1
|
Zhang Y, Wang C, Li JJ. Revisiting the role of mesenchymal stromal cells in cancer initiation, metastasis and immunosuppression. Exp Hematol Oncol 2024; 13:64. [PMID: 38951845 PMCID: PMC11218091 DOI: 10.1186/s40164-024-00532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Immune checkpoint blockade (ICB) necessitates a thorough understanding of intricate cellular interactions within the tumor microenvironment (TME). Mesenchymal stromal cells (MSCs) play a pivotal role in cancer generation, progression, and immunosuppressive tumor microenvironment. Within the TME, MSCs encompass both resident and circulating counterparts that dynamically communicate and actively participate in TME immunosurveillance and response to ICB. This review aims to reevaluate various facets of MSCs, including their potential self-transformation to function as cancer-initiating cells and contributions to the creation of a conducive environment for tumor proliferation and metastasis. Additionally, we explore the immune regulatory functions of tumor-associated MSCs (TA-MSCs) and MSC-derived extracellular vesicles (MSC-EVs) with analysis of potential connections between circulating and tissue-resident MSCs. A comprehensive understanding of the dynamics of MSC-immune cell communication and the heterogeneous cargo of tumor-educated versus naïve MSCs may unveil a new MSC-mediated immunosuppressive pathway that can be targeted to enhance cancer control by ICB.
Collapse
Affiliation(s)
- Yanyan Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Charles Wang
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA.
- NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
2
|
Wang Y, Chen H, Li Y, Hao H, Liu J, Chen Y, Meng J, Zhang S, Gu W, Lyu Z, Zang L, Mu Y. Predictive factors that influence the clinical efficacy of umbilical cord-derived mesenchymal stromal cells in the treatment of type 2 diabetes mellitus. Cytotherapy 2024; 26:311-316. [PMID: 38219142 DOI: 10.1016/j.jcyt.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/20/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Our previous single-center, randomized, double-blinded, placebo-controlled phase 2 study evaluated the safety and effectiveness of human umbilical cord mesenchymal stromal cell (UC-MSC) transfusion for treating patients with type 2 diabetes mellitus (T2DM). Indeed, this potential treatment strategy was able to reduce insulin use by half in a considerable number of patients. However, many other patients' responses to UC-MSC transfusion were insignificant. The selection of patients who might benefit from UC-MSC treatment is crucial from a clinical standpoint. METHODS In this post hoc analysis, 37 patients who received UC-MSC transfusions were divided into two groups based on whether their glycated hemoglobin (hemoglobin A1c, or HbA1c) level was less than 7% after receiving UC-MSC treatment. The baseline differences between the two groups were summarized, and potential factors influencing efficacy of UC-MSCs for T2DM were analyzed by univariate and multivariate logistic regression. The correlations between the relevant hormone levels and the treatment effect were further analyzed. RESULTS At the 9-week follow-up, 59.5% of patients achieved their targeted HbA1c level. Male patients with lower baseline HbA1c and greater C-peptide area under the curve (AUCC-pep) values responded favorably to UC-MSC transfusion, according to multivariate analysis. The effectiveness of UC-MSCs transfusion was predicted by AUCC-pep (cutoff value: 14.22 ng/h/mL). Further investigation revealed that AUCC-pep was increased in male patients with greater baseline testosterone levels. CONCLUSIONS Male patients with T2DM with greater AUCC-pep may be more likely to respond clinically to UC-MSC therapy, and further large-scale multi-ethnic clinical studies should be performed to confirm the conclusion.
Collapse
Affiliation(s)
- Yuepeng Wang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China; School of Medicine, Nankai University, Tianjin, China
| | - Haixu Chen
- Institute of Geriatrics & National Clinical Research Center of Geriatrics Disease, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yijun Li
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haojie Hao
- Department of Biotherapy, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiejie Liu
- Department of Biotherapy, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yulong Chen
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junhua Meng
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Saichun Zhang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weijun Gu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaohui Lyu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Zang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Yiming Mu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
3
|
Wang T, Zhou Y, Zhang W, Xue Y, Xiao Z, Zhou Y, Peng X. Exosomes and exosome composite scaffolds in periodontal tissue engineering. Front Bioeng Biotechnol 2024; 11:1287714. [PMID: 38304105 PMCID: PMC10831513 DOI: 10.3389/fbioe.2023.1287714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
Promoting complete periodontal regeneration of damaged periodontal tissues, including dental cementum, periodontal ligament, and alveolar bone, is one of the challenges in the treatment of periodontitis. Therefore, it is urgent to explore new treatment strategies for periodontitis. Exosomes generated from stem cells are now a promising alternative to stem cell therapy, with therapeutic results comparable to those of their blast cells. It has great potential in regulating immune function, inflammation, microbiota, and tissue regeneration and has shown good effects in periodontal tissue regeneration. In addition, periodontal tissue engineering combines exosomes with biomaterial scaffolds to maximize the therapeutic advantages of exosomes. Therefore, this article reviews the progress, challenges, and prospects of exosome and exosome-loaded composite scaffolds in periodontal regeneration.
Collapse
Affiliation(s)
- Tingyu Wang
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, China
| | - Yanxing Zhou
- Institute of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wenwen Zhang
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
| | - Yuanye Xue
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
| | - Ziteng Xiao
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
| | - Yanfang Zhou
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, China
| | - Xinsheng Peng
- Biomedical Innovation Center, Guangdong Medical University, Dongguan, China
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
4
|
Yang X, Xiong M, Fu X, Sun X. Bioactive materials for in vivo sweat gland regeneration. Bioact Mater 2024; 31:247-271. [PMID: 37637080 PMCID: PMC10457517 DOI: 10.1016/j.bioactmat.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/30/2023] [Accepted: 07/30/2023] [Indexed: 08/29/2023] Open
Abstract
Loss of sweat glands (SwGs) commonly associated with extensive skin defects is a leading cause of hyperthermia and heat stroke. In vivo tissue engineering possesses the potential to take use of the body natural ability to regenerate SwGs, making it more conducive to clinical translation. Despite recent advances in regenerative medicine, reconstructing SwG tissue with the same structure and function as native tissue remains challenging. Elucidating the SwG generation mechanism and developing biomaterials for in vivo tissue engineering is essential for understanding and developing in vivo SwG regenerative strategies. Here, we outline the cell biology associated with functional wound healing and the characteristics of bioactive materials. We critically summarize the recent progress in bioactive material-based cell modulation approaches for in vivo SwG regeneration, including the recruitment of endogenous cells to the skin lesion for SwG regeneration and in vivo cellular reprogramming for SwG regeneration. We discussed the re-establishment of microenvironment via bioactive material-mediated regulators. Besides, we offer promising perspectives for directing in situ SwG regeneration via bioactive material-based cell-free strategy, which is a simple and effective approach to regenerate SwG tissue with both fidelity of structure and function. Finally, we discuss the opportunities and challenges of in vivo SwG regeneration in detail. The molecular mechanisms and cell fate modulation of in vivo SwG regeneration will provide further insights into the regeneration of patient-specific SwGs and the development of potential intervention strategies for gland-derived diseases.
Collapse
Affiliation(s)
- Xinling Yang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| |
Collapse
|
5
|
Yu F, Gong D, Yan D, Wang H, Witman N, Lu Y, Fu W, Fu Y. Enhanced adipose-derived stem cells with IGF-1-modified mRNA promote wound healing following corneal injury. Mol Ther 2023; 31:2454-2471. [PMID: 37165618 PMCID: PMC10422019 DOI: 10.1016/j.ymthe.2023.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
The cornea serves as an important barrier structure to the eyeball and is vulnerable to injuries, which may lead to scarring and blindness if not treated promptly. To explore an effective treatment that could achieve multi-dimensional repair of the injured cornea, the study herein innovatively combined modified mRNA (modRNA) technologies with adipose-derived mesenchymal stem cells (ADSCs) therapy, and applied IGF-1 modRNA (modIGF1)-engineered ADSCs (ADSCmodIGF1) to alkali-burned corneas in mice. The therapeutic results showed that ADSCmodIGF1 treatment could achieve the most extensive recovery of corneal morphology and function when compared not only with simple ADSCs but also IGF-1 protein eyedrops, which was reflected by the healing of corneal epithelium and limbus, the inhibition of corneal stromal fibrosis, angiogenesis and lymphangiogenesis, and also the repair of corneal nerves. In vitro experiments further proved that ADSCmodIGF1 could more significantly promote the activity of trigeminal ganglion cells and maintain the stemness of limbal stem cells than simple ADSCs, which were also essential for reconstructing corneal homeostasis. Through a combinatorial treatment regimen of cell-based therapy with mRNA technology, this study highlighted comprehensive repair in the damaged cornea and showed the outstanding application prospect in the treatment of corneal injury.
Collapse
Affiliation(s)
- Fei Yu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Danni Gong
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Dan Yan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Nevin Witman
- Department of Clinical Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Yang Lu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| |
Collapse
|
6
|
Radhakrishnan K, Luu M, Iaria J, Sutherland JM, McLaughlin EA, Zhu HJ, Loveland KL. Activin and BMP Signalling in Human Testicular Cancer Cell Lines, and a Role for the Nucleocytoplasmic Transport Protein Importin-5 in their Crosstalk. Cells 2023; 12:cells12071000. [PMID: 37048077 PMCID: PMC10093041 DOI: 10.3390/cells12071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Testicular germ cell tumours (TGCTs) are the most common malignancy in young men. Originating from foetal testicular germ cells that fail to differentiate correctly, TGCTs appear after puberty as germ cell neoplasia in situ cells that transform through unknown mechanisms into distinct seminoma and non-seminoma tumour types. A balance between activin and BMP signalling may influence TGCT emergence and progression, and we investigated this using human cell line models of seminoma (TCam-2) and non-seminoma (NT2/D1). Activin A- and BMP4-regulated transcripts measured at 6 h post-treatment by RNA-sequencing revealed fewer altered transcripts in TCam-2 cells but a greater responsiveness to activin A, while BMP4 altered more transcripts in NT2/D1 cells. Activin significantly elevated transcripts linked to pluripotency, cancer, TGF-β, Notch, p53, and Hippo signalling in both lines, whereas BMP4 altered TGF-β, pluripotency, Hippo and Wnt signalling components. Dose-dependent antagonism of BMP4 signalling by activin A in TCam-2 cells demonstrated signalling crosstalk between these two TGF-β superfamily arms. Levels of the nuclear transport protein, IPO5, implicated in BMP4 and WNT signalling, are highly regulated in the foetal mouse germline. IPO5 knockdown in TCam-2 cells using siRNA blunted BMP4-induced transcript changes, indicating that IPO5 levels could determine TGF-β signalling pathway outcomes in TGCTs.
Collapse
Affiliation(s)
- Karthika Radhakrishnan
- Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31 Kanooka Grove, Clayton, VIC 3168, Australia
- Correspondence: (K.R.); (K.L.L.)
| | - Michael Luu
- Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31 Kanooka Grove, Clayton, VIC 3168, Australia
| | - Josie Iaria
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC 3050, Australia
| | - Jessie M. Sutherland
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2305, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW 2305, Australia
| | - Eileen A. McLaughlin
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2305, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW 2305, Australia
- Faculty of Science, Medicine and Health, University of Wollongong, Gwynneville, NSW 2500, Australia
| | - Hong-Jian Zhu
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC 3050, Australia
| | - Kate L. Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31 Kanooka Grove, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
- Correspondence: (K.R.); (K.L.L.)
| |
Collapse
|
7
|
Miescher I, Rieber J, Calcagni M, Buschmann J. In Vitro and In Vivo Effects of IGF-1 Delivery Strategies on Tendon Healing: A Review. Int J Mol Sci 2023; 24:ijms24032370. [PMID: 36768692 PMCID: PMC9916536 DOI: 10.3390/ijms24032370] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Tendon injuries suffer from a slow healing, often ending up in fibrovascular scar formation, leading to inferior mechanical properties and even re-rupture upon resumption of daily work or sports. Strategies including the application of growth factors have been under view for decades. Insulin-like growth factor-1 (IGF-1) is one of the used growth factors and has been applied to tenocyte in vitro cultures as well as in animal preclinical models and to human patients due to its anabolic and matrix stimulating effects. In this narrative review, we cover the current literature on IGF-1, its mechanism of action, in vitro cell cultures (tenocytes and mesenchymal stem cells), as well as in vivo experiments. We conclude from this overview that IGF-1 is a potent stimulus for improving tendon healing due to its inherent support of cell proliferation, DNA and matrix synthesis, particularly collagen I, which is the main component of tendon tissue. Nevertheless, more in vivo studies have to be performed in order to pave the way for an IGF-1 application in orthopedic clinics.
Collapse
|
8
|
Towards a New Concept of Regenerative Endodontics Based on Mesenchymal Stem Cell-Derived Secretomes Products. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010004. [PMID: 36671576 PMCID: PMC9854964 DOI: 10.3390/bioengineering10010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The teeth, made up of hard and soft tissues, represent complex functioning structures of the oral cavity, which are frequently affected by processes that cause structural damage that can lead to their loss. Currently, replacement therapy such as endodontics or implants, restore structural defects but do not perform any biological function, such as restoring blood and nerve supplies. In the search for alternatives to regenerate the dental pulp, two alternative regenerative endodontic procedures (REP) have been proposed: (I) cell-free REP (based in revascularization and homing induction to remaining dental pulp stem cells (DPSC) and even stem cells from apical papilla (SCAP) and (II) cell-based REP (with exogenous cell transplantation). Regarding the last topic, we show several limitations with these procedures and therefore, we propose a novel regenerative approach in order to revitalize the pulp and thus restore homeostatic functions to the dentin-pulp complex. Due to their multifactorial biological effects, the use of mesenchymal stem cells (MSC)-derived secretome from non-dental sources could be considered as inducers of DPSC and SCAP to completely regenerate the dental pulp. In partial pulp damage, appropriate stimulate DPSC by MSC-derived secretome could contribute to formation and also to restore the vasculature and nerves of the dental pulp.
Collapse
|
9
|
Huang J, Liu Q, Xia J, Chen X, Xiong J, Yang L, Liang Y. Modification of mesenchymal stem cells for cartilage-targeted therapy. J Transl Med 2022; 20:515. [PMID: 36348497 PMCID: PMC9644530 DOI: 10.1186/s12967-022-03726-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the destruction of the articular cartilage, sclerosis of the subchondral bone, and joint dysfunction. Its pathogenesis is attributed to direct damage and mechanical destruction of joint tissues. Mesenchymal stem cells (MSCs), suggested as a potential strategy for the treatment of OA, have shown therapeutic effects on OA. However, the specific fate of MSCs after intraarticular injection, including cell attachment, proliferation, differentiation, and death, is still unclear, and there is no guarantee that stem cells can be retained in the cartilage tissue to enact repair. Direct homing of MSCs is an important determinant of the efficacy of MSC-based cartilage repair. Recent studies have revealed that the unique homing capacity of MSCs and targeted modification can improve their ability to promote tissue regeneration. Here, we comprehensively review the homing effect of stem cells in joints and highlight progress toward the targeted modification of MSCs. In the future, developments of this targeting system that accelerate tissue regeneration will benefit targeted tissue repair.
Collapse
|
10
|
Dang R, Chen L, Sefat F, Li X, Liu S, Yuan X, Ning X, Zhang YS, Ji P, Zhang X. A Natural Hydrogel with Prohealing Properties Enhances Tendon Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105255. [PMID: 35304821 DOI: 10.1002/smll.202105255] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Tendon regeneration and reduction of peritendinous adhesion remain major clinical challenges. This study addresses these challenges by adopting a unique hydrogel derived from the skin secretion of Andrias davidianus (SSAD) and taking advantage of its biological effects, adhesiveness, and controllable microstructures. The SSAD-derived hydrogel contains many cytokines, which could promote tendon healing. In vitro, leach liquid of SSAD powder could promote tendon stem/progenitor cells migration. In vivo, the SSAD-derived hydrogel featuring double layers possesses strong adhesiveness and could reconnect ruptured Achilles tendons of Sprague-Dawley rats without suturing. The intimal SSAD-derived hydrogel, with a pore size of 241.7 ± 21.0 µm, forms the first layer of the hydrogel to promote tendon healing, and the outer layer SSAD-derived hydrogel, with a pore size of 3.3 ± 1.4 µm, reducing peritendinous adhesion by serving as a dense barrier. Additionally, the SSAD-derived hydrogel exhibits antioxidant and antibacterial characteristics, which further contribute to the reduction of peritendinous adhesion. In vivo studies suggest that the SSAD-derived hydrogel reduces peritendinous adhesion, increases collagen fiber deposition, promotes cell proliferation, and improves the biomechanical properties of the regenerated tendons, indicating better functional restoration. The SSAD-derived bilayer hydrogel may be a feasible biomaterial for tendon repair in the future.
Collapse
Affiliation(s)
- Ruyi Dang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Liling Chen
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Farshid Sefat
- Interdisciplinary Research Centre in Polymer Science and Technology (Polymer IRC), University of Bradford, Bradford, BD7 1DP, UK
- Biomedical and Electronics Engineering Department, School of Engineering, University of Bradford, Bradford, BD7 1DP, UK
| | - Xian Li
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Shilin Liu
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Xulei Yuan
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Xiaoqiao Ning
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ping Ji
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| |
Collapse
|
11
|
Vicinanza C, Lombardi E, Da Ros F, Marangon M, Durante C, Mazzucato M, Agostini F. Modified mesenchymal stem cells in cancer therapy: A smart weapon requiring upgrades for wider clinical applications. World J Stem Cells 2022; 14:54-75. [PMID: 35126828 PMCID: PMC8788179 DOI: 10.4252/wjsc.v14.i1.54] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/06/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem stromal cells (MSC) are characterized by the intriguing capacity to home toward cancer cells after systemic administration. Thus, MSC can be harnessed as targeted delivery vehicles of cytotoxic agents against tumors. In cancer patients, MSC based advanced cellular therapies were shown to be safe but their clinical efficacy was limited. Indeed, the amount of systemically infused MSC actually homing to human cancer masses is insufficient to reduce tumor growth. Moreover, induction of an unequivocal anticancer cytotoxic phenotype in expanded MSC is necessary to achieve significant therapeutic efficacy. Ex vivo cell modifications are, thus, required to improve anti-cancer properties of MSC. MSC based cellular therapy products must be handled in compliance with good manufacturing practice (GMP) guidelines. In the present review we include MSC-improving manipulation approaches that, even though actually tested at preclinical level, could be compatible with GMP guidelines. In particular, we describe possible approaches to improve MSC homing on cancer, including genetic engineering, membrane modification and cytokine priming. Similarly, we discuss appropriate modalities aimed at inducing a marked cytotoxic phenotype in expanded MSC by direct chemotherapeutic drug loading or by genetic methods. In conclusion, we suggest that, to configure MSC as a powerful weapon against cancer, combinations of clinical grade compatible modification protocols that are currently selected, should be introduced in the final product. Highly standardized cancer clinical trials are required to test the efficacy of ameliorated MSC based cell therapies.
Collapse
Affiliation(s)
- Carla Vicinanza
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Elisabetta Lombardi
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Francesco Da Ros
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Miriam Marangon
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Cristina Durante
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Mario Mazzucato
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Francesco Agostini
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| |
Collapse
|
12
|
Salamanna F, Contartese D, Borsari V, Pagani S, Barbanti Brodano G, Griffoni C, Ricci A, Gasbarrini A, Fini M. Two Hits for Bone Regeneration in Aged Patients: Vertebral Bone Marrow Clot as a Biological Scaffold and Powerful Source of Mesenchymal Stem Cells. Front Bioeng Biotechnol 2022; 9:807679. [PMID: 35118056 PMCID: PMC8804319 DOI: 10.3389/fbioe.2021.807679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Recently, the use of a new formulation of bone marrow aspirate (BMA), the BMA clot, has been described. This product entails a naturally formed clot from the harvested bone marrow, which retains all the BMA components preserved in a matrix biologically molded by the clot. Even though its beneficial effects were demonstrated by some studies, the impact of aging and aging-associated processes on biological properties and the effect of BMA cell-based therapy are currently unknown. The purpose of our study was to compare selected parameters and properties of clotted BMA and BMA-derived mesenchymal stem cells (MSCs) from younger (<45 years) and older (>65 years) female donors. Clotted BMA growth factors (GFs) expression, MSCs morphology and viability, doubling time, surface marker expression, clonogenic potential, three-lineage differentiation, senescence-associated factors, and Klotho synthesis from younger and older donors were analyzed. Results indicated that donor age does not affect tissue-specific BMA clot regenerative properties such as GFs expression and MSCs morphology, viability, doubling time, surface antigens expression, colony-forming units, osteogenic and adipogenic differentiation, and Klotho and senescence-associated gene expression. Only few differences, i.e., increased platelet-derived growth factor-AB (PDGF-AB) synthesis and MSCs Aggrecan (ACAN) expression, were detected in younger donors in comparison with older ones. However, these differences do not interfere with all the other BMA clot biological properties. These results demonstrated that BMA clot can be applied easily, without any sample processing and avoiding potential contamination risks as well as losing cell viability, proliferation, and differentiation ability, for autologous transplantation in aged patients. The vertebral BMA clot showed two successful hits since it works as a biological scaffold and as a powerful source of mesenchymal stem cells, thus representing a novel and advanced therapeutic alternative for the treatment of orthopedic injuries.
Collapse
Affiliation(s)
- Francesca Salamanna
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Deyanira Contartese
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- *Correspondence: Deyanira Contartese,
| | - Veronica Borsari
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefania Pagani
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giovanni Barbanti Brodano
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Cristiana Griffoni
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Ricci
- Anesthesia-Resuscitation and Intensive Care, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Gasbarrini
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Milena Fini
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
13
|
Torrecillas-Baena B, Gálvez-Moreno MÁ, Quesada-Gómez JM, Dorado G, Casado-Díaz A. Influence of Dipeptidyl Peptidase-4 (DPP4) on Mesenchymal Stem-Cell (MSC) Biology: Implications for Regenerative Medicine - Review. Stem Cell Rev Rep 2021; 18:56-76. [PMID: 34677817 DOI: 10.1007/s12015-021-10285-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 12/16/2022]
Abstract
Dipeptidyl peptidase IV (DPP4) is a ubiquitous protease that can be found in membrane-anchored or soluble form. Incretins are one of the main DPP4 substrates. These hormones regulate glucose levels, by stimulating insulin secretion and decreasing glucagon production. Because DPP4 levels are high in diabetes, DPP4 inhibitor (DPP4i) drugs derived from gliptin are widespread used as hypoglycemic agents for its treatment. However, as DPP4 recognizes other substrates such as chemokines, growth factors and neuropeptides, pleiotropic effects have been observed in patients treated with DPP4i. Several of these substrates are part of the stem-cell niche. Thus, they may affect different physiological aspects of mesenchymal stem-cells (MSC). They include viability, differentiation, mobilization and immune response. MSC are involved in tissue homeostasis and regeneration under both physiological and pathological conditions. Therefore, such cells and their secretomes have a high clinical potential in regenerative medicine. In this context, DPP4 activity may modulate different aspects of MSC regenerative capacity. Therefore, the aim of this review is to analyze the effect of different DPP4 substrates on MSC. Likewise, how the regulation of DPP4 activity by DPP4i can be applied in regenerative medicine. That includes treatment of cardiovascular and bone pathologies, cutaneous ulcers, organ transplantation and pancreatic beta-cell regeneration, among others. Thus, DPP4i has an important clinical potential as a complement to therapeutic strategies in regenerative medicine. They involve enhancing the differentiation, immunomodulation and mobilization capacity of MSC for regenerative purposes.
Collapse
Affiliation(s)
- Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, 14071, Córdoba, Spain
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.
| |
Collapse
|
14
|
Wu MC, Meng QH. Current understanding of mesenchymal stem cells in liver diseases. World J Stem Cells 2021; 13:1349-1359. [PMID: 34630867 PMCID: PMC8474713 DOI: 10.4252/wjsc.v13.i9.1349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/01/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Liver diseases caused by various factors have become a significant threat to public health worldwide. Liver transplantation has been considered as the only effective treatment for end-stage liver diseases; however, it is limited by the shortage of donor organs, postoperative complications, long-term immunosuppression, and high cost of treatment. Thus, it is not available for all patients. Recently, mesenchymal stem cells (MSCs) transplantation has been extensively explored for repairing hepatic injury in various liver diseases. MSCs are multipotent adult progenitor cells originated from the embryonic mesoderm, and can be found in mesenchymal tissues including the bone marrow, umbilical cord blood, adipose tissue, liver, lung, and others. Although the precise mechanisms of MSC transplantation remain mysterious, MSCs have been demonstrated to be able to prevent the progression of liver injury and improve liver function. MSCs can self-renew by dividing, migrating to injury sites and differentiating into multiple cell types including hepatocytes. Additionally, MSCs have immune-modulatory properties and release paracrine soluble factors. Indeed, the safety and effectiveness of MSC therapy for liver diseases have been demonstrated in animals. However, pre-clinical and clinical trials are largely required to confirm its safety and efficacy before large scale clinical application. In this review, we will explore the molecular mechanisms underlying therapeutic effects of MSCs on liver diseases. We also summarize clinical advances in MSC-based therapies.
Collapse
Affiliation(s)
- Mu-Chen Wu
- Department of Medical Oncology,You An Hospital, Capital Medical University, Beijing 100069, China
| | - Qing-Hua Meng
- Department of Medical Oncology,You An Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
15
|
Integration of Umbilical Cord Mesenchymal Stem Cell Application in Hydroxyapatite-Based Scaffolds in the Treatment of Vertebral Bone Defect due to Spondylitis Tuberculosis: A Translational Study. Stem Cells Int 2021; 2021:9928379. [PMID: 34475959 PMCID: PMC8407992 DOI: 10.1155/2021/9928379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/01/2021] [Accepted: 08/01/2021] [Indexed: 11/23/2022] Open
Abstract
Background Vertebral bone defect represents one of the most commonly found skeletal problems in the spine. Progressive increase of vertebral involvement of skeletal tuberculosis (TB) is reported as the main cause, especially in developed countries. Conventional spinal fusion using bone graft has been associated with donor-site morbidity and complications. We reported the utilization of umbilical cord mesenchymal stem cells (UC-MSCs) combined with hydroxyapatite (HA) based scaffolds in treating vertebral bone defect due to spondylitis tuberculosis. Materials and Methods Three patients with tuberculous spondylitis in the thoracic, thoracolumbar, or lumbar region with vertebral body collapse of more than 50 percent were included. The patient underwent a 2-stage surgical procedure, consisting of debridement, decompression, and posterior stabilization in the first stage followed by anterior fusion using the lumbotomy approach at the second stage. Twenty million UC-MSCs combined with HA granules in 2 cc of saline were transplanted to fill the vertebral bone defect. Postoperative alkaline phosphatase level, quality of life, and radiological healing were evaluated at one-month, three-month, and six-month follow-up. Results The initial mean ALP level at one-month follow-up was 48.33 ± 8.50 U/L. This value increased at the three-month follow-up but decreased at the six-month follow-up time, 97 ± 8.19 U/L and 90.33 ± 4.16 U/L, respectively. Bone formation of 50-75% of the defect site with minimal fracture line was found. Increased bone formation comprising 75-100% of the total bone area was reported six months postoperation. A total score of the SF-36 questionnaire showed better progression in all 8 domains during the follow-up with the mean total score at six months of 2912.5 ± 116.67 from all patients. Conclusion Umbilical cord mesenchymal stem cells combined with hydroxyapatite-based scaffold utilization represent a prospective alternative therapy for bone formation and regeneration of vertebral bone defect due to spondylitis tuberculosis. Further clinical investigations are needed to evaluate this new alternative.
Collapse
|
16
|
Wang M, Zhou T, Zhang Z, Liu H, Zheng Z, Xie H. Current therapeutic strategies for respiratory diseases using mesenchymal stem cells. MedComm (Beijing) 2021; 2:351-380. [PMID: 34766151 PMCID: PMC8554668 DOI: 10.1002/mco2.74] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have a great potential to proliferate, undergo multi-directional differentiation, and exert immunoregulatory effects. There is already much enthusiasm for their therapeutic potentials for respiratory inflammatory diseases. Although the mechanism of MSCs-based therapy has been well explored, only a few articles have summarized the key advances in this field. We hereby provide a review over the latest progresses made on the MSCs-based therapies for four types of inflammatory respiratory diseases, including idiopathic pulmonary fibrosis, acute respiratory distress syndrome, chronic obstructive pulmonary disease, and asthma, and the uncovery of their underlying mechanisms from the perspective of biological characteristics and functions. Furthermore, we have also discussed the advantages and disadvantages of the MSCs-based therapies and prospects for their optimization.
Collapse
Affiliation(s)
- Ming‐yao Wang
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Ting‐yue Zhou
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Zhi‐dong Zhang
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Hao‐yang Liu
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Zhi‐yao Zheng
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Hui‐qi Xie
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| |
Collapse
|
17
|
The effect of a fibroblast growth factor, insulin-like growth factor, growth hormone, and Biolaminin 521 LN on the proliferative activity of cat stem cells. ACTA VET BRNO 2021. [DOI: 10.2754/avb202190010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The wide use of cell technologies in clinical practice requires a large amount of cell material, which has led to improvement in culture conditions, making it possible to obtain more cell material in a shorter period of time. Thus, the purpose of our paper was to study the effects of different concentrations of an insulin-like growth factor (IGF-1), a fibroblast growth factor (FGF-2),| a growth hormone (rhGH), and Biolaminin 521 LN (LN 521) on the proliferative activity and genetic stability of stem cell cultures derived from the cat bone marrow, adipose tissue, and myocardium. Cell cultures for the experiment were obtained from the adipose tissue, bone marrow, and myocardium of a cat. Differences were found in the effects of the various growth promoters on the proliferative activity of cells in the culture. The IGF-1 demonstrated a positive effect on the proliferative activity of all cultures. The addition of the rhGH to the bone marrow-derived cell culture increased the size of the cells and decreased the proliferation index relative to the control group. The addition of the growth factors to the culture medium did not significantly increase the number of cells with altered karyotype in any of the cultures relative to the control group.
Collapse
|
18
|
Andrzejewska A, Dabrowska S, Lukomska B, Janowski M. Mesenchymal Stem Cells for Neurological Disorders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002944. [PMID: 33854883 PMCID: PMC8024997 DOI: 10.1002/advs.202002944] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/23/2020] [Indexed: 05/13/2023]
Abstract
Neurological disorders are becoming a growing burden as society ages, and there is a compelling need to address this spiraling problem. Stem cell-based regenerative medicine is becoming an increasingly attractive approach to designing therapies for such disorders. The unique characteristics of mesenchymal stem cells (MSCs) make them among the most sought after cell sources. Researchers have extensively studied the modulatory properties of MSCs and their engineering, labeling, and delivery methods to the brain. The first part of this review provides an overview of studies on the application of MSCs to various neurological diseases, including stroke, traumatic brain injury, spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, Parkinson's disease, and other less frequently studied clinical entities. In the second part, stem cell delivery to the brain is focused. This fundamental but still understudied problem needs to be overcome to apply stem cells to brain diseases successfully. Here the value of cell engineering is also emphasized to facilitate MSC diapedesis, migration, and homing to brain areas affected by the disease to implement precision medicine paradigms into stem cell-based therapies.
Collapse
Affiliation(s)
- Anna Andrzejewska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Sylwia Dabrowska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Barbara Lukomska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Miroslaw Janowski
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
- Center for Advanced Imaging ResearchDepartment of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of MarylandBaltimoreMD21201‐1595USA
- Tumor Immunology and Immunotherapy ProgramUniversity of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of MarylandBaltimoreMD21201‐1595USA
| |
Collapse
|
19
|
Fernández-Francos S, Eiro N, Costa LA, Escudero-Cernuda S, Fernández-Sánchez ML, Vizoso FJ. Mesenchymal Stem Cells as a Cornerstone in a Galaxy of Intercellular Signals: Basis for a New Era of Medicine. Int J Mol Sci 2021; 22:ijms22073576. [PMID: 33808241 PMCID: PMC8036553 DOI: 10.3390/ijms22073576] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Around 40% of the population will suffer at some point in their life a disease involving tissue loss or an inflammatory or autoimmune process that cannot be satisfactorily controlled with current therapies. An alternative for these processes is represented by stem cells and, especially, mesenchymal stem cells (MSC). Numerous preclinical studies have shown MSC to have therapeutic effects in different clinical conditions, probably due to their mesodermal origin. Thereby, MSC appear to play a central role in the control of a galaxy of intercellular signals of anti-inflammatory, regenerative, angiogenic, anti-fibrotic, anti-oxidative stress effects of anti-apoptotic, anti-tumor, or anti-microbial type. This concept forces us to return to the origin of natural physiological processes as a starting point to understand the evolution of MSC therapy in the field of regenerative medicine. These biological effects, demonstrated in countless preclinical studies, justify their first clinical applications, and draw a horizon of new therapeutic strategies. However, several limitations of MSC as cell therapy are recognized, such as safety issues, handling difficulties for therapeutic purposes, and high economic cost. For these reasons, there is an ongoing tendency to consider the use of MSC-derived secretome products as a therapeutic tool, since they reproduce the effects of their parent cells. However, it will be necessary to resolve key aspects, such as the choice of the ideal type of MSC according to their origin for each therapeutic indication and the implementation of new standardized production strategies. Therefore, stem cell science based on an intelligently designed production of MSC and or their derivative products will be able to advance towards an innovative and more personalized medical biotechnology.
Collapse
Affiliation(s)
| | - Noemi Eiro
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.F.-F.); (L.A.C.)
- Correspondence: (N.E.); (F.J.V.); Tel.: +34-985320050 (ext. 84216)
| | - Luis A. Costa
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.F.-F.); (L.A.C.)
| | - Sara Escudero-Cernuda
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain; (S.E.-C.); (M.L.F.-S.)
| | - María Luisa Fernández-Sánchez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain; (S.E.-C.); (M.L.F.-S.)
| | - Francisco J. Vizoso
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.F.-F.); (L.A.C.)
- Correspondence: (N.E.); (F.J.V.); Tel.: +34-985320050 (ext. 84216)
| |
Collapse
|
20
|
Cruz-Samperio R, Jordan M, Perriman A. Cell augmentation strategies for cardiac stem cell therapies. Stem Cells Transl Med 2021; 10:855-866. [PMID: 33660953 PMCID: PMC8133336 DOI: 10.1002/sctm.20-0489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction (MI) has been the primary cause of death in developed countries, resulting in a major psychological and financial burden for society. Current treatments for acute MI are directed toward rapid restoration of perfusion to limit damage to the myocardium, rather than promoting tissue regeneration and subsequent contractile function recovery. Regenerative cell therapies (CTs), in particular those using multipotent stem cells (SCs), are in the spotlight for treatment post‐MI. Unfortunately, the efficacy of CTs is somewhat limited by their poor long‐term viability, homing, and engraftment to the myocardium. In response, a range of novel SC‐based technologies are in development to provide additional cellular modalities, bringing CTs a step closer to the clinic. In this review, the current landscape of emerging CTs and their augmentation strategies for the treatment post‐MI are discussed. In doing so, we highlight recent advances in cell membrane reengineering via genetic modifications, recombinant protein immobilization, and the utilization of soft biomimetic scaffold interfaces.
Collapse
Affiliation(s)
| | - Millie Jordan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Adam Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
21
|
Savcı Y, Kırbaş OK, Bozkurt BT, Abdik EA, Taşlı PN, Şahin F, Abdik H. Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing. Food Funct 2021; 12:5144-5156. [PMID: 33977960 DOI: 10.1039/d0fo02953j] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Due to the prevalence of individuals suffering from chronic wounds, developing safe and effective wound care agents are one of the more prominent fields of research in biology. However, wound healing is a complex, multi-stage biological process, involving multiple sequences of biological responses from different types of cells, secreted mediators, and extracellular matrix elements. Plants have a long history of use in the treatment of wounds. Plant-derived extracellular vesicles, which are secreted nano vesicle messengers responsible for intercellular communications, show promise as a new, biotechnological wound-care agent. In this study, we assessed the wound healing potential of extracellular vesicles isolated from grapefruits - a plant with well-known anti-inflammatory and wound healing properties. Grapefruit extracellular vesicles (GEVs) increased cell viability and cell migration while reducing intracellular ROS production in a dose-dependent manner in HaCaT cells. Expression of proliferation and migration-related genes were raised by GEV treatment in a dose dependent manner. Additionally, GEV treatment increased the tube formation capabilities of treated HUVEC cells. These findings suggest that GEVs can be used as plant-derived wound healing agents, and have shown potential as a biotechnological agent for wound healing. Further development and study of plant-derived extracellular vesicles may lead to the realization of their full potential.
Collapse
Affiliation(s)
- Yağız Savcı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Oğuz Kaan Kırbaş
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Batuhan Turhan Bozkurt
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Ezgi Avşar Abdik
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Pakize Neslihan Taşlı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Hüseyin Abdik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
| |
Collapse
|
22
|
Shen H, Gu X, Wei ZZ, Wu A, Liu X, Wei L. Combinatorial intranasal delivery of bone marrow mesenchymal stem cells and insulin-like growth factor-1 improves neurovascularization and functional outcomes following focal cerebral ischemia in mice. Exp Neurol 2020; 337:113542. [PMID: 33275952 DOI: 10.1016/j.expneurol.2020.113542] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/05/2020] [Accepted: 11/30/2020] [Indexed: 12/28/2022]
Abstract
Bone marrow mesenchymal stem cell (BMSC) transplantation is a promising treatment for ischemic stroke that carries a severe mortality and disability burden amongst the adult population globally. Thus far, BMSC transplantation has been insufficient for ameliorating neurological deficits resulting from cerebral ischemia. This shortcoming may be an outcome due to poor homing and viability of grafted cells in ischemic brain that limit the potential therapeutic benefits of BMSC transplantation. Insulin-like growth factor-1 (IGF-1), a potent anti-apoptotic agent, exerts neuroprotective effects in ischemic stroke as well as rescuing neuronal death in vitro. We hypothesized that IGF-1 could also protect BMSCs from apoptotic death, and examined whether the combination of BMSCs with IGF-1 can enhance functional recovery outcomes in mice following cerebral ischemia. Intranasal administration of BMSCs with IGF-1 was applied in a mouse focal ischemic stroke model. Our in vitro results indicated that BMSCs treated with IGF-1 exhibited less apoptotic death induced by oxygen-glucose deprivation (OGD), and an improved migratory capacity. At 14 days after ischemic insult, the combination of BMSCs with IGF-1 resulted in a larger number of NeuN/BrdU and Glut-1/BrdU co-labeled cells in the areas contiguous to the ischemic core than IGF-1 or BMSC treatment alone. Western blot assays demonstrated that the protein levels of BDNF, VEGF and Ang-1 were significantly upregulated in the peri-infarct region in the combination treatment group compared with single IGF- 1 or BMSC treatment. Co-administration of BMSCs and IGF-1 markedly increases local cerebral blood flow and promoted better functional behavior outcomes. These data suggest that intranasal delivery of BMSCs in conjunction with IGF-1 strengthened functional recovery following ischemia via increasing neurogenesis and angiogenesis, providing a novel optimized strategy for improving the therapeutic efficacy of BMSC transplantation for ischemia.
Collapse
Affiliation(s)
- Huachao Shen
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Jinling Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210002, China
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anika Wu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xinfeng Liu
- Department of Neurology, Jinling Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210002, China.
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
23
|
Brennen WN, J Thorek DL, Jiang W, Krueger TE, Antony L, Denmeade SR, Isaacs JT. Overcoming stromal barriers to immuno-oncological responses via fibroblast activation protein-targeted therapy. Immunotherapy 2020; 13:155-175. [PMID: 33148078 DOI: 10.2217/imt-2020-0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The tumor microenvironment contributes to disease progression through multiple mechanisms, including immune suppression mediated in part by fibroblast activation protein (FAP)-expressing cells. Herein, a review of FAP biology is presented, supplemented with primary data. This includes FAP expression in prostate cancer and activation of latent reservoirs of TGF-β and VEGF to produce a positive feedback loop. This collectively suggests a normal wound repair process subverted during cancer pathophysiology. There has been immense interest in targeting FAP for diagnostic, monitoring and therapeutic purposes. Until recently, this development has outpaced an understanding of the biology; impeding optimal translation into the clinic. A summary of these applications is provided with an emphasis on eliminating tumor-infiltrating FAP-positive cells to overcome stromal barriers to immuno-oncological responses.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - Daniel L J Thorek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63310, USA.,Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63310, USA
| | - Wen Jiang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Timothy E Krueger
- Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lizamma Antony
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - Samuel R Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - John T Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
24
|
Kajiyama S, Nagashima Y, Funatsu T, Suzuki T, Fukaya M, Matsushima Y, Nagano T, Davies JE, Gomi K. Effects of Conditioned Medium from Bone Marrow Cells on Human Umbilical Cord Perivascular Cells. Tissue Eng Part A 2020; 27:382-389. [PMID: 32718226 DOI: 10.1089/ten.tea.2020.0025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal cells derived from human umbilical cord tissue are attracting increasing attention as a source for cell therapy. However, for applying the same in tissue engineering, it has been shown that the differentiation capacity of mesenchymal stromal cells (MSCs) is influenced by the tissue from which the cells are harvested. Thus, to explore the possibility of increasing the osteogenic capacity of MSCs derived from the perivascular tissue of the human umbilical cord (human umbilical cord perivascular cells, HUCPVCs), we cultured these cells using conditioned medium (CM) derived from cultures of human bone marrow-derived mesenchymal stromal cells (hBMMSCs). However, hBM-CM contains a wide variety of growth factors, the amounts and ratios of which are considered to vary with the cell culture stage. Thus, we aimed to evaluate the effects of hBM-CM derived from different stages of hBMMSC culture on the osteogenic capacity of HUCPVCs. The stages of hBMMSC culture were defined as follows: Stage 1 (mitogenic stage) represented the period from the start of hBMMSC culture to 70% cell confluence; Stage 2 (confluent stage) represented the period from 70% confluence to the initiation of calcified nodule formation; and Stage 3 (calcification stage) represented the period following the initiation of calcified nodule formation. An analysis of growth factors contained in the CM obtained at each stage by enzyme-linked immunosorbent assay showed that insulin-like growth factor 1 (IGF-1) was significantly elevated at Stage 2, whereas vascular endothelial growth factor (VEGF) was significantly elevated at Stage 3. HUCPVCs were cultured using the CM from each of the stages for 1, 2, or 3 weeks. RUNX2 expression was the most upregulated at week 1 and then downregulated in all the groups. The expression of collagen 1 was significantly elevated in Stage 2 HUCs at week 3. Alkaline phosphatase (ALP) activity, ALP, and alizarin staining were higher in Stage 2 HUCs and Stage 3 HUCs. The calcium content was the highest in Stage 2 HUCs. The calcium content of HUCPVC obtained by the method used in this study was six times higher than that reported in the previous study. Collectively, our results show that the CM obtained at Stage 2 was most effective in driving the osteogenic differentiation of HUCPVCs. Impact Statement Mesenchymal stromal cells (MSCs) derived from the perivascular tissue of umbilical cords are promising candidates for regenerative medicine. Because these are able to be differentiated into bone cells, cartilage cells, and adipocytes. The number of MSCs in perivascular tissue (HUCPVCs) is ∼1/300 but the number of HUCPVCs that differentiates into osteogenic cells is quite low. In order to promote osteogenic differentiation of HUCPVCs, we cultured HUCPVCs using conditioned medium collected from human bone marrow-derived mesenchymal stromal cells. Our study suggests that the use of conditioned medium can be effective on inducing osteogenic differentiation of HUCPVCs.
Collapse
Affiliation(s)
- Sohtaro Kajiyama
- Department of Periodontology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Yuri Nagashima
- Department of Periodontology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Taichiro Funatsu
- Department of Periodontology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Takuma Suzuki
- Department of Periodontology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Meri Fukaya
- Department of Periodontology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Yuji Matsushima
- Department of Periodontology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Takatoshi Nagano
- Department of Periodontology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - John E Davies
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Kazuhiro Gomi
- Department of Periodontology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| |
Collapse
|
25
|
Průcha J, Skopalik J, Justan I, Parák T, Gabrielová E, Hána K, Navrátil L. High inductive magnetic stimuli and their effects on mesenchymal stromal cells, dendritic cells, and fibroblasts. Physiol Res 2020; 68:S433-S443. [PMID: 32118474 DOI: 10.33549/physiolres.934382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Effects of low-frequency electromagnetic fields (LF EMF) on the activation of different tissue recovery processes have already been fully understood. Preliminary recent data demonstrated that a special case of sinusoidal electromagnetic fields, known as amplitude-modulated currents (AMC) could have a potential to accelerate the cell metabolism or cell migration. An AMC generator was designed to generate sinusoidal induced electric currents with the amplitude modulation and the harmonic carrier frequency of 5,000 Hz was modulated by frequencies of 1 to 100 Hz. The magnetic field peak was 6 mT, electric field intensity 2 V/m and the current density of induced electrical currents was approximately 1 A/m(2). The coil of the generator was adapted to easy handling and safe integration into the shelf of the CO(2) incubator. The shelf with the coil was prepared for the introduction of cells in standard plastic in vitro chambers. The tests focused on cells with migratory capacity after injury or during immunological processes and thus, mesenchymal stromal cells (MSC), dendritic cells (DC), and fibroblasts were chosen. The tests involved exposures of the cells to LF EMF (180 min/day) every day, for a period of three days, before examining them for cell death, morphology changes, and CD markers. The samples were tested by using MTT assay and the effects on the intracellular concentration of reactive oxygen species were quantified. The cell migration was finally measured with the help of the transwell migration assay. None of the cell types showed any decrease in the cell viability after the LF EMF application and the cells displayed minimum changes in reactive oxygen species. Functional changes (acceleration of cell migration) after AMC exposure were statistically significant for the MSC samples only. The acceleration of MSCs is associated with the production of MMP by these cells. The EMF has a potential to be a safe, clinically applicable selective activator of MSC homing, MSC paracrine production, and subsequent regeneration processes.
Collapse
Affiliation(s)
- J Průcha
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
26
|
Dilogo IH, Rahmatika D, Pawitan JA, Liem IK, Kurniawati T, Kispa T, Mujadid F. Allogeneic umbilical cord-derived mesenchymal stem cells for treating critical-sized bone defects: a translational study. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2020; 31:265-273. [PMID: 32804289 DOI: 10.1007/s00590-020-02765-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/05/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The current 'gold-standard' treatment of critical-sized bone defects (CSBDs) is autografts; however, they have drawbacks including lack of massive bone source donor site morbidity, incomplete remodeling, and the risk of infection. One potential treatment for treating CSBDs is bone marrow-derived mesenchymal stem cells (BM-MSCs). Previously, there were no studies regarding the use of human umbilical cord-mesenchymal stem cells (hUC-MSCs) for treating BDs. We aim to investigate the use of allogeneic hUC-MSCs for treating CSBDs. METHOD We included subjects who were diagnosed with non-union fracture with CSBDs who agreed to undergo hUC-MSCs implantation. All patients were given allogeneic hUC-MSCs. All MSCs were obtained and cultured using the multiple-harvest explant method. Subjects were evaluated functionally using the Lower Extremity Functional Scale (LEFS) and radiologically by volume defect reduction. RESULT A total of seven (3 male, 4 female) subjects were recruited for this study. The subjects age ranged from 14 to 62 years. All seven subjects had increased LEFS during the end of the follow-up period, indicating improved functional ability. The follow-up period ranged from 12 to 36 months. One subject had wound dehiscence and infection, and two subjects developed partial union. CONCLUSION Umbilical cord mesenchymal stem cells are a potential new treatment for CSBDs. Additional studies with larger samples and control groups are required to further investigate the safety and efficacy of umbilical cord-derived mesenchymal stem cells for treating CSBDs.
Collapse
Affiliation(s)
- Ismail Hadisoebroto Dilogo
- Department of Orthopaedic and Traumatology, Dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo Central Hospital, Faculty of Medicine, Universitas Indonesia, CMU 2 Building 5th Floor, Jl. Diponegoro 71, Jakarta Pusat, Indonesia.
- Stem Cell and Tissue Engineering Research Center, IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | - Dina Rahmatika
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo Central Hospital, Faculty of Medicine, Universitas Indonesia, CMU 2 Building 5th Floor, Jl. Diponegoro 71, Jakarta Pusat, Indonesia
| | - Jeanne Adiwinata Pawitan
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo Central Hospital, Faculty of Medicine, Universitas Indonesia, CMU 2 Building 5th Floor, Jl. Diponegoro 71, Jakarta Pusat, Indonesia
- Department Histology, Faculty of Medicine, Universitas Indonesia, Jl. Salemba 6, Jakarta, Indonesia
- Stem Cell and Tissue Engineering Research Center, IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Isabella Kurnia Liem
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo Central Hospital, Faculty of Medicine, Universitas Indonesia, CMU 2 Building 5th Floor, Jl. Diponegoro 71, Jakarta Pusat, Indonesia
- Stem Cell and Tissue Engineering Research Center, IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jl. Salemba 6, Jakarta, Indonesia
| | - Tri Kurniawati
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo Central Hospital, Faculty of Medicine, Universitas Indonesia, CMU 2 Building 5th Floor, Jl. Diponegoro 71, Jakarta Pusat, Indonesia
- Stem Cell and Tissue Engineering Research Center, IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Tera Kispa
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo Central Hospital, Faculty of Medicine, Universitas Indonesia, CMU 2 Building 5th Floor, Jl. Diponegoro 71, Jakarta Pusat, Indonesia
| | - Fajar Mujadid
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo Central Hospital, Faculty of Medicine, Universitas Indonesia, CMU 2 Building 5th Floor, Jl. Diponegoro 71, Jakarta Pusat, Indonesia
| |
Collapse
|
27
|
Liesveld JL, Sharma N, Aljitawi OS. Stem cell homing: From physiology to therapeutics. Stem Cells 2020; 38:1241-1253. [PMID: 32526037 DOI: 10.1002/stem.3242] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022]
Abstract
Stem cell homing is a multistep endogenous physiologic process that is also used by exogenously administered hematopoietic stem and progenitor cells (HSPCs). This multistep process involves cell migration and is essential for hematopoietic stem cell transplantation. The process can be manipulated to enhance ultimate engraftment potential, and understanding stem cell homing is also important to the understanding of stem cell mobilization. Homing is also of potential importance in the recruitment of marrow mesenchymal stem and stromal cells (MSCs) to sites of injury and regeneration. This process is less understood but assumes importance when these cells are used for repair purposes. In this review, the process of HSPC and MSC homing is examined, as are methods to enhance this process.
Collapse
Affiliation(s)
- Jane L Liesveld
- James P. Wilmot Cancer Institute, Department of Medicine, University of Rochester, Rochester, New York, USA
| | - Naman Sharma
- James P. Wilmot Cancer Institute, Department of Medicine, University of Rochester, Rochester, New York, USA
| | - Omar S Aljitawi
- James P. Wilmot Cancer Institute, Department of Medicine, University of Rochester, Rochester, New York, USA
| |
Collapse
|
28
|
Liu MC, Chang ML, Wang YC, Chen WH, Wu CC, Yeh SD. Revisiting the Regenerative Therapeutic Advances Towards Erectile Dysfunction. Cells 2020; 9:E1250. [PMID: 32438565 PMCID: PMC7290763 DOI: 10.3390/cells9051250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Erectile dysfunction (ED) is an inability to attain or maintain adequate penile erection for successful vaginal intercourse, leading to sexual and relationship dissatisfaction. To combat ED, various surgical and non-surgical approaches have been developed in the past to restore erectile functions. These therapeutic interventions exhibit significant impact in providing relief to patients; however, due to their associated adverse effects and lack of long-term efficacy, newer modalities such as regenerative therapeutics have gained attention due to their safe and prolonged efficacy. Stem cells and platelet-derived biomaterials contained in platelet-rich plasma (PRP) are thriving as some of the major therapeutic regenerative agents. In recent years, various preclinical and clinical studies have evaluated the individual, as well as combined of stem cells and PRP to restore erectile function. Being rich in growth factors, chemokines, and angiogenic factors, both stem cells and PRP play a crucial role in regenerating nerve cells, myelination of axons, homing and migration of progenitor cells, and anti-fibrosis and anti-apoptosis of damaged cavernous nerve in corporal tissues. Further, platelet-derived biomaterials have been proven to be a biological supplement for enhancing the proliferative and differentiation potential of stem cells towards neurogenic fate. Therefore, this article comprehensively analyzes the progresses of these regenerative therapies for ED.
Collapse
Affiliation(s)
- Ming-Che Liu
- Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (M.-C.L.); (C.-C.W.)
- Clinical Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, school of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Meng-Lin Chang
- Department of Urology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 242, Taiwan;
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Ya-Chun Wang
- TCM Biotech International Corp., New Taipei City 22175, Taiwan; (Y.-C.W.); (W.-H.C.)
| | - Wei-Hung Chen
- TCM Biotech International Corp., New Taipei City 22175, Taiwan; (Y.-C.W.); (W.-H.C.)
| | - Chien-Chih Wu
- Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (M.-C.L.); (C.-C.W.)
- Department of Education and Humanities in Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Shauh-Der Yeh
- Department of Urology and Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
29
|
Friend or Foe? Essential Roles of Osteoclast in Maintaining Skeletal Health. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4791786. [PMID: 32190665 PMCID: PMC7073503 DOI: 10.1155/2020/4791786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/27/2020] [Indexed: 02/08/2023]
Abstract
Heightened activity of osteoclast is considered to be the culprit in breaking the balance during bone remodeling in pathological conditions, such as osteoporosis. As a “foe” of skeletal health, many antiosteoporosis therapies aim to inhibit osteoclastogenesis. However, bone remodeling is a dynamic process that requires the subtle coordination of osteoclasts and osteoblasts. Severe suppression of osteoclast differentiation will impair bone formation because of the coupling effect. Thus, understanding the complex roles of osteoclast in maintaining proper bone remodeling is highly warranted to develop better management of osteoporosis. This review aimed to determine the varied roles of osteoclasts in maintaining skeletal health and to highlight the positive roles of osteoclasts in maintaining normal bone remodeling. Generally, osteoclasts interact with osteocytes to initiate targeted bone remodeling and have crosstalk with mesenchymal stem cells and osteoblasts via secreted factors or cell-cell contact to promote bone formation. We believe that a better outcome of bone remodeling disorders will be achieved when proper strategies are made to coordinate osteoclasts and osteoblasts in managing such disorders.
Collapse
|
30
|
Rahyussalim AJ, Ivansyah MD, Nugroho A, Wikanjaya R, Canintika AF, Kurniawati T. Vertebral body defects treated with umbilical-cord mesenchymal stem cells combined with hydroxyapatite scaffolds: The first case report. Int J Surg Case Rep 2019; 66:304-308. [PMID: 31901558 PMCID: PMC6940685 DOI: 10.1016/j.ijscr.2019.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Vertebral body defects (VBDs) are one of the most frequent orthopaedic disorders. Such defects often require bone grafts or fusion procedures; however, both procedures often fail due to various factors. Mesenchymal stem cells (MSCs) have been used as a potential therapy to fill bone voids in bone defects, and they may be a potential treatment for VBDs. We reported VBDs treated with MSCs combined with hydroxyapatite scaffolds. PRESENTATION OF CASE A 27-year-old female presented with recurrent back pain. She had a history of decompression and stabilization procedure one year ago after diagnosed with spinal tuberculosis. Initially, she felt back pain that intensifies with activity and relieved with rest. She noticed that the pain begun when once she heard a crack sound on her back while trying to get up from sitting position. There was no history of numbness or tingling sensation. There were no walking problems. Other functions, including micturition and defecation, were within normal limits. The patient firstly underwent lumbotomy procedure, and the images were all confirmed with fluoroscopy X-ray. The vertebrae went debridement, and finally, the bone defect was filled with 20 millions of umbilical cord-mesenchymal stem cells (UC-MSCs) combined with hydroxyapatite in 2 cc of saline. DISCUSSION At three months postoperative, the patient could walk and had no pain. At six months of follow-up, no complications occurred. We also did not see any signs of neoplasm formation, which is consistent with previous studies that used MSCs for orthopaedic treatment. Moreover, no significant bone deformation or spinal cord compression was observed, which suggested the safety of the transplantation procedure. CONCLUSIONS We found that MSCs combined with hydroxyapatite represents a potential therapy for bone regeneration in VBD. Further clinical studies are required to investigate the safety and efficacy of this combination of therapy in VBDs.
Collapse
Affiliation(s)
- Ahmad Jabir Rahyussalim
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia; Divion of Spine, Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| | - Muhammad Deryl Ivansyah
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Ahmad Nugroho
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Rio Wikanjaya
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Anissa Feby Canintika
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Tri Kurniawati
- Stem Cell Integrated Service Unit, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
31
|
Increased in vitro migration of human umbilical cord mesenchymal stem cells toward acellular foreskin treated with bacterial derivatives of monophosphoryl lipid A or supernatant of Lactobacillus acidophilus. Hum Cell 2019; 33:10-22. [PMID: 31811569 DOI: 10.1007/s13577-019-00308-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
Abstract
Migration and homing are known as critical steps toward regeneration of damaged tissues via cell therapies. Among various cellular sources of stem cells, the umbilical cord has been thus recognized as an interesting one endowed with high benefits. Accordingly, the main objective of the present study was to determine whether monophosphoryl lipid A (MPLA) or supernatant of Lactobacillus acidophilus (SLA) could increase migration of human umbilical cord mesenchymal stem cells (hUMSCs) toward acellular foreskin or not. In this study, the hUMSCs were isolated and cultured through acellular MPLA- or SLA-treated foreskin. Expression of some migration genes (i.e., VCAM-1, MMP-2, VLA-4, CXCR-4, and VEGF) was also investigated using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Moreover; vimentin, cytokeratin 5 (CK5), and matrix metalloproteinases-2 (MMP-2) were detected via immunohistochemistry (IHC) analysis. The hUMSCs in the presence of MPLA- or SLA-treated foreskin showed more tissue tropism compared with those in the control group. Besides, the scanning electron microscopy (SEM) results established that the hUMSCs had more migratory activity in the presence of MPLA- or SLA-treated foreskin than the untreated one. The IHC analysis results correspondingly indicated that expression of vimentin, CK5, and MMP-2 proteins had augmented in both treatments compared with those in the control group. It was concluded that MPLA had revealed more prominent results than SLA, even though both treatments could be regarded as inducing factors in migration. Ultimately, it was suggested to introduce the use of MPLA and probiotic components as a promising approach to improve therapies in regenerative medicine.
Collapse
|
32
|
Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG. Mesenchymal Stem Cell Migration and Tissue Repair. Cells 2019; 8:E784. [PMID: 31357692 PMCID: PMC6721499 DOI: 10.3390/cells8080784] [Citation(s) in RCA: 520] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/13/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multilineage cells with the ability to self-renew and differentiate into a variety of cell types, which play key roles in tissue healing and regenerative medicine. Bone marrow-derived mesenchymal stem cells (BMSCs) are the most frequently used stem cells in cell therapy and tissue engineering. However, it is prerequisite for BMSCs to mobilize from bone marrow and migrate into injured tissues during the healing process, through peripheral circulation. The migration of BMSCs is regulated by mechanical and chemical factors in this trafficking process. In this paper, we review the effects of several main regulatory factors on BMSC migration and its underlying mechanism; discuss two critical roles of BMSCs-namely, directed differentiation and the paracrine function-in tissue repair; and provide insight into the relationship between BMSC migration and tissue repair, which may provide a better guide for clinical applications in tissue repair through the efficient regulation of BMSC migration.
Collapse
Affiliation(s)
- Xiaorong Fu
- College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing 400030, China
| | - Ge Liu
- College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing 400030, China
| | - Alexander Halim
- College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing 400030, China
| | - Yang Ju
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Qing Luo
- College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing 400030, China
| | - And Guanbin Song
- College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing 400030, China.
| |
Collapse
|
33
|
Selfe J, Shipley JM. IGF signalling in germ cells and testicular germ cell tumours: roles and therapeutic approaches. Andrology 2019; 7:536-544. [PMID: 31179642 PMCID: PMC6771568 DOI: 10.1111/andr.12658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/01/2019] [Accepted: 05/05/2019] [Indexed: 02/06/2023]
Abstract
The insulin-like growth factor (IGF) axis plays key roles in normal tissue growth and development as well as in the progression of several tumour types and their subsequent growth and progression to a metastatic phenotype. This review explores the role of IGF system in normal germ cell development and function in addition to examining the evidence for deregulation of IGF signalling in cancer, with particular relevance to evidence supporting a role in testicular germ cell tumours (TGCTs). Despite the clear preclinical rationale for targeting the IGF axis in cancer, there has been a lack of progress in identifying which patients may benefit from such therapy. Future employment of agents targeting the IGF pathway is expected to concentrate on their use in combination with other treatments to prevent resistance and exploit their potential as chemo- and radiosensitizers.
Collapse
Affiliation(s)
- J Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - J M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| |
Collapse
|
34
|
Ullah M, Liu DD, Thakor AS. Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. iScience 2019; 15:421-438. [PMID: 31121468 PMCID: PMC6529790 DOI: 10.1016/j.isci.2019.05.004] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/30/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been widely investigated for their therapeutic potential in regenerative medicine, owing to their ability to home damaged tissue and serve as a reservoir of growth factors and regenerative molecules. As such, clinical applications of MSCs are reliant on these cells successfully migrating to the desired tissue following their administration. Unfortunately, MSC homing is inefficient, with only a small percentage of cells reaching the target tissue following systemic administration. This attrition represents a major bottleneck in realizing the full therapeutic potential of MSC-based therapies. Accordingly, a variety of strategies have been employed in the hope of improving this process. Here, we review the molecular mechanisms underlying MSC homing, based on a multistep model involving (1) initial tethering by selectins, (2) activation by cytokines, (3) arrest by integrins, (4) diapedesis or transmigration using matrix remodelers, and (5) extravascular migration toward chemokine gradients. We then review the various strategies that have been investigated for improving MSC homing, including genetic modification, cell surface engineering, in vitro priming of MSCs, and in particular, ultrasound techniques, which have recently gained significant interest. Contextualizing these strategies within the multistep homing model emphasizes that our ability to optimize this process hinges on our understanding of its molecular mechanisms. Moving forward, it is only with a combined effort of basic biology and translational work that the potential of MSC-based therapies can be realized.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA
| | - Daniel D Liu
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA.
| |
Collapse
|
35
|
The Emerging Role of Mesenchymal Stem Cells in Vascular Calcification. Stem Cells Int 2019; 2019:2875189. [PMID: 31065272 PMCID: PMC6466855 DOI: 10.1155/2019/2875189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/12/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Vascular calcification (VC), characterized by hydroxyapatite crystal depositing in the vessel wall, is a common pathological condition shared by many chronic diseases and an independent risk factor for cardiovascular events. Recently, VC is regarded as an active, dynamic cell-mediated process, during which calcifying cell transition is critical. Mesenchymal stem cells (MSCs), with a multidirectional differentiation ability and great potential for clinical application, play a duplex role in the VC process. MSCs facilitate VC mainly through osteogenic transformation and apoptosis. Meanwhile, several studies have reported the protective role of MSCs. Anti-inflammation, blockade of the BMP2 signal, downregulation of the Wnt signal, and antiapoptosis through paracrine signaling are possible mechanisms. This review displays the evidence both on the facilitating role and on the protective role of MSCs, then discusses the key factors determining this divergence.
Collapse
|
36
|
Gunawardena TNA, Rahman MT, Abdullah BJJ, Abu Kasim NH. Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine. J Tissue Eng Regen Med 2019; 13:569-586. [PMID: 30644175 DOI: 10.1002/term.2806] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 10/26/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Recent studies suggest that the main driving force behind the therapeutic activity observed in mesenchymal stem cells (MSCs) are the paracrine factors secreted by these cells. These biomolecules also trigger antiapoptotic events to prevent further degeneration of the diseased organ through paracrine signalling mechanisms. In comparison with the normal physiological conditions, an increased paracrine gradient is observed within the peripheral system of diseased organs that enhances the migration of tissue-specific MSCs towards the site of infection or injury to promote healing. Thus, upon administration of conditioned media derived from mesenchymal stem cell cultures (MSC-CM) could contribute in maintaining the increased paracrine factor gradient between the diseased organ and the stem cell niche in order to speed up the process of recovery. Based on the principle of the paracrine signalling mechanism, MSC-CM, also referred as the secretome of the MSCs, is a rich source of the paracrine factors and are being studied extensively for a wide range of regenerative therapies such as myocardial infarction, stroke, bone regeneration, hair growth, and wound healing. This article highlights the current technological applications and advances of MSC-CM with the aim to appraise its future potential as a regenerative therapeutic agent.
Collapse
Affiliation(s)
| | - Mohammad Tariqur Rahman
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
CXCR4-Overexpressing Umbilical Cord Mesenchymal Stem Cells Enhance Protection against Radiation-Induced Lung Injury. Stem Cells Int 2019; 2019:2457082. [PMID: 30867667 PMCID: PMC6379846 DOI: 10.1155/2019/2457082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
Less quantity of transplanted mesenchymal stem cells (MSCs) influences the therapeutic effects on radiation-induced lung injury (RILI). Previous studies have demonstrated that MSCs overexpressing Chemokine (C-X-C motif) receptor 4 (CXCR4) could increase the quantity of transplanted cells to local tissues. In the present study, we conducted overexpressing CXCR4 human umbilical cord mesenchymal stem cell (HUMSC) therapy for RILI. C57BL mice received single dose of thoracic irradiation with 13 Gy of X-rays and then were administered saline, control HUMSCs, or CXCR4-overexpressing HUMSCs via tail vein. Transfection with CXCR4 enhanced the quantity of transplanted HUMSCs in the radiation-induced injured lung tissues. CXCR4-overexpressing HUMSCs not only improved histopathological changes but also decreased the radiation-induced expression of SDF-1, TGF-β1, α-SMA, and collagen I and inhibited the radiation-induced decreased expression of E-cadherin. Transplanted CXCR4-overexpressing HUMSCs also could express pro-SP-C, indicated adopting the feature of ATII. These finding suggests that CXCR4-overexpressing HUMSCs enhance the protection against RILI and may be a promising strategy for RILI treatment.
Collapse
|
38
|
Cryopreserved H2
O2
-preconditioned human adipose-derived stem cells exhibit fast post-thaw recovery and enhanced bioactivity against oxidative stress. J Tissue Eng Regen Med 2019; 13:328-341. [DOI: 10.1002/term.2797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/05/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
|
39
|
Recruitment of macrophages and bone marrow stem cells to regenerating liver promoted by sodium phthalhydrazide in mice. Biomed Pharmacother 2019; 110:594-601. [DOI: 10.1016/j.biopha.2018.07.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022] Open
|
40
|
Krueger TE, Thorek DLJ, Meeker AK, Isaacs JT, Brennen WN. Tumor-infiltrating mesenchymal stem cells: Drivers of the immunosuppressive tumor microenvironment in prostate cancer? Prostate 2019; 79:320-330. [PMID: 30488530 PMCID: PMC6549513 DOI: 10.1002/pros.23738] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Prostate cancer is characterized by T-cell exclusion, which is consistent with their poor responses to immunotherapy. In addition, T-cells restricted to the adjacent stroma and benign areas are characterized by anergic and immunosuppressive phenotypes. In order for immunotherapies to produce robust anti-tumor responses in prostate cancer, this exclusion barrier and immunosuppressive microenvironment must first be overcome. We have previously identified mesenchymal stem cells (MSCs) in primary and metastatic human prostate cancer tissue. METHODS An Opal Multiplex immunofluorescence assay based on CD73, CD90, and CD105 staining was used to identify triple-labeled MSCs in human prostate cancer tissue. T-cell suppression assays and flow cytometry were used to demonstrate the immunosuppressive potential of primary MSCs expanded from human bone marrow and prostate cancer tissue from independent donors. RESULTS Endogenous MSCs were confirmed to be present at sites of human prostate cancer. These prostate cancer-infiltrating MSCs suppress T-cell proliferation in a dose-dependent manner similar to their bone marrow-derived counterparts. Also similar to bone marrow-derived MSCs, prostate cancer-infiltrating MSCs upregulate expression of PD-L1 and PD-L2 on their cell surface in the presence of IFNγ and TNFα. CONCLUSION Prostate cancer-infiltrating MSCs suppress T-cell proliferation similar to canonical bone marrow-derived MSCs, which have well-documented immunosuppressive properties with numerous effects on both innate and adaptive immune system function. Thus, we hypothesize that selective depletion of MSCs infiltrating sites of prostate cancer should restore immunologic recognition and elimination of malignant cells via broad re-activation of cytotoxic pro-inflammatory pathways.
Collapse
Affiliation(s)
- Timothy E. Krueger
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel L. J. Thorek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, Missouri
- Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, Missouri
| | - Alan K. Meeker
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland
| | - John T. Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - W. Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
41
|
Soluble matrix protein is a potent modulator of mesenchymal stem cell performance. Proc Natl Acad Sci U S A 2019; 116:2042-2051. [PMID: 30659152 DOI: 10.1073/pnas.1812951116] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We challenge the conventional designation of structural matrix proteins primarily as supporting scaffolds for resident cells. The extracellular matrix protein tropoelastin is classically regarded as a structural component that confers mechanical strength and resilience to tissues subject to repetitive elastic deformation. Here we describe how tropoelastin inherently induces a range of biological responses, even in cells not typically associated with elastic tissues and in a manner unexpected of typical substrate-dependent matrix proteins. We show that tropoelastin alone drives mesenchymal stem cell (MSC) proliferation and phenotypic maintenance, akin to the synergistic effects of potent growth factors such as insulin-like growth factor 1 and basic fibroblast growth factor. In addition, tropoelastin functionally surpasses these growth factors, as well as fibronectin, in allowing substantial media serum reduction without loss of proliferative potential. We further demonstrate that tropoelastin elicits strong mitogenic and cell-attractive responses, both as an immobilized substrate and as a soluble additive, via direct interactions with cell surface integrins αvβ3 and αvβ5. This duality of action converges the long-held mechanistic dichotomy between adhesive matrix proteins and soluble growth factors and uncovers the powerful, untapped potential of tropoelastin for clinical MSC expansion and therapeutic MSC recruitment. We propose that the potent, growth factor-like mitogenic and motogenic abilities of tropoelastin are biologically rooted in the need for rapid stem cell homing and proliferation during early development and/or wound repair.
Collapse
|
42
|
Mesenchymal Stem Cells as Regulators of Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1144:147-166. [DOI: 10.1007/5584_2018_311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Abdik H, Avşar Abdik E, Demirci S, Doğan A, Turan D, Şahin F. The effects of bisphosphonates on osteonecrosis of jaw bone: a stem cell perspective. Mol Biol Rep 2018; 46:763-776. [PMID: 30506511 DOI: 10.1007/s11033-018-4532-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/28/2018] [Indexed: 12/29/2022]
Abstract
Bisphosphonate-induced osteonecrosis of the jaw (BIONJ) is a commonly encountered side effect of Bisphosphonates (BPs). Although certain aspects of BIONJ have been studied, the effects of BPs on the proliferation, differentiation, and maintenance of dental stem cells (DSC) in way that might account for development of BIONJ have not been evaluated. In the current study, Dental Pulp Stem Cells (DPSCs), Periodontal Stem Cells (PDLSCs), and human Tooth Germ Stem Cells (hTGSCs) were characterized and then each stem cell type were treated with selected BPs: Zoledronate (ZOL), Alendronate (ALE), and Risedronate (RIS). Negative effect on osteogenesis capacity of DSCs has not been observed after differentiation experiments in vitro. BPs exerted inhibitory effect on the migratory capacities of stem cells confirmed by in vitro scratch assay analysis. Angiogenesis of endothelial cells was blocked by BPs treatment in tube formation analysis. In conclusion, inhibitory effects of BPs on migration capacity of DSCs localized in close proximity to the jaw bone might be the primary reason for the side effects of BPs in the development of BIONJ process. Therefore, further in vivo evidence is required to investigate DSC properties in BP treated animals which might elucidate the importance of DSCs in BIONJ formation.
Collapse
Affiliation(s)
- Hüseyin Abdik
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Ezgi Avşar Abdik
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Selami Demirci
- National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, USA
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Duygu Turan
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
44
|
Icariin Promotes the Migration of BMSCs In Vitro and In Vivo via the MAPK Signaling Pathway. Stem Cells Int 2018; 2018:2562105. [PMID: 30319696 PMCID: PMC6167584 DOI: 10.1155/2018/2562105] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/27/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are widely used in tissue engineering for regenerative medicine due to their multipotent differentiation potential. However, their poor migration ability limits repair effects. Icariin (ICA), a major component of the Chinese medical herb Herba Epimedii, has been reported to accelerate the proliferation, osteogenic, and chondrogenic differentiation of BMSCs. However, it remains unknown whether ICA can enhance BMSC migration, and the possible underlying mechanisms need to be elucidated. In this study, we found that ICA significantly increased the migration capacity of BMSCs, with an optimal concentration of 1 μmol/L. Moreover, we found that ICA stimulated actin stress fiber formation in BMSCs. Our work revealed that activation of the MAPK signaling pathway was required for ICA-induced migration and actin stress fiber formation. In vivo, ICA promoted the recruitment of BMSCs to the cartilage defect region. Taken together, these results show that ICA promotes BMSC migration in vivo and in vitro by inducing actin stress fiber formation via the MAPK signaling pathway. Thus, combined administration of ICA with BMSCs has great potential in cartilage defect therapy.
Collapse
|
45
|
Jin YZ, Lee JH. Mesenchymal Stem Cell Therapy for Bone Regeneration. Clin Orthop Surg 2018; 10:271-278. [PMID: 30174801 PMCID: PMC6107811 DOI: 10.4055/cios.2018.10.3.271] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/27/2018] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been used in clinic for approximately 20 years. During this period, various new populations of MSCs have been found or manipulated. However, their characters and relative strength for bone regeneration have not been well known. For a comprehensive understanding of MSCs, we reviewed the literature on the multipotent cells ranging from the definition to the current research progress for bone regeneration. Based on our literature review, bone marrow MSCs have been most widely studied and utilized in clinical settings. Among other populations of MSCs, adipose-derived MSCs and perivascular MSCs might be potential candidates for bone regeneration, whose efficacy and safety still require further investigation.
Collapse
Affiliation(s)
- Yuan-Zhe Jin
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Hyup Lee
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul, Korea.,Institute of Medical and Biological Engineering, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
46
|
Teng CF, Jeng LB, Shyu WC. Role of Insulin-like Growth Factor 1 Receptor Signaling in Stem Cell Stemness and Therapeutic Efficacy. Cell Transplant 2018; 27:1313-1319. [PMID: 29882416 PMCID: PMC6168993 DOI: 10.1177/0963689718779777] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Evidence has emerged that stem cells represent a promising therapeutic tool for tissue engineering and regenerative medicine. Thus, identifying functional markers for selecting stem cells capable of superior self-renewal and pluripotency (or multipotency) and maintaining stem cell identity under appropriate culture conditions are critical for guiding the use of stem cells toward clinical applications. Many investigations have implicated the insulin-like growth factor 1 receptor (IGF1R) signaling in maintenance of stem cell characteristics and enhancement of stem cell therapy efficacy. IGF1R-expressing stem cells display robust pluripotent or multipotent properties. In this review, we summarize the essential roles of IGF1R signaling in self-renewal, pluripotency (or multipotency), and therapeutic efficacy of stem cells, including human embryonic stem cells, neural stem cells, cardiac stem cells, bone marrow mesenchymal stem cells, placental mesenchymal stem cells, and dental pulp mesenchymal stem cells. Modifying IGF1R signaling may thus provide potential strategies for maintaining stem cell properties and improving stem-cell-based therapeutic applications.
Collapse
Affiliation(s)
- Chiao-Fang Teng
- 1 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,2 Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - Long-Bin Jeng
- 2 Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - Woei-Cherng Shyu
- 1 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,3 Translational Medicine Research Center and Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,4 Department of Occupational Therapy, Asia University, Taichung, Taiwan
| |
Collapse
|
47
|
Katagiri W, Watanabe J, Toyama N, Osugi M, Sakaguchi K, Hibi H. Clinical Study of Bone Regeneration by Conditioned Medium From Mesenchymal Stem Cells After Maxillary Sinus Floor Elevation. IMPLANT DENT 2018; 26:607-612. [PMID: 28727618 DOI: 10.1097/id.0000000000000618] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This clinical study was undertaken to evaluate the safety of use of the secretome of bone marrow-derived mesenchymal stem cells (MSC-CM) for maxillary sinus floor elevation (SFE). MATERIALS AND METHODS MSC-CM was prepared from conditioned medium from human bone marrow-derived MSCs. Six partially edentulous patients were enrolled in the study. MSC-CM was mixed with porous beta-tricalcium phosphate (β-TCP) and implanted in 4 patients (experimental group), whereas only β-TCP was implanted in the other 2 patients (control group). Six months after SFE, bone biopsies and histological assessments were performed. RESULTS Bone formation was clinically confirmed in all cases. Although Hounsfield units in computed tomography images were not significantly different between the groups, histological analysis revealed a significant difference in newly formed bone area between the groups. In particular, bone volume in the center of the augmented area was significantly greater in the MSC-CM group. Newly formed bone consisted of lamellar bone in the MSC-CM group but woven bone in the β-TCP group. CONCLUSION The secretome of bone marrow-derived mesenchymal stem cells (MSC-CM) was used safely and has great osteogenic potential for regenerative medicine of bone.
Collapse
Affiliation(s)
- Wataru Katagiri
- *Associate Professor, Division of Reconstructive Surgery and Oral and Maxillofacial Region, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan. †Graduate Student, Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan. ‡Assistant Professor, Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan. §Professor, Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Ran LJ, Zeng Y, Wang SC, Zhang DS, Hong M, Li SY, Dong J, Shi MX. Effect of co‑culture with amniotic epithelial cells on the biological characteristics of amniotic mesenchymal stem cells. Mol Med Rep 2018; 18:723-732. [PMID: 29845205 DOI: 10.3892/mmr.2018.9053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 02/09/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effect of co‑culture with amniotic epithelial cells (AECs) on the biological characteristics of amniotic mesenchymal stem cells (AMSCs), to compare the expression of C‑X‑C motif chemokine receptor 4 (CXCR4) in co‑cultured AMSCs and to investigate the roles of the stromal cell‑derived factor‑1 (SDF‑1)/CXCR4 axis in the homing and migration of AMSCs. AMSCs were isolated from human amniotic membranes, purified and then differentiated into osteoblasts and adipocytes in vitro, which was verified by von Kossa Staining and Oil Red O staining. Cell viability was measured by Cell Counting kit‑8 and trypan blue assays at 24, 48 and 72 h, the expression of CXCR4 was analyzed by immunofluorescence‑based flow cytometry and reverse transcription‑quantitative polymerase chain reaction, and the migration ability of AMSCs in vitro was observed by a migration assay. The results demonstrated that cell viability (at 48 and 72 h) and survival (at 24, 48 and 72 h) in the co‑culture and serum groups were higher compared with the serum‑free group. Furthermore, CXCR4 mRNA and protein expression, and migration along the SDF‑1 gradient, in the co‑culture and serum‑free groups were higher compared with the serum group. Overall, the results indicated that AMSCs co‑cultured with AECs exhibited enhanced proliferation activity and survival rate. In conclusion, the present study demonstrated that co‑culture of AMSCs with AECs upregulated CXCR4 on the surface of AMSCs and enhanced the migration ability of AMSCs in vitro. This result may improve the directional migration and homing ability of AMSCs, as well as provide a theoretical basis for the application of AMSCs in clinical practice as a novel strategy to increase the success of hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Li-Jing Ran
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Yun Zeng
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Shao-Chun Wang
- Department of Ultrasonography, The Affiliated Hospital of Jining Medical College, Jining, Shandong 272000, P.R. China
| | - Di-Si Zhang
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Min Hong
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Shao-You Li
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jian Dong
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Ming-Xia Shi
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
49
|
Biology and Potential Use of Chicken Bone Marrow-derived Cells. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.1.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
50
|
Guan SP, Lam ATL, Newman JP, Chua KLM, Kok CYL, Chong ST, Chua MLK, Lam PYP. Matrix metalloproteinase-1 facilitates MSC migration via cleavage of IGF-2/IGFBP2 complex. FEBS Open Bio 2017; 8:15-26. [PMID: 29321953 PMCID: PMC5757182 DOI: 10.1002/2211-5463.12330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022] Open
Abstract
The specific mechanism underlying the tumor tropism of human mesenchymal stem cells (MSCs) for cancer is not well defined. We previously showed that the migration potential of MSCs correlated with the expression and protease activity of matrix metalloproteinase (MMP)‐1. Furthermore, highly tumor‐tropic MSCs expressed higher levels of MMP‐1 and insulin‐like growth factor (IGF)‐2 than poorly migrating MSCs. In this study, we examined the functional roles of IGF‐2 and MMP‐1 in mediating the tumor tropism of MSCs. Exogenous addition of either recombinant IGF‐2 or MMP‐1 could stimulate MSC migration. The correlation between IGF‐2, MMP‐1 expression, and MSC migration suggests that MMP‐1 may play a role in regulating MSC migration via the IGF‐2 signaling cascade. High concentrations of IGF binding proteins (IGFBPs) can inhibit IGF‐stimulated functions by blocking its binding to its receptors and proteolysis of IGFBP is an important mechanism for the regulation of IGF signaling. We thus hypothesized that MMP‐1 acts as an IGFBP2 proteinase, resulting in the cleavage of IGF‐2/IGFBP2 complex and extracellular release of free IGF‐2. Indeed, our results showed that conditioned media from highly migrating MSCs, which expressed high levels of MMP‐1, cleaved the IGF‐2/IGFBP2 complex. Taken together, these results showed that the MMP‐1 secreted by highly tumor‐tropic MSCs cleaved IGF‐2/IGFBP2 complex. Free IGF‐2 released from the complex may facilitate MSC migration toward tumor.
Collapse
Affiliation(s)
- Shou P Guan
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division Humphrey Oei Institute of Cancer Research National Cancer Center Singapore Singapore
| | - Alan T L Lam
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division Humphrey Oei Institute of Cancer Research National Cancer Center Singapore Singapore.,Present address: BTIASTAR Centros Singapore
| | - Jennifer P Newman
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division Humphrey Oei Institute of Cancer Research National Cancer Center Singapore Singapore.,Present address: Lonza Biologics Tuas Pte Ltd Singapore
| | - Kevin L M Chua
- Division of Radiation Oncology National Cancer Center Singapore Singapore
| | - Catherine Y L Kok
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division Humphrey Oei Institute of Cancer Research National Cancer Center Singapore Singapore
| | - Siao T Chong
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division Humphrey Oei Institute of Cancer Research National Cancer Center Singapore Singapore
| | - Melvin L K Chua
- Division of Radiation Oncology National Cancer Center Singapore Singapore.,Oncology Academic Program Duke-NUS Graduate Medical School Singapore Singapore
| | - Paula Y P Lam
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division Humphrey Oei Institute of Cancer Research National Cancer Center Singapore Singapore.,Cancer and Stem Cells Biology Program Duke-NUS Graduate Medical School Singapore Singapore.,Department of Physiology Yong Loo Lin School of Medicine National University of Singapore Singapore
| |
Collapse
|