1
|
Righetti PG, Boschetti E. Low-abundance plant protein enrichment with peptide libraries to enlarge proteome coverage and related applications. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110302. [PMID: 31779915 DOI: 10.1016/j.plantsci.2019.110302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/15/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
In plant tissues proteins are present in low amounts but in a very large number. To this peculiar situation many complex foreign components render protein extraction and purification very difficult. In the last several years interesting technologies have been described to improve the technical situation to the point that some methodologies allow reaching very low-abundance proteins and minor allergens. Among enrichment methods the one documented in this report is based on combinatorial peptide ligand libraries (CPLLs) that emerged in the last decade by contributing to largely improve the knowledge in plant proteomics. It is the aim of this review to describe how this technology allows detecting low-abundance proteins from various plant tissues and to report the dynamics of the proteome components in response to environmental changes and biotic attacks. Typical documented examples with the description of their scientific interest are reported. The described technical approach and selected applications are considered as one of the most advanced approaches for plant proteomics investigations with possibilities not only to enlarge the knowledge of plant proteomes but also to discover novel allergens as well as plant biomarkers subsequent to stressful situations.
Collapse
Affiliation(s)
- Pier Giorgio Righetti
- Department of Chemistry Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20131, Milan, Italy.
| | - Egisto Boschetti
- Scientific Consultant, JAM Conseil, 92200, Neuilly-sur-Seine, France
| |
Collapse
|
2
|
Timilsina R, Kim JH, Nam HG, Woo HR. Temporal changes in cell division rate and genotoxic stress tolerance in quiescent center cells of Arabidopsis primary root apical meristem. Sci Rep 2019; 9:3599. [PMID: 30837647 DOI: 10.1007/978-94-010-0936-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/15/2019] [Indexed: 05/26/2023] Open
Abstract
Plant roots provide structural support and absorb nutrients and water; therefore, their proper development and function are critical for plant survival. Extensive studies on the early stage of ontogenesis of the primary root have revealed that the root apical meristem (RAM) undergoes dynamic structural and organizational changes during early germination. Quiescent center (QC) cells, a group of slowly dividing cells at the center of the stem-cell niche, are vital for proper function and maintenance of the RAM. However, temporal aspects of molecular and cellular changes in QC cells and their regulatory mechanisms have not been well studied. In the present study, we investigated temporal changes in QC cell size, expression of QC cell-specific markers (WOX5 and QC25), and genotoxic tolerance and division rate of QC cells in the Arabidopsis primary root. Our data revealed the decreased size of QC cells and the decreased expression of the QC cell-specific markers with root age. We also found that QC cell division frequency increased with root age. Furthermore, our study provides evidence supporting the link between the transition of QC cells from a mitotically quiescent state to the frequently dividing state and the decrease in tolerance to genotoxic stress.
Collapse
Affiliation(s)
- Rupak Timilsina
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jin Hee Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea.
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
3
|
Timilsina R, Kim JH, Nam HG, Woo HR. Temporal changes in cell division rate and genotoxic stress tolerance in quiescent center cells of Arabidopsis primary root apical meristem. Sci Rep 2019; 9:3599. [PMID: 30837647 PMCID: PMC6400898 DOI: 10.1038/s41598-019-40383-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/15/2019] [Indexed: 01/09/2023] Open
Abstract
Plant roots provide structural support and absorb nutrients and water; therefore, their proper development and function are critical for plant survival. Extensive studies on the early stage of ontogenesis of the primary root have revealed that the root apical meristem (RAM) undergoes dynamic structural and organizational changes during early germination. Quiescent center (QC) cells, a group of slowly dividing cells at the center of the stem-cell niche, are vital for proper function and maintenance of the RAM. However, temporal aspects of molecular and cellular changes in QC cells and their regulatory mechanisms have not been well studied. In the present study, we investigated temporal changes in QC cell size, expression of QC cell-specific markers (WOX5 and QC25), and genotoxic tolerance and division rate of QC cells in the Arabidopsis primary root. Our data revealed the decreased size of QC cells and the decreased expression of the QC cell-specific markers with root age. We also found that QC cell division frequency increased with root age. Furthermore, our study provides evidence supporting the link between the transition of QC cells from a mitotically quiescent state to the frequently dividing state and the decrease in tolerance to genotoxic stress.
Collapse
Affiliation(s)
- Rupak Timilsina
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jin Hee Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea.
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
4
|
Guan Z, Wang W, Yu X, Lin W, Miao Y. Comparative Proteomic Analysis of Coregulation of CIPK14 and WHIRLY1/3 Mediated Pale Yellowing of Leaves in Arabidopsis. Int J Mol Sci 2018; 19:E2231. [PMID: 30065159 PMCID: PMC6121582 DOI: 10.3390/ijms19082231] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 01/08/2023] Open
Abstract
Pale yellowing of leaf variegation is observed in the mutant Arabidopsis lines Calcineurin B-Like-Interacting Protein Kinase14 (CIPK14) overexpression (oeCIPK14) and double-knockout WHIRLY1/WHIRLY3 (why1/3). Further, the relative distribution of WHIRLY1 (WHY1) protein between plastids and the nucleus is affected by the phosphorylation of WHY1 by CIPK14. To elucidate the coregulation of CIPK14 and WHIRLY1/WHIRLY3-mediated pale yellowing of leaves, a differential proteomic analysis was conducted between the oeCIPK14 variegated (oeCIPK14-var) line, why1/3 variegated (why1/3-var) line, and wild type (WT). More than 800 protein spots were resolved on each gel, and 67 differentially abundant proteins (DAPs) were identified by matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF-MS). Of these 67 proteins, 34 DAPs were in the oeCIPK14-var line and 33 DAPs were in the why1/3-var line compared to the WT. Five overlapping proteins were differentially expressed in both the oeCIPK14-var and why1/3-var lines: ATP-dependent Clp protease proteolytic subunit-related protein 3 (ClpR3), Ribulose bisphosphate carboxylase large chain (RBCL), Beta-amylase 3 (BAM3), Ribosome-recycling factor (RRF), and Ribulose bisphosphate carboxylase small chain (RBCS). Bioinformatics analysis showed that most of the DAPs are involved in photosynthesis, defense and antioxidation pathways, protein metabolism, amino acid metabolism, energy metabolism, malate biosynthesis, lipid metabolism, and transcription. Thus, in the why1/3-var and oeCIPK14-var lines, there was a decrease in the photosystem parameters, including the content of chlorophyll, the photochemical efficiency of photosystem (PS II) (Fv/Fm), and electron transport rates (ETRs), but there was an increase in non-photochemical quenching (NPQ). Both mutants showed high sensitivity to intense light. Based on the annotation of the DAPs from both why1/3-var and oeCIPK14-var lines, we conclude that the CIPK14 phosphorylation-mediated WHY1 deficiency in plastids is related to the impairment of protein metabolism, leading to chloroplast dysfunction.
Collapse
Affiliation(s)
- Zhe Guan
- Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wanzhen Wang
- Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xingle Yu
- Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenfang Lin
- Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ying Miao
- Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Global proteome analysis in plants by means of peptide libraries and applications. J Proteomics 2016; 143:3-14. [DOI: 10.1016/j.jprot.2016.02.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/20/2016] [Accepted: 02/26/2016] [Indexed: 01/07/2023]
|
6
|
TLR2 and TLR4 signaling pathways are required for recombinant Brucella abortus BCSP31-induced cytokine production, functional upregulation of mouse macrophages, and the Th1 immune response in vivo and in vitro. Cell Mol Immunol 2014; 11:477-94. [PMID: 24769793 DOI: 10.1038/cmi.2014.28] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 01/18/2023] Open
Abstract
Brucella abortus is a zoonotic Gram-negative pathogen that causes brucelosis in ruminants and humans. Toll-like receptors (TLRs) recognize Brucella abortus and initiate antigen-presenting cell activities that affect both innate and adaptive immunity. In this study, we focused on recombinant Brucella cell-surface protein 31 (rBCSP31) to determine its effects on mouse macrophages. Our results demonstrated that rBCSP31 induced TNF-α, IL-6 and IL-12p40 production, which depended on the activation of mitogen-activated protein kinases (MAPKs) by stimulating the rapid phosphorylation of p38 and JNK and the activation of transcription factor NF-κB in macrophages. In addition, continuous exposure (>24 h) of RAW264.7 cells to rBCSP31 significantly enhanced IFN-γ-induced expression of MHC-II and the ability to present rBCSP31 peptide to CD4(+) T cells. Furthermore, we found that rBCSP31 could interact with both TLR2 and TLR4. The rBCSP31-induced cytokine production by macrophages from TLR2(-/-) and TLR4(-/-) mice was lower than that from C57BL/6 macrophages, and the activation of NF-κB and MAPKs was attenuated in macrophages from TLR2(-/-) and TLR4(-/-) mice. In addition, CD4(+) T cells from C57BL/6 mice immunized with rBCSP31 produced higher levels of IFN-γ and IL-2 compared with CD4(+) T cells from TLR2(-/-) and TLR4(-/-) mice. Macrophages from immunized C57BL/6 mice produced higher levels of IL-12p40 than those from TLR2(-/-) and TLR4(-/-) mice. Furthermore, immunization with rBCSP31 provided better protection in C57BL/6 mice than in TLR2(-/-) and TLR4(-/-) mice after B. abortus 2308 challenge. These results indicate that rBCSP31 is a TLR2 and TLR4 agonist that induces cytokine production, upregulates macrophage function and induces the Th1 immune response.
Collapse
|
7
|
Abstract
The question of low-abundance proteins from biological tissues is still a major issue. Technologies have been devised to improve the situation and in the last few years a method based on solid-phase combinatorial peptide ligand libraries has been extensively applied to animal extracts. This method has also been extended to plant extracts taking advantage of findings from previous experience. Detailed methods are described and their pertinence highlighted according to various situations of plant sample origin, size of the sample, and analytical methods intended to be used for protein identifications.
Collapse
|
8
|
Combinatorial peptide libraries to overcome the classical affinity-enrichment methods in proteomics. Amino Acids 2013; 45:219-29. [DOI: 10.1007/s00726-013-1505-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 04/20/2013] [Indexed: 12/11/2022]
|
9
|
He Q, Chen L, Xu Y, Yu W. Identification of centromeric and telomeric DNA-binding proteins in rice. Proteomics 2013; 13:826-32. [PMID: 23303719 DOI: 10.1002/pmic.201100416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/22/2012] [Accepted: 11/25/2012] [Indexed: 12/17/2022]
Abstract
Centromeres and telomeres are DNA/protein complexes and essential functional components of eukaryotic chromosomes. Previous studies have shown that rice centromeres and telomeres are occupied by CentO (rice centromere satellite DNA) satellite and G-rich telomere repeats, respectively. However, the protein components are not fully understood. DNA-binding proteins associated with centromeric or telomeric DNAs will most likely be important for the understanding of centromere and telomere structure and functions. To capture DNA-specific binding proteins, affinity pull-down technique was applied in this study to isolate rice centromeric and telomeric DNA-binding proteins. Fifty-five proteins were identified for their binding affinity to rice CentO repeat, and 80 proteins were identified for their binding to telomere repeat. One CentO-binding protein, Os02g0288200, was demonstrated to bind to CentO specifically by in vitro assay. A conserved domain, DUF573 with unknown functions was identified in this protein, and proven to be responsible for the specific binding to CentO in vitro. Four proteins identified as telomere DNA-binding proteins in this study were reported by different groups previously. These results demonstrate that DNA affinity pull-down technique is effective in the isolation of sequence-specific binding proteins and will be applicable in future studies of centromere and telomere proteins.
Collapse
Affiliation(s)
- Qi He
- State Key Laboratory for Agrobiotechnology, Institute of Plant Molecular Biology and Agricultural Biotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | |
Collapse
|
10
|
Boschetti E, Righetti PG. Breakfast at Tiffany's? Only with a low-abundance proteomic signature! Electrophoresis 2012; 33:2228-39. [DOI: 10.1002/elps.201200003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Doroshenk KA, Crofts AJ, Morris RT, Wyrick JJ, Okita TW. RiceRBP: A Resource for Experimentally Identified RNA Binding Proteins in Oryza sativa. FRONTIERS IN PLANT SCIENCE 2012; 3:90. [PMID: 22645600 PMCID: PMC3355793 DOI: 10.3389/fpls.2012.00090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 04/20/2012] [Indexed: 05/05/2023]
Abstract
RNA binding proteins (RBPs) play an important role not only in nuclear gene expression, but also in cytosolic events, including RNA transport, localization, translation, and stability. Although over 200 RBPs are predicted from the Arabidopsis genome alone, relatively little is known about these proteins in plants as many exhibit no homology to known RBPs in other eukaryotes. Furthermore, RBPs likely have low expression levels making them difficult to identify and study. As part of our continuing efforts to understand plant cytosolic gene expression and the factors involved, we employed a combination of affinity chromatography and proteomic techniques to enrich for low abundance RBPs in developing rice seed. Our results have been compiled into RiceRBP (http://www.bioinformatics2.wsu.edu/RiceRBP), a database that contains 257 experimentally identified proteins, many of which have not previously been predicted to be RBPs. For each of the identified proteins, RiceRBP provides information on transcript and protein sequence, predicted protein domains, details of the experimental identification, and whether antibodies have been generated for public use. In addition, tools are available to analyze expression patterns for the identified genes, view phylogentic relationships and search for orthologous proteins. RiceRBP is a valuable tool for the community in the study of plant RBPs.
Collapse
Affiliation(s)
- Kelly A. Doroshenk
- Institute of Biological Chemistry, Washington State UniversityPullman, WA, USA
| | | | - Robert T. Morris
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State UniversityPullman, WA, USA
| | - John J. Wyrick
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State UniversityPullman, WA, USA
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State UniversityPullman, WA, USA
- *Correspondence: Thomas W. Okita, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA. e-mail:
| |
Collapse
|
12
|
Protein profiling of the potato petiole under short day and long day photoperiods. J Proteomics 2011; 74:212-30. [DOI: 10.1016/j.jprot.2010.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/18/2010] [Accepted: 10/21/2010] [Indexed: 12/25/2022]
|
13
|
Doroshenk KA, Crofts AJ, Morris RT, Wyrick JJ, Okita TW. Proteomic Analysis of Cytoskeleton-Associated RNA Binding Proteins in Developing Rice Seed. J Proteome Res 2009; 8:4641-53. [DOI: 10.1021/pr900537p] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kelly A. Doroshenk
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| | - Andrew J. Crofts
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| | - Robert T. Morris
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| | - John J. Wyrick
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| | - Thomas W. Okita
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| |
Collapse
|
14
|
Ni RJ, Shen Z, Yang CP, Wu YD, Bi YD, Wang BC. Identification of low abundance polyA-binding proteins in Arabidopsis chloroplast using polyA-affinity column. Mol Biol Rep 2009; 37:637-41. [PMID: 19288221 DOI: 10.1007/s11033-009-9478-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 02/18/2009] [Indexed: 12/01/2022]
Abstract
Proteins could be well separated and further identified by the use of 2-DE and related techniques. Yet, there are many proteins could not be detected even by more effective dyes because of their inherent low abundance or their low resolution. As a result, polyA-affinity column was used as a method to enrich polyA-binding proteins and then identified by MALDI-TOF-MS. In this study, 23 Arabidopsis chloroplast protein spots coded by 18 genes were identified, and majority of these proteins were classified into three related categories according to their annotations in the Swiss-Prot database, including NAD-, RNA-, and ATP-binding motifs, respectively. The major goal of the present Arabidopsis chloroplast proteomics project was to identify novel polyA-binding proteins or protein isoforms located in Arabidopsis chloroplasts and the specific research of cellular proteins with extremely low transcription levels could be fulfilled.
Collapse
Affiliation(s)
- Rui-Juan Ni
- Key Laboratory of Forest Tree Genetic Improvement and Biotechnology, Ministry of Education, Northeast Forestry University, 150040, Harbin, China
| | | | | | | | | | | |
Collapse
|
15
|
Han P, Li Q, Zhu YX. Mutation of Arabidopsis BARD1 causes meristem defects by failing to confine WUSCHEL expression to the organizing center. THE PLANT CELL 2008; 20:1482-93. [PMID: 18591352 PMCID: PMC2483370 DOI: 10.1105/tpc.108.058867] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 06/02/2008] [Accepted: 06/14/2008] [Indexed: 05/18/2023]
Abstract
Stem cell fate in the Arabidopsis thaliana shoot apical meristem (SAM) is controlled by WUSCHEL (WUS) and CLAVATA. Here, we examine BARD1 (for BRCA1-associated RING domain 1), which had previously been implicated in DNA repair functions; we find that it also regulates WUS expression. We observed severe SAM defects in the knockout mutant bard1-3. WUS transcripts accumulated >238-fold in bard1-3 compared with the wild type and were located mainly in the outermost cell layers instead of the usual organizing center. A specific WUS promoter region was recognized by nuclear protein extracts obtained from wild-type plants, and this protein-DNA complex was recognized by antibodies against BARD1. The double mutant (wus-1 bard1-3) showed prematurely terminated SAM structures identical to those of wus-1, indicating that BARD1 functions through regulation of WUS. BARD1 overexpression resulted in reduced WUS transcript levels, giving a wus-1-like phenotype. Either full-length BARD1 or a clone that encoded the C-terminal domain (BARD1:C-ter;bard1-3) was sufficient to complement the bard1-3 phenotype, indicating that BARD1 functions through its C-terminal domain. Our data suggest that BARD1 regulates SAM organization and maintenance by limiting WUS expression to the organizing center.
Collapse
Affiliation(s)
- Pei Han
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | |
Collapse
|