence of a Second Distinct Betabaculovirus from the True Armyworm, Mythimna unipuncta. PLoS One 2017; 12:e0170510. [PMID: 28103323 PMCID: PMC5245865 DOI: 10.1371/journal.pone.0170510] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/05/2017] [Indexed: 11/19/2022] Open
Abstract
The betabaculovirus originally called Pseudaletia (Mythimna) sp. granulovirus #8 (MyspGV#8) was examined by electron microscopy, host barcoding PCR, and determination of the nucleotide sequence of its genome. Scanning and transmission electron microscopy revealed that the occlusion bodies of MyspGV#8 possessed the characteristic size range and morphology of betabaculovirus granules. Barcoding PCR using cytochrome oxidase I primers with DNA from the MyspGV#8 collection sample confirmed that it had been isolated from the true armyworm, Mythimna unipuncta (Lepidoptera: Noctuidae) and therefore was renamed MyunGV#8. The MyunGV#8 genome was found to be 144,673 bp in size with a nucleotide distribution of 49.9% G+C, which was significantly smaller and more GC-rich than the genome of Pseudaletia unipuncta granulovirus H (PsunGV-H), another M. unipuncta betabaculovirus. A phylogeny based on concatenated baculovirus core gene amino acid sequence alignments placed MyunGV#8 in clade a of genus Betabaculovirus. Kimura-2-parameter nucleotide distances suggested that MyunGV#8 represents a virus species different and distinct from other species of Betabaculovirus. Among the 153 ORFs annotated in the MyunGV#8 genome, four ORFs appeared to have been obtained from or donated to the alphabaculovirus lineage represented by Leucania separata nucleopolyhedrovirus AH1 (LeseNPV-AH1) during co-infection of Mythimna sp. larvae. A set of 33 ORFs was identified that appears only in other clade a betabaculovirus isolates. This clade a-specific set includes an ORF that encodes a polypeptide sequence containing a CIDE_N domain, which is found in caspase-activated DNAse/DNA fragmentation factor (CAD/DFF) proteins. CAD/DFF proteins are involved in digesting DNA during apoptosis.
Collapse
Affiliation(s)
- Robert L. Harrison
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, Maryland, United States of America
- * E-mail:
| | - Daniel L. Rowley
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Joseph Mowery
- Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Gary R. Bauchan
- Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, Maryland, United States of America
| | - David A. Theilmann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - George F. Rohrmann
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Martin A. Erlandson
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Xiang Z, Qu F, Qi L, Ying T, Li J, Shu X, Yu Z. Cloning and characterization of an apoptosis-related DNA fragmentation factor (DFF) from oyster, Crassostrea hongkongensis. FISH & SHELLFISH IMMUNOLOGY 2014; 38:119-126. [PMID: 24642253 DOI: 10.1016/j.fsi.2014.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/26/2014] [Accepted: 03/07/2014] [Indexed: 06/03/2023]
Abstract
Apoptosis plays an important pathophysiological role in the homeostasis of immune systems. DNA fragmentation factors (DFFs) have been shown to be essential for DNA fragmentation, and the resultant DNA fragments follow a laddering pattern during apoptosis in vertebrates. In invertebrates, the functions of the DFF orthologs are not well characterized; therefore, we cloned and characterized a bivalve DFFA ortholog from the Hong Kong oyster Crassostrea hongkongensis (designated ChDFFA). The full-length cDNA of ChDFFA is 1186 bp in length and encodes a putative protein of 200 amino acids that contains an N-terminal CAD domain and a DFF-C domain at its C-terminus. Real-time RT-PCR results showed that ChDFFA is ubiquitously expressed in several tissues, and its highest expression is in gill. Following a 3- to 48-h challenge by microbial infection, the expression of ChDFFA increased in hemocytes. Using fluorescence microscopy, ChDFFA was localized in nuclei when exogenously expressed in HeLa cells. In addition, over-expression of ChDFFA inhibited the transcriptional activities of p53/p21-Luc reporter genes in HEK293T cells. These results suggest that ChDFFA may be involved in immune response reactions in the Hong Kong oyster C. hongkongensis.
Collapse
Affiliation(s)
- Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Fufa Qu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Lin Qi
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tong Ying
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiao Shu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| |
Collapse
|
3
|
Jamaludin NS, Goh ZJ, Cheah YK, Ang KP, Sim JH, Khoo CH, Fairuz ZA, Halim SNBA, Ng SW, Seng HL, Tiekink ERT. Phosphanegold(I) dithiocarbamates, R3PAu[SC(=S)N((i)Pr)CH2CH2OH] for R = Ph, Cy and Et: role of phosphane-bound R substituents upon in vitro cytotoxicity against MCF-7R breast cancer cells and cell death pathways. Eur J Med Chem 2013; 67:127-41. [PMID: 23856069 DOI: 10.1016/j.ejmech.2013.06.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 12/23/2022]
Abstract
The synthesis and characterisation of R3PAu[S2CN((i)Pr)CH2CH2OH], for R = Ph (1), Cy (2) and Et (3)4, is reported. Compounds 1-3 are cytotoxic against the doxorubicin-resistant breast cancer cell line, MCF-7R, with 1 exhibiting greater potency and cytotoxicity than either of doxorubicin and cisplatin. Based on human apoptosis PCR-array analysis, caspase activities, DNA fragmentation, cell apoptotic assays, intracellular reactive oxygen species (ROS) measurements and human topoisomerase I inhibition, induction of apoptosis by 1, and necrosis by 2 and 3, are demonstrated, by both extrinsic and intrinsic pathways. Compound 1 activates the p53 gene, 2 activates only the p73 gene, whereas 3 activates both the p53 and p73 genes. Compounds 1 and 3 activate NF-κB, and each inhibits topoisomerase I.
Collapse
|
4
|
Genes of the mitochondrial apoptotic pathway in Mytilus galloprovincialis. PLoS One 2013; 8:e61502. [PMID: 23626691 PMCID: PMC3634015 DOI: 10.1371/journal.pone.0061502] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/12/2013] [Indexed: 11/27/2022] Open
Abstract
Bivalves play vital roles in marine, brackish, freshwater and terrestrial habitats. In recent years, these ecosystems have become affected through anthropogenic activities. The ecological success of marine bivalves is based on the ability to modify their physiological functions in response to environmental changes. One of the most important mechanisms involved in adaptive responses to environmental and biological stresses is apoptosis, which has been scarcely studied in mollusks, although the final consequence of this process, DNA fragmentation, has been frequently used for pollution monitoring. Environmental stressors induce apoptosis in molluscan cells via an intrinsic pathway. Many of the proteins involved in vertebrate apoptosis have been recognized in model invertebrates; however, this process might not be universally conserved. Mytilus galloprovincialis is presented here as a new model to study the linkage between molecular mechanisms that mediate apoptosis and marine bivalve ecological adaptations. Therefore, it is strictly necessary to identify the key elements involved in bivalve apoptosis. In the present study, six mitochondrial apoptotic-related genes were characterized, and their gene expression profiles following UV irradiation were evaluated. This is the first step for the development of potential biomarkers to assess the biological responses of marine organisms to stress. The results confirmed that apoptosis and, more specifically, the expression of the genes involved in this process can be used to assess the biological responses of marine organisms to stress.
Collapse
|
5
|
Khoa DB, Trang LTD, Takeda M. Expression analyses of caspase-1 and related activities in the midgut of Galleria mellonella during metamorphosis. INSECT MOLECULAR BIOLOGY 2012; 21:247-256. [PMID: 22229544 DOI: 10.1111/j.1365-2583.2011.01131.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The cDNA encoding caspase-1, a main protease involved in apoptosis, was cloned and sequenced from the midgut of the greater wax moth, Galleria mellonella. The open reading frame contains 879 nucleotides, encodes 293 amino acids, and was registered as Gmcaspase-1. The sequence comparison showed a high homology to lepidopteran caspase-1, human caspase-3, and ced-3 of Caenorhabditis elegans. Gmcaspase-1 is predicted to contain a short prodomain, large subunit, and small subunit domain. It also exhibits all characteristics of caspase, including three conserved cleavage sites after Asp-25, Asp-192, and Asp-181, three active site residues including a highly conserved QACQG pentapeptide active-site motif, and four substrate binding sites. The expression profiles during development showed that the transcript of Gmcaspase-1 and its protein products appeared in two or more waves in the midgut during metamorphosis. Immunohistochemistry, in situ hybridization, and TUNEL analyses revealed that apoptosis occurred first at the basal, then middle and then apical regions in the midgut epithelium and the yellow body is formed in the lumen. At least three waves of mitosis and differentiation follow the apoptosis waves from the basal and middle to apical parts to form the adult epithelium.
Collapse
Affiliation(s)
- D B Khoa
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Japan
| | | | | |
Collapse
|
6
|
Evidence for an instructive role of apoptosis during the metamorphosis of Hydractinia echinata (Hydrozoa). ZOOLOGY 2011; 114:11-22. [DOI: 10.1016/j.zool.2010.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/09/2010] [Accepted: 09/19/2010] [Indexed: 12/30/2022]
|
7
|
Seznec J, Weit S, Naumann U. Gene expression profile in a glioma cell line resistant to cell death induced by a the chimeric tumor suppressor-1 (CTS-1), a dominant-positive variant of p53—the role of NFκB. Carcinogenesis 2009; 31:411-8. [DOI: 10.1093/carcin/bgp319] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
8
|
Krumschnabel G, Podrabsky JE. Fish as model systems for the study of vertebrate apoptosis. Apoptosis 2008; 14:1-21. [PMID: 19082731 DOI: 10.1007/s10495-008-0281-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/17/2008] [Indexed: 01/18/2023]
Abstract
Apoptosis is a process of pivotal importance for multi-cellular organisms and due to its implication in the development of cancer and degenerative disease it is intensively studied in humans and mammalian model systems. Invertebrate models of apoptosis have been well-studied, especially in C. elegans and D. melanogaster, but as these are evolutionarily distant from mammals the relevance of findings for human research is sometimes limited. Presently, a non-mammalian vertebrate model for studying apoptosis is missing. However, in the past few years an increasing number of studies on cell death in fish have been published and thus new model systems may emerge. This review aims at highlighting the most important of these findings, showing similarities and dissimilarities between fish and mammals, and will suggest topics for future research. In addition, the outstanding usefulness of fish as research models will be pointed out, hoping to spark future research on this exciting, often underrated group of vertebrates.
Collapse
Affiliation(s)
- Gerhard Krumschnabel
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, 6020 Innsbruck, Austria.
| | | |
Collapse
|
9
|
Reitzel AM, Sullivan JC, Traylor-Knowles N, Finnerty JR. Genomic survey of candidate stress-response genes in the estuarine anemone Nematostella vectensis. THE BIOLOGICAL BULLETIN 2008; 214:233-254. [PMID: 18574101 DOI: 10.2307/25470666] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Salt marshes are challenging habitats due to natural variability in key environmental parameters including temperature, salinity, ultraviolet light, oxygen, sulfides, and reactive oxygen species. Compounding this natural variation, salt marshes are often heavily impacted by anthropogenic insults including eutrophication, toxic contamination, and coastal development that alter tidal and freshwater inputs. Commensurate with this environmental variability, estuarine animals generally exhibit broader physiological tolerances than freshwater, marine, or terrestrial species. One factor that determines an organism's physiological tolerance is its ability to upregulate "stress-response genes" in reaction to particular stressors. Comparative studies on diverse organisms have identified a number of evolutionarily conserved genes involved in responding to abiotic and biotic stressors. We used homology-based scans to survey the sequenced genome of Nematostella vectensis, the starlet sea anemone, an estuarine specialist, to identify genes involved in the response to three kinds of insult-physiochemical insults, pathogens, and injury. Many components of the stress-response networks identified in triploblastic animals have clear orthologs in the sea anemone, meaning that they must predate the cnidarian-triploblast split (e.g., xenobiotic receptors, biotransformative genes, ATP-dependent transporters, and genes involved in responding to reactive oxygen species, toxic metals, osmotic shock, thermal stress, pathogen exposure, and wounding). However, in some instances, stress-response genes known from triploblasts appear to be absent from the Nematostella genome (e.g., many metal-complexing genes). This is the first comprehensive examination of the genomic stress-response repertoire of an estuarine animal and a member of the phylum Cnidaria. The molecular markers of stress response identified in Nematostella may prove useful in monitoring estuary health and evaluating coastal conservation efforts. These data may also inform conservation efforts on other cnidarians, such as the reef-building corals.
Collapse
Affiliation(s)
- Adam M Reitzel
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | | | | | | |
Collapse
|
10
|
Molecular evolution of Cide family proteins: novel domain formation in early vertebrates and the subsequent divergence. BMC Evol Biol 2008; 8:159. [PMID: 18500987 PMCID: PMC2426694 DOI: 10.1186/1471-2148-8-159] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Accepted: 05/23/2008] [Indexed: 11/10/2022] Open
Abstract
Background Cide family proteins including Cidea, Cideb and Cidec/Fsp27, contain an N-terminal CIDE-N domain that shares sequence similarity to the N-terminal CAD domain (NCD) of DNA fragmentation factors Dffa/Dff45/ICAD and Dffb/Dff40/CAD, and a unique C-terminal CIDE-C domain. We have previously shown that Cide proteins are newly emerged regulators closely associated with the development of metabolic diseases such as obesity, diabetes and liver steatosis. They modulate many metabolic processes such as lipolysis, thermogenesis and TAG storage in brown adipose tissue (BAT) and white adipose tissue (WAT), as well as fatty acid oxidation and lipogenesis in the liver. Results To understand the evolutionary process of Cide proteins and provide insight into the role of Cide proteins as potential metabolic regulators in various species, we searched various databases and performed comparative genomic analysis to study the sequence conservation, genomic structure, and phylogenetic tree of the CIDE-N and CIDE-C domains of Cide proteins. As a result, we identified signature sequences for the N-terminal region of Dffa, Dffb and Cide proteins and CIDE-C domain of Cide proteins, and observed that sequences homologous to CIDE-N domain displays a wide phylogenetic distribution in species ranging from lower organisms such as hydra (Hydra vulgaris) and sea anemone (Nematostella vectensis) to mammals, whereas the CIDE-C domain exists only in vertebrates. Further analysis of their genomic structures showed that although evolution of the ancestral CIDE-N domain had undergone different intron insertions to various positions in the domain among invertebrates, the genomic structure of Cide family in vertebrates is stable with conserved intron phase. Conclusion Based on our analysis, we speculate that in early vertebrates CIDE-N domain was evolved from the duplication of NCD of Dffa. The CIDE-N domain somehow acquired the CIDE-C domain that was formed around the same time, subsequently generating the Cide protein. Subsequent duplication and evolution have led to the formation of different Cide family proteins that play unique roles in the control of metabolic pathways in different tissues.
Collapse
|
11
|
Oberst A, Bender C, Green DR. Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ 2008; 15:1139-46. [PMID: 18451868 DOI: 10.1038/cdd.2008.65] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mitochondrial pathway of cell death, in which apoptosis proceeds following mitochondrial outer membrane permeabilization, release of cytochrome c, and APAF-1 apoptosome-mediated caspase activation, represents the major pathway of physiological apoptosis in vertebrates. However, the well-characterized apoptotic pathways of the invertebrates C. elegans and D. melanogaster indicate that this apoptotic pathway is not universally conserved among animals. This review will compare the role of the mitochondria in the apoptotic programs of mammals, nematodes, and flies, and will survey our knowledge of the apoptotic pathways of other, less familiar model organisms in an effort to explore the evolutionary origins of the mitochondrial pathway of apoptosis.
Collapse
Affiliation(s)
- A Oberst
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|