1
|
Cianciosi A, Stecher S, Löffler M, Bauer‐Kreisel P, Lim KS, Woodfield TBF, Groll J, Blunk T, Jungst T. Flexible Allyl-Modified Gelatin Photoclick Resin Tailored for Volumetric Bioprinting of Matrices for Soft Tissue Engineering. Adv Healthc Mater 2023; 12:e2300977. [PMID: 37699146 PMCID: PMC11468070 DOI: 10.1002/adhm.202300977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/11/2023] [Indexed: 09/14/2023]
Abstract
Volumetric bioprinting (VBP) is a light-based 3D printing platform, which recently prompted a paradigm shift for additive manufacturing (AM) techniques considering its capability to enable the fabrication of complex cell-laden geometries in tens of seconds with high spatiotemporal control and pattern accuracy. A flexible allyl-modified gelatin (gelAGE)-based photoclick resin is developed in this study to fabricate matrices with exceptionally soft polymer networks (0.2-1.0 kPa). The gelAGE-based resin formulations are designed to exploit the fast thiol-ene crosslinking in combination with a four-arm thiolated polyethylene glycol (PEG4SH) in the presence of a photoinitiator. The flexibility of the gelAGE biomaterial platform allows one to tailor its concentration spanning from 2.75% to 6% and to vary the allyl to thiol ratio without hampering the photocrosslinking efficiency. The thiol-ene crosslinking enables the production of viable cell-material constructs with a high throughput in tens of seconds. The suitability of the gelAGE-based resins is demonstrated by adipogenic differentiation of adipose-derived stromal cells (ASC) after VBP and by the printing of more fragile adipocytes as a proof-of-concept. Taken together, this study introduces a soft photoclick resin which paves the way for volumetric printing applications toward soft tissue engineering.
Collapse
Affiliation(s)
- Alessandro Cianciosi
- Department of Functional Materials in Medicine and DentistryInstitute of Biofabrication and Functional MaterialsUniversity of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)Pleicherwall 297070WürzburgGermany
| | - Sabrina Stecher
- Department of TraumaHandPlastic and Reconstructive SurgeryUniversity Hospital Würzburg97080WürzburgGermany
| | - Maxi Löffler
- Department of Functional Materials in Medicine and DentistryInstitute of Biofabrication and Functional MaterialsUniversity of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)Pleicherwall 297070WürzburgGermany
| | - Petra Bauer‐Kreisel
- Department of TraumaHandPlastic and Reconstructive SurgeryUniversity Hospital Würzburg97080WürzburgGermany
| | - Khoon S. Lim
- School of Medical SciencesUniversity of SydneySydney2006Australia
| | - Tim B. F. Woodfield
- Department of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering and NanomedicineUniversity of OtagoChristchurch8011New Zealand
| | - Jürgen Groll
- Department of Functional Materials in Medicine and DentistryInstitute of Biofabrication and Functional MaterialsUniversity of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)Pleicherwall 297070WürzburgGermany
| | - Torsten Blunk
- Department of TraumaHandPlastic and Reconstructive SurgeryUniversity Hospital Würzburg97080WürzburgGermany
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and DentistryInstitute of Biofabrication and Functional MaterialsUniversity of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)Pleicherwall 297070WürzburgGermany
| |
Collapse
|
2
|
Huang Y, Liao J, Vlashi R, Chen G. Focal adhesion kinase (FAK): its structure, characteristics, and signaling in skeletal system. Cell Signal 2023; 111:110852. [PMID: 37586468 DOI: 10.1016/j.cellsig.2023.110852] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and distributes important regulatory functions in skeletal system. Mesenchymal stem cell (MSC) possesses significant migration and differentiation capacity, is an important source of distinctive bone cells production and a prominent bone development pathway. MSC has a wide range of applications in tissue bioengineering and regenerative medicine, and is frequently employed for hematopoietic support, immunological regulation, and defect repair, although current research is insufficient. FAK has been identified to cross-link with many other keys signaling pathways in bone biology and is considered as a fundamental "crossroad" on the signal transduction pathway and a "node" in the signal network to mediate MSC lineage development in skeletal system. In this review, we summarized the structure, characteristics, cellular signaling, and the interactions of FAK with other signaling pathways in the skeletal system. The discovery of FAK and its mediated molecules will lead to a new knowledge of bone development and bone construction as well as considerable potential for therapeutic use in the treatment of bone-related disorders such as osteoporosis, osteoarthritis, and osteosarcoma.
Collapse
Affiliation(s)
- Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Yu D, Xin L, Qing X, Hao Z, Yong W, Jiangjiang Z, Yaqiu L. Key circRNAs from goat: discovery, integrated regulatory network and their putative roles in the differentiation of intramuscular adipocytes. BMC Genomics 2023; 24:51. [PMID: 36707755 PMCID: PMC9883971 DOI: 10.1186/s12864-023-09141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The procession of preadipocytes differentiation into mature adipocytes involves multiple cellular and signal transduction pathways. Recently. a seirces of noncoding RNAs (ncRNAs), including circular RNAs (circRNAs) were proved to play important roles in regulating differentiation of adipocytes. RESULT In this study, we aimed to identificate the potential circRNAs in the early and late stages of goat intramuscular adipocytes differentiation. Using bioinformatics methods to predict their biological functions and map the circRNA-miRNA interaction network. Over 104 million clean reads in goat intramuscular preadipocytes and adipocytes were mapped, of which16 circRNAs were differentially expressed (DE-circRNAs). Furthermore, we used real-time fluorescent quantitative PCR (qRT-PCR) technology to randomly detect the expression levels of 8 circRNAs among the DE-circRNAs, and our result verifies the accuracy of the RNA-seq data. From the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the DE-circRNAs, two circRNAs, circ_0005870 and circ_0000946, were found in Focal adhesion and PI3K-Akt signaling pathway. Then we draw the circRNA-miRNA interaction network and obtained the miRNAs that possibly interact with circ_0005870 and circ_0000946. Using TargetScan, miRTarBase and miR-TCDS online databases, we further obtained the mRNAs that may interact with the miRNAs, and generated the final circRNA-miRNA-mRNA interaction network. Combined with the following GO (Gene Ontology) and KEGG enrichment analysis, we obtained 5 key mRNAs related to adipocyte differentiation in our interaction network, which are FOXO3(forkhead box O3), PPP2CA (protein phosphatase 2 catalytic subunit alpha), EEIF4E (eukaryotic translation initiation factor 4), CDK6 (cyclin dependent kinase 6) and ACVR1 (activin A receptor type 1). CONCLUSIONS By using Illumina HiSeq and online databases, we generated the final circRNA-miRNA-mRNA interaction network that have valuable functions in adipocyte differentiation. Our work serves as a valuable genomic resource for in-depth exploration of the molecular mechanism of ncRNAs interaction network regulating adipocyte differentiation.
Collapse
Affiliation(s)
- Du Yu
- grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XCollege of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Li Xin
- grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XCollege of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Xu Qing
- grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XCollege of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Zhang Hao
- grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XCollege of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Wang Yong
- grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XCollege of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Zhu Jiangjiang
- grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Lin Yaqiu
- grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XCollege of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| |
Collapse
|
4
|
Li X, Zhang H, Wang Y, Li Y, Wang Y, Zhu J, Lin Y. Screening of key miRNAs related with the differentiation of subcutaneous adipocytes and the validation of miR-133a-3p functional significance in goats. Anim Biosci 2023; 36:144-155. [PMID: 35798040 PMCID: PMC9834647 DOI: 10.5713/ab.22.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE Adipocyte differentiation is regulated by a variety of functional genes and noncoding RNAs. However, the role of miRNAs in lipid deposition of goat white adipose tissue is still unclear. Therefore, this study revealed the miRNA expression profile in goat subcutaneous adipocytes by sRNA-seq. METHODS The miRNA expressed in goat subcutaneous preadipocytes and the mature adipocytes were sequenced by sRNA-seq. The differentially expressed miRNAs (DEm) were screened and gene ontology (GO) and Kyoto encyclopedia for genes and genomes (KEGG) analyses were performed. Gain-of-function and loss-of-function combined with oil red O staining, Bodipy staining, and quantitative reverse-transcription polymerase chain reaction (qPCR) were utilized to determine the effect of miR-133a-3p on adipocyte differentiation. RESULTS A total of 218 DEm were screened out. The target genes of these DEm were significantly enriched in GO items such as biological regulation and in KEGG terms such as FAK signaling pathway and MAPK signaling pathway. qPCR verified that the expression trend of miRNA was consistent with miRNA-seq. The gain-of-function or loss-of-function of miR-133a-3p showed that it promoted or inhibited the accumulation of lipid droplets, and CCAAT enhancer binding protein α (C/EBPα) and C/EBPβ were extremely significantly up-regulated or down-regulated respectively (p<0.01), the loss-of-function also led to a significant down-regulation of peroxisome proliferator activated receptor gamma (PPARγ) (p<0.01). CONCLUSION This study successfully identified miRNAs expression patterns in goat subcutaneous adipocytes, and functional identification indicates that miR-133a-3p is a positive regulator of the differentiation process of goat subcutaneous adipocytes. Our results lay the foundation for the molecular mechanism of lipid deposition in meat-source goats from the perspective of miRNA.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041,
China,College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041,
China
| | - Hao Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041,
China,College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041,
China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041,
China,College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041,
China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041,
China,College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041,
China
| | - Youli Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041,
China,College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041,
China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041,
China,College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041,
China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041,
China,College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041,
China,Corresponding Author: Yaqiu Lin, Tel: +86-02885522310, Fax: +86-02885522310, E-mail:
| |
Collapse
|
5
|
Sadaghiani L, Alshumrani AM, Gleeson HB, Ayre WN, Sloan AJ. Growth Factor release and dental pulp stem cell attachment following dentine conditioning- an in vitro study. Int Endod J 2022; 55:858-869. [PMID: 35638345 PMCID: PMC9541952 DOI: 10.1111/iej.13781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022]
Abstract
Aim The aim of the study was to investigate the effect of dentine conditioning agents on growth factor liberation and settlement of dental pulp progenitor cells (DPSCs) on dentine surfaces. Methodology The agents used included ethylenediaminetetraacetic acid (EDTA; 10%, pH 7.2), phosphoric acid (37%, pH < 1), citric acid (10%, pH 1.5) and polyacrylic acid (25%, pH 3.9). Human dentine slices were conditioned for exaggerated conditioning times of 5 and 10 min, so that the growth factor liberation reached quantifiable levels above the limit of detection of the laboratory methods employed. Transforming growth factor beta‐1 (TGF‐β1) release and surface exposure were quantified by enzyme‐linked immunosorbent assay (ELISA) and immunogold labelling. Scanning electron microscopy (SEM) was used to assess the morphology of cells and coverage by DPSCs cultured on dentine surfaces for 8 days. Results After 5‐min conditioning of dentine slices, citric acid was the most effective agent for growth factor release into the aqueous environment as measured by ELISA (Mann–Whitney U with Bonferroni correction, p < .01 compared with phosphoric and polyacrylic acid). As well as this, dentine slices treated with phosphoric acid for the same period, displayed significantly less TGF‐β1 on the surface compared with the other agents used, as measured by immunogold labelling (MWU with Bonferroni correction, p < .05). After 8 days, widespread coverage by DPSCs on dentine surfaces conditioned with citric acid and EDTA were evident under SEM. On dentine surfaces conditioned with phosphoric and polyacrylic acid, respectively, less spread cells and inconsistent cell coverage were observed. Conclusions Based on the findings of this in vitro study, a desirable biological growth factor‐mediated effect may be gained when conditioning dentine by milder acidic or chelating agents such as citric acid and EDTA. The results must be interpreted in the context that the potential of the applied materials inducing a desirable biological response in DPSCs is only one consideration amongst other important ones in a clinical setting. However, it is crucial to look beyond the mere physical effects of materials and move towards biologically based treatment approaches as far as the restorative management of teeth with viable dental pulps are concerned.
Collapse
Affiliation(s)
- L Sadaghiani
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK
| | | | - H B Gleeson
- Department of General Dentistry and Orthodontics, Addenbrookes Hospital, Cambridge University Hospitals NHS foundation trust, UK
| | - W Nishio Ayre
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK
| | - A J Sloan
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Australia
| |
Collapse
|
6
|
Vliora M, Grillo E, Corsini M, Ravelli C, Nintou E, Karligiotou E, Flouris AD, Mitola S. Irisin regulates thermogenesis and lipolysis in 3T3-L1 adipocytes. Biochim Biophys Acta Gen Subj 2022; 1866:130085. [PMID: 35016977 DOI: 10.1016/j.bbagen.2022.130085] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Adipose tissue plays a pivotal role in the development and progression of the metabolic syndrome which along with its complications is an epidemic of the 21st century. Irisin is an adipo-myokine secreted mainly by skeletal muscle and targeting, among others, adipose tissue. In brown adipose tissue it upregulates uncoupling protein-1 (UCP1) which is responsible for mitochondrial non-shivering thermogenesis. METHODS Here we analyzed the effects of irisin on the metabolic activity of 3T3-L1 derived adipocytes through a mitochondrial flux assay. We also assessed the effects of irisin on the intracellular signaling through Western Blot. Finally, the gene expression of ucp1 and lipolytic genes was examined through RT-qPCR. RESULTS Irisin affects mitochondrial respiration and lipolysis in a time-dependent manner through the regulation of PI3K-AKT pathway. Irisin also induces the expression of UCP1 and the regulation of NF-κB, and CREB and ERK pathways. CONCLUSION Our data supports the role of irisin in the induction of non-shivering thermogenesis, the regulation of energy expenditure and lipolysis in adipocytes. GENERAL SIGNIFICANCE Irisin may be an attractive therapeutic target in the treatment of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Maria Vliora
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eleni Nintou
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Eleni Karligiotou
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Andreas D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
7
|
Xiong Y, Wang Y, Xu Q, Li A, Yue Y, Ma Y, Lin Y. LKB1 Regulates Goat Intramuscular Adipogenesis Through Focal Adhesion Pathway. Front Physiol 2021; 12:755598. [PMID: 34721078 PMCID: PMC8548615 DOI: 10.3389/fphys.2021.755598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Intramuscular fat (IMF) deposition is one of the most important factors to affect meat quality in livestock and induce insulin resistance and adverse metabolic phenotypes for humans. However, the key regulators involved in this process remain largely unknown. Although liver kinase B1 (LKB1) was reported to participate in the development of skeletal muscles and classical adipose tissues. Due to the specific autonomic location of intramuscular adipocytes, deposited between or within muscle bundles, the exact roles of LKB1 in IMF deposition need further verified. Here, we cloned the goat LKB1 coding sequence with 1,317 bp, encoding a 438 amino acid peptide. LKB1 was extensively expressed in detected tissues and displayed a trend from decline to rise during intramuscular adipogenesis. Functionally, knockdown of LKB1 by two individual siRNAs enhanced the intramuscular preadipocytes differentiation, accompanied by promoting lipid accumulation and inducing adipogenic transcriptional factors and triglyceride synthesis-related genes expression. Conversely, overexpression of LKB1 restrained these biological signatures. To further explore the mechanisms, the RNA-seq technique was performed to compare the difference between siLKB1 and the control group. There were 1,043 differential expression genes (DEGs) were screened, i.e., 425 upregulated genes and 618 downregulated genes in the siLKB1 group. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis predicted that the DEGs were mainly enriched in the focal adhesion pathway and its classical downstream signal, the PI3K-Akt signaling pathway. Specifically, knockdown of LKB1 increased the mRNA level of focal adhesion kinase (FAK) and vice versa in LKB1-overexpressed cells, a key component of the activated focal adhesion pathway. Convincingly, blocking this pathway by a specific FAK inhibitor (PF573228) rescued the observed phenotypes in LKB1 knockdown adipocytes. In conclusion, LKB1 inhibited goat intramuscular adipogenesis through the focal adhesion pathway. This work expanded the genetic regulator networks of IMF deposition and provided theoretical support for improving human health and meat quality from the aspect of IMF deposition.
Collapse
Affiliation(s)
- Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu, China.,College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yuxue Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Qing Xu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - An Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yongqi Yue
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yan Ma
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu, China.,College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| |
Collapse
|
8
|
Sun JM, Ho CK, Gao Y, Chong CH, Zheng DN, Zhang YF, Yu L. Salvianolic acid-B improves fat graft survival by promoting proliferation and adipogenesis. Stem Cell Res Ther 2021; 12:507. [PMID: 34535194 PMCID: PMC8447755 DOI: 10.1186/s13287-021-02575-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background Our previous study proved that Salvia miltiorrhiza could enhance fat graft survival by promoting adipogenesis. However, the effect of salvianolic acid B (Sal-B), the most abundant and bioactive water-soluble compound in Salvia miltiorrhiza, on fat graft survival has not yet been investigated. Objective This study aims to investigate whether salvianolic acid B could improve fat graft survival and promote preadipocyte differentiation. The underlying mechanism has also been studied. Methods In vivo, 0.2 ml of Coleman fat was transplanted into nude mice with salvianolic acid B. The grafts were evaluated by HE and IF at 2 and 4 weeks posttransplantation and by micro-CT at 4 weeks posttransplantation. In vitro, the adipogenesis and proliferative activities of salvianolic acid B were analyzed in cultured human adipose-derived stem cells (h-ADSCs) and 3T3-L1 cells to detect the mechanism by which salvianolic acid B affects graft survival. Results In vivo, the weights and volumes of the fat grafts in the Sal-B-treated groups were significantly higher than those of the fat grafts in the control group. In addition, higher fat integrity and more viable adipocytes were observed in the Sal-B-treated groups. In vitro, salvianolic acid B showed the ability to promote 3T3-L1 and h-ADSC proliferation and adipogenesis. Conclusions Our in vitro experiments demonstrated that salvianolic acid B can promote the proliferation of adipose stem cells and enhance the differentiation of adipose stem cells. Simultaneously, in vivo experiments showed that salvianolic acid B can improve the survival rate of fat transplantation. Therefore, our research shed light on the potential therapeutic usage of salvianolic acid B in improving the survival rate of fat transplantation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02575-4.
Collapse
Affiliation(s)
- Jia-Ming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011
| | - Chia-Kang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011
| | - Chio-Hou Chong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011
| | - Dan-Ning Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011.
| | - Yi-Fan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011.
| | - Li Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011.
| |
Collapse
|
9
|
Steering cell behavior through mechanobiology in 3D: A regenerative medicine perspective. Biomaterials 2020; 268:120572. [PMID: 33285439 DOI: 10.1016/j.biomaterials.2020.120572] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/04/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Mechanobiology, translating mechanical signals into biological ones, greatly affects cellular behavior. Steering cellular behavior for cell-based regenerative medicine approaches requires a thorough understanding of the orchestrating molecular mechanisms, among which mechanotransducive ones are being more and more elucidated. Because of their wide use and highly mechanotransduction dependent differentiation, this review focuses on mesenchymal stromal cells (MSCs), while also briefly relating the discussed results to other cell types. While the mechanotransduction pathways are relatively well-studied in 2D, much remains unknown of the role and regulation of these pathways in 3D. Ultimately, cells need to be cultured in a 3D environment to create functional de novo tissue. In this review, we explore the literature on the roles of different material properties on cellular behavior and mechanobiology in 2D and 3D. For example, while stiffness plays a dominant role in 2D MSCs differentiation, it seems to be of subordinate importance in 3D MSCs differentiation, where matrix remodeling seems to be key. Also, the role and regulation of some of the main mechanotransduction players are discussed, focusing on MSCs. We have only just begun to fundamentally understand MSCs and other stem cells behavior in 3D and more fundamental research is required to advance biomaterials able to replicate the stem cell niche and control cell activity. This better understanding will contribute to smarter tissue engineering scaffold design and the advancement of regenerative medicine.
Collapse
|
10
|
The Transcriptomic Evidence on the Role of Abdominal Visceral vs. Subcutaneous Adipose Tissue in the Pathophysiology of Diabetes in Asian Indians Indicates the Involvement of Both. Biomolecules 2020; 10:biom10091230. [PMID: 32847136 PMCID: PMC7563456 DOI: 10.3390/biom10091230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
The roles of abdominal visceral (VAT) and subcutaneous adipose tissue (SAT) in the molecular pathogenesis type-2 diabetics (T2D) among Asian Indians showing a "thin fat" phenotype largely remains obscure. In this study, we generated transcription profiles in biopsies of these adipose depots obtained during surgery in 19 diabetics (M: F ratio, 8:11) and 16 (M: F ratio 5:11) age- and BMI-matched non-diabetics. Gene set enrichment analysis (GSEA) was used for comparing transcription profile and showed that 19 gene sets, enriching inflammation and immune system-related pathways, were upregulated in diabetics with F.D.R. <25% and >25%, respectively, in VAT and SAT. Moreover, 13 out of the 19 significantly enriched pathways in VAT were among the top 20 pathways in SAT. On comparison of VAT vs. SAT among diabetics, none of the gene sets were found significant at F.D.R. <25%. The Weighted Gene Correlation Analysis (WGCNA) analysis of the correlation between measures of average gene expression and overall connectivity between VAT and SAT was significantly positive. Several modules of co-expressed genes in both the depots showed a bidirectional correlation with various diabetes-related intermediate phenotypic traits. They enriched several diabetes pathogenicity marker pathways, such as inflammation, adipogenesis, etc. It is concluded that, in Asian Indians, diabetes pathology inflicts similar molecular alternations in VAT and SAT, which are more intense in the former. Both adipose depots possibly play a role in the pathophysiology of T2D, and whether it is protective or pathogenic also depends on the nature of modules of co-expressed genes contained in them.
Collapse
|
11
|
Seo Y, Park J, Choi W, Ju Son D, Sung Kim Y, Kim MK, Yoon BE, Pyee J, Tae Hong J, Go YM, Park H. Antiatherogenic Effect of Resveratrol Attributed to Decreased Expression of ICAM-1 (Intercellular Adhesion Molecule-1). Arterioscler Thromb Vasc Biol 2020; 39:675-684. [PMID: 30786743 DOI: 10.1161/atvbaha.118.312201] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Objective- Increasing evidence shows that resveratrol has antiatherogenic effects, but its underlying mechanisms are unknown. Thus, we evaluated the molecular mechanisms underlying the antiatherogenic effect of resveratrol. Approach and Results- Using the previously established mouse atherosclerosis model of partial ligation of the left carotid artery, we evaluated the role of resveratrol in antiatherosclerosis. We attempted to determine the mechanisms associated with focal adhesions using vascular endothelial cells. The results showed that resveratrol stimulated focal adhesion kinase cleavage via resveratrol-increased expression of lactoferrin in endothelial cells. Furthermore, we found that an N-terminal focal adhesion kinase fragment cleaved by resveratrol contained the FERM (band 4.1, ezrin, radixin, and moesin)-kinase domain. Furthermore, resveratrol inhibited lipopolysaccharide-stimulated adhesion of THP-1 human monocytes by decreased expression of ICAM-1 (intercellular adhesion molecule-1). A decreased ICAM-1 level was also observed in the left carotid artery of mice treated with resveratrol. To understand the relationship between resveratrol-induced antiinflammation and focal adhesion disruption, endothelial cells were transfected with FERM-kinase. Ectopically expressed FERM-kinase, the resveratrol-cleaved focal adhesion kinase fragment, was found in the nuclear fraction and inhibited the transcription level of icam-1 via the Nrf2 (nuclear factor erythroid 2-related factor 2)-antioxidant response element complex. Finally, ectopically expressed FERM-kinase blocked tumor necrosis factor-α- or IL- (interleukin) stimulated monocytic binding to endothelial cells. Conclusions- Our results show that resveratrol inhibits the expression of ICAM-1 via transcriptional regulation of the FERM-kinase and Nrf2 interaction, thereby blocking monocyte adhesion. These suppressive effects on the inflammatory mechanism suggest that resveratrol delayed the onset of atherosclerosis.
Collapse
Affiliation(s)
- Youngsik Seo
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Jinsun Park
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Woosoung Choi
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, South Korea (D.J.S., J.T.H.)
| | - Yoo Sung Kim
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Min-Kyun Kim
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Bo-Eun Yoon
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Jaeho Pyee
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, South Korea (D.J.S., J.T.H.)
| | - Young-Mi Go
- Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, GA (Y.-M.G.)
| | - Heonyong Park
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| |
Collapse
|
12
|
Oliver-De La Cruz J, Nardone G, Vrbsky J, Pompeiano A, Perestrelo AR, Capradossi F, Melajová K, Filipensky P, Forte G. Substrate mechanics controls adipogenesis through YAP phosphorylation by dictating cell spreading. Biomaterials 2019; 205:64-80. [PMID: 30904599 DOI: 10.1016/j.biomaterials.2019.03.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/21/2022]
Abstract
The mechanoregulated proteins YAP/TAZ are involved in the adipogenic/osteogenic switch of mesenchymal stem cells (MSCs). MSC fate decision can be unbalanced by controlling substrate mechanics, in turn altering the transmission of tension through cell cytoskeleton. MSCs have been proposed for orthopedic and reconstructive surgery applications. Thus, a tight control of their adipogenic potential is required in order to avoid their drifting towards fat tissue. Substrate mechanics has been shown to drive MSC commitment and to regulate YAP/TAZ protein shuttling and turnover. The mechanism by which YAP/TAZ co-transcriptional activity is mechanically regulated during MSC fate acquisition is still debated. Here, we design few bioengineering tools suited to disentangle the contribution of mechanical from biological stimuli to MSC adipogenesis. We demonstrate that the mechanical repression of YAP happens through its phosphorylation, is purely mediated by cell spreading downstream of substrate mechanics as dictated by dimensionality. YAP repression is sufficient to prompt MSC adipogenesis, regardless of a permissive biological environment, TEAD nuclear presence or focal adhesion stabilization. Finally, by harnessing the potential of YAP mechanical regulation, we propose a practical example of the exploitation of adipogenic transdifferentiation in tumors.
Collapse
Affiliation(s)
- Jorge Oliver-De La Cruz
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czech Republic
| | - Giorgia Nardone
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Vrbsky
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Antonio Pompeiano
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Ana Rubina Perestrelo
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Francesco Capradossi
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Katarína Melajová
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | | | - Giancarlo Forte
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czech Republic; Department of Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland.
| |
Collapse
|
13
|
Focal Adhesion Kinase and ROCK Signaling Are Switch-Like Regulators of Human Adipose Stem Cell Differentiation towards Osteogenic and Adipogenic Lineages. Stem Cells Int 2018; 2018:2190657. [PMID: 30275837 PMCID: PMC6157106 DOI: 10.1155/2018/2190657] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/07/2018] [Accepted: 07/04/2018] [Indexed: 12/18/2022] Open
Abstract
Adipose tissue is an attractive stem cell source for soft and bone tissue engineering applications and stem cell therapies. The adipose-derived stromal/stem cells (ASCs) have a multilineage differentiation capacity that is regulated through extracellular signals. The cellular events related to cell adhesion and cytoskeleton have been suggested as central regulators of differentiation fate decision. However, the detailed knowledge of these molecular mechanisms in human ASCs remains limited. This study examined the significance of focal adhesion kinase (FAK), Rho-Rho-associated protein kinase (Rho-ROCK), and their downstream target extracellular signal-regulated kinase 1/2 (ERK1/2) on hASCs differentiation towards osteoblasts and adipocytes. Analyses of osteogenic markers RUNX2A, alkaline phosphatase, and matrix mineralization revealed an essential role of active FAK, ROCK, and ERK1/2 signaling for the osteogenesis of hASCs. Inhibition of these kinases with specific small molecule inhibitors diminished osteogenesis, while inhibition of FAK and ROCK activity led to elevation of adipogenic marker genes AP2 and LEP and lipid accumulation implicating adipogenesis. This denotes to a switch-like function of FAK and ROCK signaling in the osteogenic and adipogenic fates of hASCs. On the contrary, inhibition of ERK1/2 kinase activity deceased adipogenic differentiation, indicating that activation of ERK signaling is required for both adipogenic and osteogenic potential. Our findings highlight the reciprocal role of cell adhesion mechanisms and actin dynamics in regulation of hASC lineage commitment. This study enhances the knowledge of molecular mechanisms dictating hASC differentiation and thus opens possibilities for more efficient control of hASC differentiation.
Collapse
|
14
|
Mazzu YZ, Hu Y, Soni RK, Mojica KM, Qin LX, Agius P, Waxman ZM, Mihailovic A, Socci ND, Hendrickson RC, Tuschl T, Singer S. miR-193b-Regulated Signaling Networks Serve as Tumor Suppressors in Liposarcoma and Promote Adipogenesis in Adipose-Derived Stem Cells. Cancer Res 2017; 77:5728-5740. [PMID: 28882999 DOI: 10.1158/0008-5472.can-16-2253] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/13/2017] [Accepted: 09/01/2017] [Indexed: 11/16/2022]
Abstract
Well-differentiated and dedifferentiated liposarcomas (WDLS/DDLS) account for approximately 13% of all soft tissue sarcoma in adults and cause substantial morbidity or mortality in the majority of patients. In this study, we evaluated the functions of miRNA (miR-193b) in liposarcoma in vitro and in vivo Deep RNA sequencing on 93 WDLS, 145 DDLS, and 12 normal fat samples demonstrated that miR-193b was significantly underexpressed in DDLS compared with normal fat. Reintroduction of miR-193b induced apoptosis in liposarcoma cells and promoted adipogenesis in human adipose-derived stem cells (ASC). Integrative transcriptomic and proteomic analysis of miR-193b-target networks identified novel direct targets, including CRK-like proto-oncogene (CRKL) and focal adhesion kinase (FAK). miR-193b was found to regulate FAK-SRC-CRKL signaling through CRKL and FAK. miR-193b also stimulated reactive oxygen species signaling by targeting the antioxidant methionine sulfoxide reductase A to modulate liposarcoma cell survival and ASC differentiation state. Expression of miR-193b in liposarcoma cells was downregulated by promoter methylation, resulting at least in part from increased expression of the DNA methyltransferase DNMT1 in WDLS/DDLS. In vivo, miR-193b mimetics and FAK inhibitor (PF-562271) each inhibited liposarcoma xenograft growth. In summary, miR-193b not only functions as a tumor suppressor in liposarcoma but also promotes adipogenesis in ASC. Furthermore, this study reveals key tyrosine kinase and DNA methylation pathways in liposarcoma, some with immediate implications for therapeutic exploration. Cancer Res; 77(21); 5728-40. ©2017 AACR.
Collapse
Affiliation(s)
- Ying Z Mazzu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yulan Hu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rajesh K Soni
- Microchemistry and Proteomics Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kelly M Mojica
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Li-Xuan Qin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Phaedra Agius
- Bioinformatics Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zachary M Waxman
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Nicholas D Socci
- Bioinformatics Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald C Hendrickson
- Microchemistry and Proteomics Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, New York
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
15
|
Minchin JEN, Rawls JF. Elucidating the role of plexin D1 in body fat distribution and susceptibility to metabolic disease using a zebrafish model system. Adipocyte 2017; 6:277-283. [PMID: 28792859 DOI: 10.1080/21623945.2017.1356504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Non-communicable diseases (NCDs) such as cardiovascular disease, diabetes and cancer were responsible for 68% of all deaths worldwide in 2012. The regional distribution of lipid deposited within adipose tissue (AT) - so called body fat distribution (BFD) - is a strong risk factor for NCDs. BFD is highly heritable; however, the genetic basis of BFD is almost entirely unknown. Genome-wide association studies have identified several loci associated with BFD, including at Plexin D1 (PLXND1) - a gene known to modulate angiogenesis. We recently demonstrated that zebrafish homozygous for a null mutation in plxnd1 had a reduced capacity to store lipid in visceral AT (VAT) leading to altered BFD. Moreover, we found that type V collagens were upregulated in plxnd1 mutants, and mediated the inhibitory effect of Plxnd1 on VAT growth. These results strengthen evidence that Plxnd1 influences BFD in human populations, and validate zebrafish as a model to study BFD. However, many pertinent questions remain unanswered. Here we outline potential Plxnd1 mechanisms of action in AT, and describe the genetic architecture at human PLXND1 that is associated with BFD and NCD susceptibility.
Collapse
Affiliation(s)
- James E. N. Minchin
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| |
Collapse
|
16
|
FAK signalling controls insulin sensitivity through regulation of adipocyte survival. Nat Commun 2017; 8:14360. [PMID: 28165007 PMCID: PMC5303880 DOI: 10.1038/ncomms14360] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 12/21/2016] [Indexed: 12/30/2022] Open
Abstract
Focal adhesion kinase (FAK) plays a central role in integrin signalling, which regulates growth and survival of tumours. Here we show that FAK protein levels are increased in adipose tissue of insulin-resistant obese mice and humans. Disruption of adipocyte FAK in mice or in 3T3 L1 cells decreases adipocyte survival. Adipocyte-specific FAK knockout mice display impaired adipose tissue expansion and insulin resistance on prolonged metabolic stress from a high-fat diet or when crossed on an obese db/db or ob/ob genetic background. Treatment of these mice with a PPARγ agonist does not restore adiposity or improve insulin sensitivity. In contrast, inhibition of apoptosis, either genetically or pharmacologically, attenuates adipocyte death, restores normal adiposity and improves insulin sensitivity. Together, these results demonstrate that FAK is required for adipocyte survival and maintenance of insulin sensitivity, particularly in the context of adipose tissue expansion as a result of caloric excess. The kinase FAK is important for integrin signalling and promotes cell survival. Here, the authors demonstrate FAK regulates adipocyte survival, and is particularly important for maintaining insulin sensitivity during adipose tissue expansion in the context of a calorie-rich diet.
Collapse
|
17
|
Flück M, Ruoss S, Möhl CB, Valdivieso P, Benn MC, von Rechenberg B, Laczko E, Hu J, Wieser K, Meyer DC, Gerber C. Genomic and lipidomic actions of nandrolone on detached rotator cuff muscle in sheep. J Steroid Biochem Mol Biol 2017; 165:382-395. [PMID: 27523963 DOI: 10.1016/j.jsbmb.2016.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 01/06/2023]
Abstract
Reversal of fatty infiltration of pennate rotator cuff muscle after tendon release is hitherto impossible. The administration of nandrolone starting at the time of tendon release prevents the increase in fat content, but does not revert established fatty infiltration. We hypothesised that tendon release and myotendinous retraction cause alterations in lipid related gene expression leading to fatty muscle infiltration, which can be suppressed by nandrolone through its genomic actions if applied immediately after tendon release. The effects of infraspinatus tendon release and subsequent tendon repair at 16 weeks were studied in six Swiss Alpine sheep. In the interventional groups, 150mg nandrolone was administered weekly after tendon release until sacrifice (N22W, n=6) or starting at the time of repair (N6W, n=6). Infraspinatus volume, composition, expressed transcripts, lipids, and selected proteins were analyzed at baseline, 16 and 22 weeks. Tendon release reduced infraspinatus volume by 22% and increased fat content from 11% to 38%. These changes were not affected by repair. Fatty infiltration was associated with up-regulation of 227 lipid species, and increased levels of the adipocyte differentiation marker PPARG2 (peroxisome proliferator-activated receptor gamma 2). Nandrolone abrogated lipid accumulation, halved the loss in fiber area percentage, and up-regulated androgen receptor levels and transcript expression in the N22W but not the N6W group. The results document that nandrolone mitigates muscle-to-fat transformation after tendon release via a general down-regulation of lipid accumulation concomitantly with up-regulated expression of its nuclear receptor and downstream transcripts in skeletal muscle. Reduced responsiveness of retracted muscle to nandrolone as observed in the N6W group is reflected by a down-regulated transcript response.
Collapse
Affiliation(s)
- Martin Flück
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Balgrist Campus, Zurich, Switzerland.
| | - Severin Ruoss
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Christoph B Möhl
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Paola Valdivieso
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Mario C Benn
- Musculoskeletal Research Unit, Center for Applied Biotechnology and Molecular Medicine, Equine Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit, Center for Applied Biotechnology and Molecular Medicine, Equine Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Endre Laczko
- Functional Genomics Center Zurich (FGCZ), ETH and University of Zurich, Switzerland
| | - Junmin Hu
- Functional Genomics Center Zurich (FGCZ), ETH and University of Zurich, Switzerland
| | - Karl Wieser
- Balgrist University Hospital, Department of Orthopedics, Zurich, Switzerland
| | - Dominik C Meyer
- Balgrist University Hospital, Department of Orthopedics, Zurich, Switzerland
| | - Christian Gerber
- Balgrist University Hospital, Department of Orthopedics, Zurich, Switzerland
| |
Collapse
|
18
|
Zhang M, Zhang Y, Ma J, Guo F, Cao Q, Zhang Y, Zhou B, Chai J, Zhao W, Zhao R. The Demethylase Activity of FTO (Fat Mass and Obesity Associated Protein) Is Required for Preadipocyte Differentiation. PLoS One 2015. [PMID: 26218273 PMCID: PMC4517749 DOI: 10.1371/journal.pone.0133788] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
FTO (fat mass and obesity associated gene) was genetically identified to be associated with body mass index (BMI), presumably through functional regulation of energy homeostasis. However, the cellular and molecular mechanisms by which FTO functions remain largely unknown. Using 3T3-L1 preadipocyte as a model to study the role of FTO in adipogenesis, we demonstrated that FTO is functionally required for 3T3-L1 differentiation. FTO knock-down with siRNA inhibited preadipocyte differentiation, whereas ectopic over-expression of FTO enhanced the process. The demethylase activity of FTO is required for differentiation. Level of N6-methyladenosine (m6A) is decreased in cells over-expressing FTO. In contrast, overexpression of R96Q, a FTO missense mutant lack of demethylase activity, had no effect on cellular m6A level and impeded differentiation. Treatment with Rosiglitazone, a PPARγ agonist, could overcome the differentiation inhibition imposed by R96Q mutant, suggesting the effect of FTO is mediated through PPARγ.
Collapse
Affiliation(s)
- Meizi Zhang
- Space Biology Research and Technology Center, China Academy of Space Technology, Beijing Engineering Research Center of Space Biology, Beijing, 100190, China
| | - Ying Zhang
- Space Biology Research and Technology Center, China Academy of Space Technology, Beijing Engineering Research Center of Space Biology, Beijing, 100190, China
| | - Jun Ma
- Space Biology Research and Technology Center, China Academy of Space Technology, Beijing Engineering Research Center of Space Biology, Beijing, 100190, China
| | - Feima Guo
- Space Biology Research and Technology Center, China Academy of Space Technology, Beijing Engineering Research Center of Space Biology, Beijing, 100190, China
| | - Qian Cao
- Space Biology Research and Technology Center, China Academy of Space Technology, Beijing Engineering Research Center of Space Biology, Beijing, 100190, China
| | - Yu Zhang
- Space Biology Research and Technology Center, China Academy of Space Technology, Beijing Engineering Research Center of Space Biology, Beijing, 100190, China
| | - Bin Zhou
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jijie Chai
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenqing Zhao
- Space Biology Research and Technology Center, China Academy of Space Technology, Beijing Engineering Research Center of Space Biology, Beijing, 100190, China
| | - Renbin Zhao
- Space Biology Research and Technology Center, China Academy of Space Technology, Beijing Engineering Research Center of Space Biology, Beijing, 100190, China
- * E-mail:
| |
Collapse
|
19
|
Armendáriz BG, Masdeu MDM, Soriano E, Ureña JM, Burgaya F. The diverse roles and multiple forms of focal adhesion kinase in brain. Eur J Neurosci 2014; 40:3573-90. [DOI: 10.1111/ejn.12737] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/25/2014] [Indexed: 02/04/2023]
Affiliation(s)
- Beatriz G. Armendáriz
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| | - Maria del Mar Masdeu
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| | - Eduardo Soriano
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| | - Jesús M. Ureña
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| | - Ferran Burgaya
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| |
Collapse
|
20
|
Xu B, Ju Y, Song G. Role of p38, ERK1/2, focal adhesion kinase, RhoA/ROCK and cytoskeleton in the adipogenesis of human mesenchymal stem cells. J Biosci Bioeng 2014; 117:624-31. [DOI: 10.1016/j.jbiosc.2013.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/27/2013] [Accepted: 10/23/2013] [Indexed: 12/26/2022]
|
21
|
Faghihi F, Baghaban Eslaminejad M. The effect of nano-scale topography on osteogenic differentiation of mesenchymal stem cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 158:5-16. [DOI: 10.5507/bp.2013.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 02/14/2013] [Indexed: 01/08/2023] Open
|
22
|
Kolind K, Kraft D, Bøggild T, Duch M, Lovmand J, Pedersen FS, Bindslev DA, Bünger CE, Foss M, Besenbacher F. Control of proliferation and osteogenic differentiation of human dental-pulp-derived stem cells by distinct surface structures. Acta Biomater 2014; 10:641-50. [PMID: 24252446 DOI: 10.1016/j.actbio.2013.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/09/2013] [Accepted: 11/11/2013] [Indexed: 01/07/2023]
Abstract
The ability to control the behavior of stem cells provides crucial benefits, for example, in tissue engineering and toxicity/drug screening, which utilize the stem cell's capacity to engineer new tissues for regenerative purposes and the testing of new drugs in vitro. Recently, surface topography has been shown to influence stem cell differentiation; however, general trends are often difficult to establish due to differences in length scales, surface chemistries and detailed surface topographies. Here we apply a highly versatile screening approach to analyze the interplay of surface topographical parameters on cell attachment, morphology, proliferation and osteogenic differentiation of human mesenchymal dental-pulp-derived stem cells (DPSCs) cultured with and without osteogenic differentiation factors in the medium (ODM). Increasing the inter-pillar gap size from 1 to 6 μm for surfaces with small pillar sizes of 1 and 2 μm resulted in decreased proliferation and in more elongated cells with long pseudopodial protrusions. The same alterations of pillar topography, up to an inter-pillar gap size of 4 μm, also resulted in enhanced mineralization of DPSCs cultured without ODM, while no significant trend was observed for DPSCs cultured with ODM. Generally, cells cultured without ODM had a larger deposition of osteogenic markers on structured surfaces relative to the unstructured surfaces than what was found when culturing with ODM. We conclude that the topographical design of biomaterials can be optimized for the regulation of DPSC differentiation and speculate that the inclusion of ODM alters the ability of the cells to sense surface topographical cues. These results are essential in order to transfer the use of this highly proliferative, easily accessible stem cell into the clinic for use in cell therapy and regenerative medicine.
Collapse
Affiliation(s)
- K Kolind
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - D Kraft
- Department of Orthodontics, School of Dentistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - T Bøggild
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - M Duch
- Department of Molecular Biology, Aarhus University, DK-8000 Aarhus C, Denmark
| | - J Lovmand
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - F S Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; Department of Molecular Biology, Aarhus University, DK-8000 Aarhus C, Denmark
| | - D A Bindslev
- Department of Orthodontics, School of Dentistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - C E Bünger
- Department of Orthopaedic Surgery, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| | - M Foss
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark.
| | - F Besenbacher
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
23
|
Lee JS, Ha L, Kwon IK, Lim JY. The role of focal adhesion kinase in BMP4 induction of mesenchymal stem cell adipogenesis. Biochem Biophys Res Commun 2013; 435:696-701. [DOI: 10.1016/j.bbrc.2013.05.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 10/26/2022]
|
24
|
Lai N, Sims JK, Jeon NL, Lee K. Adipocyte induction of preadipocyte differentiation in a gradient chamber. Tissue Eng Part C Methods 2012; 18:958-67. [PMID: 22651694 DOI: 10.1089/ten.tec.2012.0168] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adipose tissue expansion involves enlargement of mature adipocytes and the formation of new adipocytes through the differentiation of locally resident preadipocytes. Factors released by the enlarged adipocytes are potential cues that induce the differentiation of the preadipocytes. Currently, there are limited options to investigate these cues in isolation from confounding systemic influences. A gradient generating microfluidic channel-based cell culture system was designed to enable solution patterning, while supporting long-term culture and differentiation of preadipocytes. Solution patterning was confirmed by selectively staining a fraction of uniformly seeded preadipocytes. An adipogenic cocktail gradient was used to induce the differentiation of a fraction of uniformly seeded preadipocytes and establish a spatially defined coculture of adipocytes and preadipocytes. Varying the adipogenic cocktail gradient generated cocultures of preadipocytes and adipocytes with different compositions. Transient application of the cocktail gradient, followed by basal medium treatment showed a biphasic induction of differentiation. The two phases of differentiation correlated with a spatial gradient in adipocyte size. Our results provide in vitro data supporting the size-dependent release of preadipocyte differentiation factors by enlarged adipocytes. Prospectively, the coculture system developed in this study could facilitate controlled, yet physiologically meaningful studies on paracrine interactions between adipocytes and preadipocytes during adipose tissue development.
Collapse
Affiliation(s)
- Ning Lai
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, USA
| | | | | | | |
Collapse
|
25
|
Lim JA, Hwang SH, Kim MJ, Kim SS, Kim HS. N-terminal cleavage fragment of focal adhesion kinase is required to activate the survival signalling pathway in cultured myoblasts under oxidative stress. FEBS J 2012; 279:3573-3583. [PMID: 22809424 DOI: 10.1111/j.1742-4658.2012.08715.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously shown that the cultured L6 myoblasts are susceptible to menadione-induced oxidative stress. Damaged cells were detached from the culture dishes. In the present study, we focused on focal adhesion kinase (FAK), which plays pivotal roles in maintaining focal adhesion function and cell survival. FAK, normally localized at the focal adhesion regions of the myoblasts, was not observed at the regions under oxidative stress induced by menadione and H(2) O(2) . Two cleavage products, 80-kDa N-terminal FAK and 35-kDa C-terminal FAK fragments, as well as full-length FAK (125 kDa) were detected in myoblasts cultured under normal conditions by western blotting with anti-N-terminal FAK or anti-C-terminal FAK sera. Of interest was the finding that the cleavage products of FAK (but not full-length FAK) disappeared under oxidative stress. The cleavage of full-length FAK to N-terminal FAK and C-terminal FAK was inhibited by calpeptin, a specific calpain inhibitor. In addition, pre-incubation of cells with calpeptin resulted in a sharp decrease in survival signals, such as Akt phosphorylation and the ratio of Bcl-2/Bax, under stress conditions. By contrast, not only relative viability, but also Akt phosphorylation and the ratio of Bcl-2/Bax was significantly improved when cells were transfected with a DNA construct of N-terminal FAK-Myc. These results suggest that the N-terminal FAK positively regulates survival signalling in early phases of oxidative stress in the cultured myoblasts.
Collapse
Affiliation(s)
- Jeong A Lim
- Department of Biological Science, College of Natural Sciences, Ajou University, Suwon, KoreaRadiation Medicine Branch, National Cancer Center, Goyang, Korea
| | - Sung Ho Hwang
- Department of Biological Science, College of Natural Sciences, Ajou University, Suwon, KoreaRadiation Medicine Branch, National Cancer Center, Goyang, Korea
| | - Min Jeong Kim
- Department of Biological Science, College of Natural Sciences, Ajou University, Suwon, KoreaRadiation Medicine Branch, National Cancer Center, Goyang, Korea
| | - Sang Soo Kim
- Department of Biological Science, College of Natural Sciences, Ajou University, Suwon, KoreaRadiation Medicine Branch, National Cancer Center, Goyang, Korea
| | - Hye Sun Kim
- Department of Biological Science, College of Natural Sciences, Ajou University, Suwon, KoreaRadiation Medicine Branch, National Cancer Center, Goyang, Korea
| |
Collapse
|
26
|
Lade A, Ranganathan S, Luo J, Monga SPS. Calpain induces N-terminal truncation of β-catenin in normal murine liver development: diagnostic implications in hepatoblastomas. J Biol Chem 2012; 287:22789-98. [PMID: 22613727 DOI: 10.1074/jbc.m112.378224] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatic competence, specification, and liver bud expansion during development depend on precise temporal modulation of the Wnt/β-catenin signaling. Also, loss- and gain-of-function studies have revealed pleiotropic roles of β-catenin in proliferation and hepatocyte and biliary epithelial cell differentiation, but precise mechanisms remain unknown. Here we utilize livers from different stages of murine development to determine β-catenin signaling and downstream targets. Although during early liver development full-length β-catenin is the predominant form, at late stages, where full-length β-catenin localizes to developing biliary epithelial cells only, a 75-kDa truncated β-catenin species is the principal form localizing at the membrane and in the nucleus of differentiating hepatocytes. The truncated species lacks 95 N-terminal amino acids and is transcriptionally active. Our evidence points to proteolytic cleavage of β-catenin by calpain as the mechanism of truncation in cell-free and cell-based assays. Intraperitoneal injection of a short term calpain inhibitor to timed pregnant female mice abrogated β-catenin truncation in the embryonic livers. RNA-seq revealed a unique set of targets transcribed in cells expressing truncated versus full-length β-catenin, consistent with different functionalities. A further investigation using N- and C-terminal-specific β-catenin antibodies on human hepatoblastomas revealed a correlation between full-length versus truncated β-catenin and differentiation status, with embryonal hepatoblastomas expressing full-length β-catenin and fetal hepatoblastomas expressing β-catenin lacking its N terminus. Thus we conclude that calpain-mediated cleavage of β-catenin plays a role in regulating hepatoblast differentiation in mouse and human liver, and the presence of the β-catenin N terminus correlates with differentiation status in hepatoblastomas.
Collapse
Affiliation(s)
- Abigale Lade
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
27
|
Kim WK, Jung H, Kim EY, Kim DH, Cho YS, Park BC, Park SG, Ko Y, Bae KH, Lee SC. RPTPμ tyrosine phosphatase promotes adipogenic differentiation via modulation of p120 catenin phosphorylation. Mol Biol Cell 2011; 22:4883-91. [PMID: 21998202 PMCID: PMC3237630 DOI: 10.1091/mbc.e11-03-0175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Adipocyte differentiation can be regulated by the combined activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). In particular, PTPs act as key regulators in differentiation-associated signaling pathways. We recently found that receptor-type PTPμ (RPTPμ) expression is markedly increased during the adipogenic differentiation of 3T3-L1 preadipocytes and mesenchymal stem cells. Here, we investigate the functional roles of RPTPμ and the mechanism of its involvement in the regulation of signal transduction during adipogenesis of 3T3-L1 cells. Depletion of endogenous RPTPμ by RNA interference significantly inhibited adipogenic differentiation, whereas RPTPμ overexpression led to an increase in adipogenic differentiation. Ectopic expression of p120 catenin suppressed adipocyte differentiation, and the decrease in adipogenesis by p120 catenin was recovered by introducing RPTPμ. Moreover, RPTPμ induced a decrease in the cytoplasmic p120 catenin expression by reducing its tyrosine phosphorylation level, consequently leading to enhanced translocation of Glut-4 to the plasma membrane. On the basis of these results, we propose that RPTPμ acts as a positive regulator of adipogenesis by modulating the cytoplasmic p120 catenin level. Our data conclusively demonstrate that differentiation into adipocytes is controlled by RPTPμ, supporting the utility of RPTPμ and p120 catenin as novel target proteins for the treatment of obesity.
Collapse
Affiliation(s)
- Won Kon Kim
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xu B, Song G, Ju Y. Effect of focal adhesion kinase on the regulation of realignment and tenogenic differentiation of human mesenchymal stem cells by mechanical stretch. Connect Tissue Res 2011; 52:373-9. [PMID: 21401419 DOI: 10.3109/03008207.2010.541961] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Focal adhesion kinase (FAK) is a focal adhesion-associated protein kinase involved in cell adhesion and spreading. It is recruited as a participant in focal adhesion dynamics between cells and has a role in cell motility, differentiation, and survival. The role of FAK in the differentiation of human mesenchymal stem cells (hMSCs), however, is not well understood, particularly in terms of tenogenic differentiation. In this study, we reported that FAK regulates the mechanical stretch-induced realignment of hMSCs. We showed that FAK can be activated by mechanical stretch and, with a 10 μM PF 573228 (a novel small molecule inhibitor of FAK) treatment, FAK autophosphorylation at Tyr397 is significantly decreased. Moreover, our findings demonstrated that this decrease in FAK autophosphorylation at Tyr397 leads to the attenuation of upregulation of mechanical stretch-induced mRNA expression of tendon-related genes, including type I collagen, type III collagen, tenascin-C, and scleraxis. These results indicate that the FAK signaling molecule plays an important role in regulating cell realignment and tenogenic differentiation of hMSCs when induced by mechanical stretch. Collectively, our findings provide novel insight into the role of FAK in the realignment and mechanotransduction of hMSCs during the process of tenogenic differentiation induced by mechanical stretch.
Collapse
Affiliation(s)
- Baiyao Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, China
| | | | | |
Collapse
|
29
|
Identification of subtilase cytotoxin (SubAB) receptors whose signaling, in association with SubAB-induced BiP cleavage, is responsible for apoptosis in HeLa cells. Infect Immun 2010; 79:617-27. [PMID: 21098100 DOI: 10.1128/iai.01020-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Subtilase cytotoxin (SubAB), which is produced by certain strains of Shiga-toxigenic Escherichia coli (STEC), causes the 78-kDa glucose-regulated protein (GRP78/BiP) cleavage, followed by induction of endoplasmic reticulum (ER) stress, leading to caspase-dependent apoptosis via mitochondrial membrane damage by Bax/Bak activation. The purpose of the present study was to identify SubAB receptors responsible for HeLa cell death. Four proteins, NG2, α2β1 integrin (ITG), L1 cell adhesion molecule (L1CAM), and hepatocyte growth factor receptor (Met), were identified to be SubAB-binding proteins by immunoprecipitation and purification, followed by liquid chromatography-tandem mass spectrometry analysis. SubAB-induced Bax conformational change, Bax/Bak complex formation, caspase activation, and cell death were decreased in β1 ITG, NG2, and L1CAM small interfering RNA-transfected cells, but unexpectedly, BiP cleavage was still observed. Pretreatment of cells with a function-blocking β1 ITG antibody (monoclonal antibody [MAb] P5D2) enhanced SubAB-induced caspase activation; MAb P5D2 alone had no effect on caspase activation. Furthermore, we found that SubAB induced focal adhesion kinase fragmentation, which was mediated by a proteasome-dependent pathway, and caspase activation was suppressed in the presence of proteasome inhibitor. Thus, β1 ITG serves as a SubAB-binding protein and may interact with SubAB-signaling pathways, leading to cell death. Our results raise the possibility that although BiP cleavage is necessary for SubAB-induced apoptotic cell death, signaling pathways associated with functional SubAB receptors may be required for activation of SubAB-dependent apoptotic pathways.
Collapse
|
30
|
McNamara LE, McMurray RJ, Biggs MJP, Kantawong F, Oreffo ROC, Dalby MJ. Nanotopographical control of stem cell differentiation. J Tissue Eng 2010; 2010:120623. [PMID: 21350640 PMCID: PMC3042612 DOI: 10.4061/2010/120623] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 07/16/2010] [Indexed: 01/08/2023] Open
Abstract
Stem cells have the capacity to differentiate into various lineages, and the ability to reliably direct stem cell fate determination would have tremendous potential for basic research and clinical therapy. Nanotopography provides a useful tool for guiding differentiation, as the features are more durable than surface chemistry and can be modified in size and shape to suit the desired application. In this paper, nanotopography is examined as a means to guide differentiation, and its application is described in the context of different subsets of stem cells, with a particular focus on skeletal (mesenchymal) stem cells. To address the mechanistic basis underlying the topographical effects on stem cells, the likely contributions of indirect (biochemical signal-mediated) and direct (force-mediated) mechanotransduction are discussed. Data from proteomic research is also outlined in relation to topography-mediated fate determination, as this approach provides insight into the global molecular changes at the level of the functional effectors.
Collapse
Affiliation(s)
- Laura E McNamara
- Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Biomechanical signals such as cell shape and spreading play an important role in controlling stem cell commitment. Cell shape, adhesion and spreading are also affected by calreticulin, a multifunctional calcium-binding protein, which influences several cellular processes, including adipogenesis. Here we show that cytoskeletal disruption in mouse embryonic stem cells using cytochalasin D or nocodazole promotes adipogenesis. While cytochalasin D disrupts stress fibres and inhibits focal adhesion formation, nocodazole depolymerises microtubules and promotes focal adhesion formation. Furthermore, cytochalasin D increases the levels of both total and activated calcium/calmodulin-dependent protein kinase II, whereas nocodazole decreases it. Nevertheless, both treatments significantly increase the adipogenic potential of embryonic stem cells in vitro. Both cytochalasin D and nocodazole exposure caused cell rounding suggesting that it is cell shape that causes the switch towards the adipogenic programme. Calreticulin-containing embryonic stem cells, under baseline conditions, show low adipogenic potential, have low activity of signalling via calcium/calmodulin-dependent protein kinase II and display normal adhesive properties and cellular spreading in comparison to the highly adipogenic but poorly spread calreticulin-deficient ES cells. We conclude that forced cell rounding via cytoskeletal disruption overrides the effects of calreticulin, an ER chaperone, thus negatively regulating adipogenesis via focal adhesion-mediated cell spreading.
Collapse
|
32
|
Szabo E, Feng T, Dziak E, Opas M. Cell adhesion and spreading affect adipogenesis from embryonic stem cells: the role of calreticulin. Stem Cells 2009; 27:2092-102. [PMID: 19544411 DOI: 10.1002/stem.137] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calreticulin is an endoplasmic reticulum-resident multifunctional protein, which has been shown to influence numerous cellular processes, including cell adhesion. In this study, we characterized the adhesive properties of embryonic stem cells (ESCs) lacking calreticulin and showed that adipogenesis from ESCs is directly and reciprocally controlled by the adhesive status of a cell, which in turn is modulated by calreticulin. Calreticulin-deficient ESCs are not only highly adipogenic but also show elevated calmodulin/CaMKII signaling and poor adhesiveness compared with the wild-type ESCs. Calreticulin deficiency leads to a disorganized cytoskeleton and low levels of focal adhesion-related proteins, such as vinculin, paxillin, and phosphorylated focal adhesion kinase, which cause limited focal adhesion formation and limited fibronectin deposition. Moreover, differentiation on nonadhesive substrata, which hinder cell spreading, promoted adipogenesis in the wild-type ESCs that normally have low adipogenic potential, causing a decrease in focal adhesion protein expression and an increase in calmodulin/CaMKII signaling. In contrast, inhibition of CaMKII effectively increased focal adhesion protein levels and inhibited adipogenesis in calreticulin-deficient ESCs, causing them to behave like the low adipogenic, wild-type ESCs. Thus, the adipogenic potential of ESCs is proportional to their calmodulin/CaMKII activity but is inversely related to their focal adhesion protein levels and degree of adhesiveness/spreading.
Collapse
Affiliation(s)
- Eva Szabo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
33
|
Hausman GJ, Dodson MV, Ajuwon K, Azain M, Barnes KM, Guan LL, Jiang Z, Poulos SP, Sainz RD, Smith S, Spurlock M, Novakofski J, Fernyhough ME, Bergen WG. Board-invited review: the biology and regulation of preadipocytes and adipocytes in meat animals. J Anim Sci 2008; 87:1218-46. [PMID: 18849378 DOI: 10.2527/jas.2008-1427] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The quality and value of the carcass in domestic meat animals are reflected in its protein and fat content. Preadipocytes and adipocytes are important in establishing the overall fatness of a carcass, as well as being the main contributors to the marbling component needed for consumer preference of meat products. Although some fat accumulation is essential, any excess fat that is deposited into adipose depots other than the marbling fraction is energetically unfavorable and reduces efficiency of production. Hence, this review is focused on current knowledge about the biology and regulation of the important cells of adipose tissue: preadipocytes and adipocytes.
Collapse
Affiliation(s)
- G J Hausman
- USDA-ARS, Richard B. Russell Agricultural Research Station, Athens, GA 30604, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|