1
|
Ruan CC, Gao PJ. Role of Complement-Related Inflammation and Vascular Dysfunction in Hypertension. Hypertension 2019; 73:965-971. [PMID: 30929519 DOI: 10.1161/hypertensionaha.118.11210] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Cheng-Chao Ruan
- From the State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension at Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, China
| | - Ping-Jin Gao
- From the State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension at Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
2
|
Zhang Z, Xiong T, Zheng R, Huang J, Guo L. N‑acetyl cysteine protects HUVECs against lipopolysaccharide‑mediated inflammatory reaction by blocking the NF‑κB signaling pathway. Mol Med Rep 2019; 20:4349-4357. [PMID: 31545445 DOI: 10.3892/mmr.2019.10678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/06/2019] [Indexed: 11/05/2022] Open
Abstract
The purpose of the study was to explore the potential protective effects of N‑acetylcysteine (NAC) against lipopolysaccharide (LPS)‑induced inflammatory injury to human umbilical vein endothelial cells (HUVECs). It was also assessed whether the underlying mechanism of this protective effect is mediated via suppression of the nuclear factor‑kappa B (NF‑κB) signaling pathway. Cell viability of HUVECs treated with different concentrations of NAC was assessed using Cell Counting Kit‑8 (CCK‑8) assay. The mRNA expression of inflammatory factors [interleukin‑8 (IL‑8), tumor necrosis factor α (TNF‑α), inducible nitric oxide synthase (iNOS), and intercellular cell adhesive molecule 1 (ICAM‑1)] were assessed using real time semi‑quantitative polymerase chain reaction. Protein expression levels of TNF‑α and IL‑8 were assessed using enzyme‑linked immunosorbent assay. Protein expression levels of ICAM‑1 and the NF‑κB signaling pathway were assessed using western blotting. Nitric reductase method was used to quantify nitric oxide (NO) and iNOS. LPS stimulated the production of TNF‑α, IL‑8, NO, and ICAM‑1 by HUVECs. Moreover, LPS induced activation of the NF‑κB signaling pathway and increased the protein expression of phosphorylated p65. However, pretreatment of HUVECs with NAC significantly attenuated the increase in the expression of inflammatory factors and the level of phosphorylated p65; this indicated that NAC prevented the activation of the NF‑κB signaling pathway. The present findings indicated that NAC protects HUVECs against LPS‑mediated inflammatory reaction and alleviates inflammation. The underlying mechanism is related to the NF‑κB signaling pathway. NAC appears to be a promising agent for prevention and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ting Xiong
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Rui Zheng
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jialin Huang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ling Guo
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
3
|
Sun W, Gao Y, Ding Y, Cao Y, Chen J, Lv G, Lu J, Yu B, Peng M, Xu H, Sun Y. Catalpol ameliorates advanced glycation end product-induced dysfunction of glomerular endothelial cells via regulating nitric oxide synthesis by inducible nitric oxide synthase and endothelial nitric oxide synthase. IUBMB Life 2019; 71:1268-1283. [PMID: 30861639 DOI: 10.1002/iub.2032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/17/2019] [Indexed: 12/11/2022]
Abstract
Catalpol (Cat.) is an iridoid glucoside extracted from the root of Rehmannia glutinosa Libosch. In this study, we investigated whether Cat. could protect the mouse glomerular endothelial cells against the deleterious effect induced by advanced glycation end products (AGEs) and explored potential mechanisms. We found that 10 μM Cat. showed a protective effect on dead cells stimulated by AGEs. Cat. significantly decreased the expression of p-NF-κBp65 and inducible nitric oxide synthase (iNOS) and increased the expression of phosphorylated-endothelial nitric oxide synthase (p-eNOS; Ser1177), PI3K, p-Akt (Thr308), and total-Akt. Moreover, Cat. restored the integrity of glomerular endothelial barrier by increasing endothelial tight gap junction protein and ameliorated the endothelial hyperpermeability induced by AGEs via modulating the nitric oxide (NO) production. Additionally, Cat. attenuated the massive release of NO induced by AGEs, inhibiting the macrophage infiltration by modulating the NO production, accompanied by the decrease in the release of monocyte chemoattractant protein-1 and intercellular cell adhesion molecule-1 in vitro. Therefore, Cat. ameliorated AGEs-induced endothelial dysfunction via inhibiting the NF-κB/iNOS pathway and activating the PI3K/Akt/eNOS pathway. © 2019 IUBMB Life, 71(9):1268-1283, 2019.
Collapse
Affiliation(s)
- Weixiang Sun
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Department of Pharmacology, School of Pharmacy, Hanlin College, Nanjing University of Chinese Medicine, Taizhou, People's Republic of China
| | - Yuyan Gao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yushi Ding
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Ying Cao
- Department of Pharmacology, School of Pharmacy, Hanlin College, Nanjing University of Chinese Medicine, Taizhou, People's Republic of China
| | - Jing Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Gaohong Lv
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Jinfu Lu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Bin Yu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Meilin Peng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Huiqin Xu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Department of Pharmacology, School of Pharmacy, Hanlin College, Nanjing University of Chinese Medicine, Taizhou, People's Republic of China
| | - Yun Sun
- Department of Pharmacology, School of Pharmacy, Hanlin College, Nanjing University of Chinese Medicine, Taizhou, People's Republic of China
| |
Collapse
|
4
|
Biological Effect of Licochalcone C on the Regulation of PI3K/Akt/eNOS and NF-κB/iNOS/NO Signaling Pathways in H9c2 Cells in Response to LPS Stimulation. Int J Mol Sci 2017; 18:ijms18040690. [PMID: 28333102 PMCID: PMC5412276 DOI: 10.3390/ijms18040690] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/09/2017] [Accepted: 03/20/2017] [Indexed: 12/18/2022] Open
Abstract
Polyphenols compounds are a group molecules present in many plants. They have antioxidant properties and can also be helpful in the management of sepsis. Licochalcone C (LicoC), a constituent of Glycyrrhiza glabra, has various biological and pharmacological properties. In saying this, the effect of LicoC on the inflammatory response that characterizes septic myocardial dysfunction is poorly understood. The aim of this study was to determine whether LicoC exhibits anti-inflammatory properties on H9c2 cells that are stimulated with lipopolysaccharide. Our results have shown that LicoC treatment represses nuclear factor-κB (NF-κB) translocation and several downstream molecules, such as inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Moreover, LicoC has upregulated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/endothelial nitric oxide synthase (eNOS) signaling pathway. Finally, 2-(4-Morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002), a specific PI3K inhibitor, blocked the protective effects of LicoC. These findings indicate that LicoC plays a pivotal role in cardiac dysfunction in sepsis-induced inflammation.
Collapse
|
5
|
Rayner BS, Figtree GA, Sabaretnam T, Shang P, Mazhar J, Weaver JC, Lay WN, Witting PK, Hunyor SN, Grieve SM, Khachigian LM, Bhindi R. Selective inhibition of the master regulator transcription factor Egr-1 with catalytic oligonucleotides reduces myocardial injury and improves left ventricular systolic function in a preclinical model of myocardial infarction. J Am Heart Assoc 2013; 2:e000023. [PMID: 23902638 PMCID: PMC3828787 DOI: 10.1161/jaha.113.000023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Egr-1 is implicated in the pathogenesis of myocardial ischemia-reperfusion injury. The aim of this study was to ascertain the effectiveness of intracoronary delivery of DNAzyme targeting the transcription factor Egr-1 at reperfusion following experimental myocardial ischemia. METHODS AND RESULTS Functional DNAzyme targeting Egr-1 or a size-matched scrambled control were delivered via the intracoronary route immediately on reperfusion after 60 minutes' balloon occlusion of the left anterior descending coronary artery in a pig model of myocardial I/R injury (n=7 per treatment group). Heart function and extent of myocardial infarction were determined following intervention by echocardiography and cardiac magnetic resonance imaging, respectively. Hearts were removed and examined for molecular and histological markers of inflammation and apoptosis. Administration of functional DNAzyme led to an overall decrease in the expression of inflammatory markers including intracellular adhesion molecule-1, tissue factor, and complement 3, with associated decreases in the extent of neutrophil infiltration, oxidative damage, and subsequent apoptosis within the infarct border zone. Functional significance was indicated by an increase in salvaged left ventricular myocardium (P=0.012), ejection fraction (P=0.002), and fractional area change (P=0.039) in the functional DNAzyme-treated group compared with the control. CONCLUSIONS Egr-1 silencing through intracoronary delivery of a targeting DNAzyme at the time of reperfusion following acute myocardial ischemia decreases myocardial inflammation and apoptosis leading to improved cardiac function.
Collapse
Affiliation(s)
- Benjamin S Rayner
- North Shore Heart Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Johnson S, Waters A. Is complement a culprit in infection-induced forms of haemolytic uraemic syndrome? Immunobiology 2011; 217:235-43. [PMID: 21852019 DOI: 10.1016/j.imbio.2011.07.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 06/30/2011] [Accepted: 07/18/2011] [Indexed: 12/25/2022]
Abstract
Haemolytic uraemic syndrome (HUS) accounts for the most common cause of childhood acute renal failure. Characterized by the classical triad of a microangiopathic haemolytic anaemia, thrombocytopaenia and acute renal failure, HUS occurs as a result of Shiga-toxin producing microbes in 90% of cases. The remaining 10% of cases represent a heterogeneous subgroup in which inherited and acquired forms of complement dysregulation have been described in up to 60%. Emerging evidence suggests that microbes associated with HUS exhibit interaction with the complement system. With the advent of improved genetic diagnosis, it is likely that certain cases of infection-induced HUS may be attributed to underlying defects in complement components. This review summarises the interplay between complement and infection in the pathogenesis of HUS.
Collapse
Affiliation(s)
- Sally Johnson
- Department of Paediatric Nephrology, Great North Children's Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle Upon Tyne, UK.
| | | |
Collapse
|
7
|
Mullins RF, Faidley EA, Daggett HT, Jomary C, Lotery AJ, Stone EM. Localization of complement 1 inhibitor (C1INH/SERPING1) in human eyes with age-related macular degeneration. Exp Eye Res 2009; 89:767-73. [PMID: 19607829 DOI: 10.1016/j.exer.2009.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/17/2009] [Accepted: 07/07/2009] [Indexed: 11/16/2022]
Abstract
Age-related macular degeneration (AMD) is a common degenerative disease resulting in injury to the retina, retinal pigment epithelium and choriocapillaris. Recent data from histopathology, animal models and genetic studies have implicated altered regulation of the complement system as a major factor in the incidence and progression of this disease. A variant in the gene SERPING1, which encodes C1INH, an inhibitor of the classical and lectin pathways of complement activation, was recently shown to be associated with AMD. In this study we sought to determine the localization of C1INH in human donor eyes. Immunofluorescence studies using a monoclonal antibody directed against C1INH revealed localization to photoreceptor cells, inner nuclear layer neurons, choriocapillaris, and choroidal extracellular matrix. Drusen did not exhibit labeling. Genotype at rs2511989 did not appear to affect C1INH abundance or localization, nor was it associated with significant molecular weight differences when evaluated by Western blot. In a small number of eyes (n = 7 AMD and n = 7 control) AMD affection status was correlated with increased abundance of choroidal C1INH. These results indicate that C1INH protein is present in the retina and choroid, where it may regulate complement activation.
Collapse
Affiliation(s)
- Robert F Mullins
- Carver Family Center for Macular Degeneration, Department of Ophthalmology and Visual Sciences, The University of Iowa, 4135E MERF, 375 Newton Rd, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|