1
|
Ferreira MR, Morgado L, Salgueiro CA. Periplasmic electron transfer network in Geobacter sulfurreducens revealed by biomolecular interaction studies. Protein Sci 2024; 33:e5082. [PMID: 38935664 PMCID: PMC11210610 DOI: 10.1002/pro.5082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Multiheme cytochromes located in different compartments are crucial for extracellular electron transfer in the bacterium Geobacter sulfurreducens to drive important environmental processes and biotechnological applications. Recent studies have unveiled that for particular sets of electron terminal acceptors, discrete respiratory pathways selectively recruit specific cytochromes from both the inner and outer membranes. However, such specificity was not observed for the abundant periplasmic cytochromes, namely the triheme cytochrome family PpcA-E. In this work, the distinctive NMR spectroscopic signatures of these proteins in different redox states were explored to monitor pairwise interactions and electron transfer reactions between each pair of cytochromes. The results showed that the five proteins interact transiently and can exchange electrons between each other revealing intra-promiscuity within the members of this family. This discovery is discussed in the light of the establishment of an effective electron transfer network by this pool of cytochromes. This network is advantageous to the bacteria as it enables the maintenance of the functional working potential redox range within the cells.
Collapse
Affiliation(s)
- Marisa R. Ferreira
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
| | - Leonor Morgado
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
| | - Carlos A. Salgueiro
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
| |
Collapse
|
2
|
Portela PC, Morgado L, Silva MA, Denkhaus L, Einsle O, Salgueiro CA. Exploring oxidative stress pathways in Geobacter sulfurreducens: the redox network between MacA peroxidase and triheme periplasmic cytochromes. Front Microbiol 2023; 14:1253114. [PMID: 37860142 PMCID: PMC10582990 DOI: 10.3389/fmicb.2023.1253114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
The recent reclassification of the strict anaerobe Geobacter sulfurreducens bacterium as aerotolerant brought attention for oxidative stress protection pathways. Although the electron transfer pathways for oxygen detoxification are not well established, evidence was obtained for the formation of a redox complex between the periplasmic triheme cytochrome PpcA and the diheme cytochrome peroxidase MacA. In the latter, the reduction of the high-potential heme triggers a conformational change that displaces the axial histidine of the low-potential heme with peroxidase activity. More recently, a possible involvement of the triheme periplasmic cytochrome family (PpcA-E) in the protection from oxidative stress in G. sulfurreducens was suggested. To evaluate this hypothesis, we investigated the electron transfer reaction and the biomolecular interaction between each PpcA-E cytochrome and MacA. Using a newly developed method that relies on the different NMR spectral signatures of the heme proteins, we directly monitored the electron transfer reaction from reduced PpcA-E cytochromes to oxidized MacA. The results obtained showed a complete electron transfer from the cytochromes to the high-potential heme of MacA. This highlights PpcA-E cytochromes' efficient role in providing the necessary reducing power to mitigate oxidative stress situations, hence contributing to a better knowledge of oxidative stress protection pathways in G. sulfurreducens.
Collapse
Affiliation(s)
- Pilar C. Portela
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Leonor Morgado
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Marta A. Silva
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Lukas Denkhaus
- Institut für Biochemie, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Carlos A. Salgueiro
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
3
|
Choi S, Chan CH, Bond DR. Lack of Specificity in Geobacter Periplasmic Electron Transfer. J Bacteriol 2022; 204:e0032222. [PMID: 36383007 PMCID: PMC9765071 DOI: 10.1128/jb.00322-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
Reduction of extracellular acceptors requires electron transfer across the periplasm. In Geobacter sulfurreducens, three separate cytoplasmic membrane cytochromes are utilized depending on redox potential, and at least five cytochrome conduits span the outer membrane. Because G. sulfurreducens produces 5 structurally similar triheme periplasmic cytochromes (PpcABCDE) that differ in expression level, midpoint potential, and heme biochemistry, many hypotheses propose distinct periplasmic carriers could be used for specific redox potentials, terminal acceptors, or growth conditions. Using a panel of marker-free single, quadruple, and quintuple mutants, little support for these models could be found. Three quadruple mutants containing only one paralog (PpcA, PpcB, and PpcD) reduced Fe(III) citrate and Fe(III) oxide at the same rate and extent, even though PpcB and PpcD were at much lower periplasmic levels than PpcA. Mutants containing only PpcC and PpcE showed defects, but these cytochromes were nearly undetectable in the periplasm. When expressed sufficiently, PpcC and PpcE supported wild-type Fe(III) reduction. PpcA and PpcE from G. metallireducens similarly restored metal respiration in G. sulfurreducens. PgcA, an unrelated extracellular triheme c-type cytochrome, also participated in periplasmic electron transfer. While triheme cytochromes were important for metal reduction, sextuple ΔppcABCDE ΔpgcA mutants grew near wild-type rates with normal cyclic voltammetry profiles when using anodes as electron acceptors. These results reveal broad promiscuity in the periplasmic electron transfer network of metal-reducing Geobacter and suggest that an as-yet-undiscovered periplasmic mechanism supports electron transfer to electrodes. IMPORTANCE Many inner and outer membrane cytochromes used by Geobacter for electron transfer to extracellular acceptors have specific functions. How these are connected by periplasmic carriers remains poorly understood. G. sulfurreducens contains multiple triheme periplasmic cytochromes with unique biochemical properties and expression profiles. It is hypothesized that each could be involved in a different respiratory pathway, depending on redox potential or energy needs. Here, we show that Geobacter periplasmic cytochromes instead show evidence of being highly promiscuous. Any of 6 triheme cytochromes supported similar growth with soluble or insoluble metals, but none were required when cells utilized electrodes. These findings fail to support many models of Geobacter electron transfer, and question why these organisms produce such an array of periplasmic cytochromes.
Collapse
Affiliation(s)
- Sol Choi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chi Ho Chan
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| | - Daniel R. Bond
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
4
|
From iron to bacterial electroconductive filaments: Exploring cytochrome diversity using Geobacter bacteria. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214284] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
5
|
Structural and functional insights of GSU0105, a unique multiheme cytochrome from G. sulfurreducens. Biophys J 2021; 120:5395-5407. [PMID: 34688593 DOI: 10.1016/j.bpj.2021.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022] Open
Abstract
Geobacter sulfurreducens possesses over 100 cytochromes that assure an effective electron transfer to the cell exterior. The most abundant group of cytochromes in this microorganism is the PpcA family, composed of five periplasmic triheme cytochromes with high structural homology and identical heme coordination (His-His). GSU0105 is a periplasmic triheme cytochrome synthetized by G. sulfurreducens in Fe(III)-reducing conditions but is not present in cultures grown on fumarate. This cytochrome has a low sequence identity with the PpcA family cytochromes and a different heme coordination, based on the analysis of its amino acid sequence. In this work, amino acid sequence analysis, site-directed mutagenesis, and complementary biophysical techniques, including ultraviolet-visible, circular dichroism, electron paramagnetic resonance, and nuclear magnetic resonance spectroscopies, were used to characterize GSU0105. The cytochrome has a low percentage of secondary structural elements, with features of α-helices and β-sheets. Nuclear magnetic resonance shows that the protein contains three low-spin hemes (Fe(II), S = 0) in the reduced state. Electron paramagnetic resonance shows that, in the oxidized state, one of the hemes becomes high-spin (Fe(III), S = 5/2), whereas the two others remain low-spin (Fe(III), S = 1/2). The data obtained also indicate that the heme groups have distinct axial coordination. The apparent midpoint reduction potential of GSU0105 (-154 mV) is pH independent in the physiological range. However, the pH modulates the reduction potential of the heme that undergoes the low- to high-spin interconversion. The reduction potential values of cytochrome GSU0105 are more distinct compared to those of the PpcA family members, providing the protein with a larger functional working redox potential range. Overall, the results obtained, together with an amino acid sequence analysis of different multiheme cytochrome families, indicate that GSU0105 is a member of a new group of triheme cytochromes.
Collapse
|
6
|
Marzolf DR, McKenzie AM, O’Malley MC, Ponomarenko NS, Swaim CM, Brittain TJ, Simmons NL, Pokkuluri PR, Mulfort KL, Tiede DM, Kokhan O. Mimicking Natural Photosynthesis: Designing Ultrafast Photosensitized Electron Transfer into Multiheme Cytochrome Protein Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2143. [PMID: 33126541 PMCID: PMC7693585 DOI: 10.3390/nano10112143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 05/02/2023]
Abstract
Efficient nanomaterials for artificial photosynthesis require fast and robust unidirectional electron transfer (ET) from photosensitizers through charge-separation and accumulation units to redox-active catalytic sites. We explored the ultrafast time-scale limits of photo-induced charge transfer between a Ru(II)tris(bipyridine) derivative photosensitizer and PpcA, a 3-heme c-type cytochrome serving as a nanoscale biological wire. Four covalent attachment sites (K28C, K29C, K52C, and G53C) were engineered in PpcA enabling site-specific covalent labeling with expected donor-acceptor (DA) distances of 4-8 Å. X-ray scattering results demonstrated that mutations and chemical labeling did not disrupt the structure of the proteins. Time-resolved spectroscopy revealed three orders of magnitude difference in charge transfer rates for the systems with otherwise similar DA distances and the same number of covalent bonds separating donors and acceptors. All-atom molecular dynamics simulations provided additional insight into the structure-function requirements for ultrafast charge transfer and the requirement of van der Waals contact between aromatic atoms of photosensitizers and hemes in order to observe sub-nanosecond ET. This work demonstrates opportunities to utilize multi-heme c-cytochromes as frameworks for designing ultrafast light-driven ET into charge-accumulating biohybrid model systems, and ultimately for mimicking the photosynthetic paradigm of efficiently coupling ultrafast, light-driven electron transfer chemistry to multi-step catalysis within small, experimentally versatile photosynthetic biohybrid assemblies.
Collapse
Affiliation(s)
- Daniel R. Marzolf
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| | - Aidan M. McKenzie
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| | - Matthew C. O’Malley
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| | - Nina S. Ponomarenko
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA; (N.S.P.); (K.L.M.); (D.M.T.)
| | - Coleman M. Swaim
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| | - Tyler J. Brittain
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| | - Natalie L. Simmons
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA;
| | | | - Karen L. Mulfort
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA; (N.S.P.); (K.L.M.); (D.M.T.)
| | - David M. Tiede
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA; (N.S.P.); (K.L.M.); (D.M.T.)
| | - Oleksandr Kokhan
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| |
Collapse
|
7
|
Lusk BG, Peraza I, Albal G, Marcus AK, Popat SC, Torres CI. pH Dependency in Anode Biofilms of Thermincola ferriacetica Suggests a Proton-Dependent Electrochemical Response. J Am Chem Soc 2018; 140:5527-5534. [DOI: 10.1021/jacs.8b01734] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bradley G. Lusk
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287, United States
- ScienceTheEarth, Mesa, Arizona 85201, United States
| | - Isaias Peraza
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287, United States
| | - Gaurav Albal
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287, United States
| | - Andrew K. Marcus
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287, United States
| | - Sudeep C. Popat
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court, Anderson, South Carolina 29625, United States
| | - Cesar I. Torres
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287, United States
- School for Engineering of Matter, Transport and Energy, Arizona State University, 501 E Tyler Mall, Tempe, Arizona 85287, United States
| |
Collapse
|
8
|
Schmidt I, Pieper A, Wichmann H, Bunk B, Huber K, Overmann J, Walla PJ, Schröder U. In Situ Autofluorescence Spectroelectrochemistry for the Study of Microbial Extracellular Electron Transfer. ChemElectroChem 2017. [DOI: 10.1002/celc.201700675] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Igor Schmidt
- Institute of Environmental and Sustainable Chemistry; Technische Universität Braunschweig; 38106 Braunschweig Germany
| | - Alexander Pieper
- Department of Biophysical Chemistry, Institute for Physical and Theoretical Chemistry; Technische Universität Braunschweig; 38106 Braunschweig, Germany
| | - Hilke Wichmann
- Institute of Environmental and Sustainable Chemistry; Technische Universität Braunschweig; 38106 Braunschweig Germany
| | - Boyke Bunk
- Department Microbial Ecology and Diversity Research; Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures; 38124 Braunschweig Germany
| | - Katharina Huber
- Department Microbial Ecology and Diversity Research; Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures; 38124 Braunschweig Germany
| | - Jörg Overmann
- Department Microbial Ecology and Diversity Research; Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures; 38124 Braunschweig Germany
| | - Peter Jomo Walla
- Department of Biophysical Chemistry, Institute for Physical and Theoretical Chemistry; Technische Universität Braunschweig; 38106 Braunschweig, Germany
| | - Uwe Schröder
- Institute of Environmental and Sustainable Chemistry; Technische Universität Braunschweig; 38106 Braunschweig Germany
| |
Collapse
|
9
|
Dantas JM, Simões T, Morgado L, Caciones C, Fernandes AP, Silva MA, Bruix M, Pokkuluri PR, Salgueiro CA. Unveiling the Structural Basis That Regulates the Energy Transduction Properties within a Family of Triheme Cytochromes from Geobacter sulfurreducens. J Phys Chem B 2016; 120:10221-10233. [DOI: 10.1021/acs.jpcb.6b07059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joana M. Dantas
- UCIBIO-Requimte,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Telma Simões
- UCIBIO-Requimte,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Leonor Morgado
- UCIBIO-Requimte,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Clara Caciones
- UCIBIO-Requimte,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Ana P. Fernandes
- UCIBIO-Requimte,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Marta A. Silva
- UCIBIO-Requimte,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Marta Bruix
- Departamento
de Química Física Biológica, Instituto de Química Física Rocasolano, CSIC, 28006 Madrid, Spain
| | - P. Raj Pokkuluri
- Biosciences
Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Carlos A. Salgueiro
- UCIBIO-Requimte,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
10
|
Santos TC, Silva MA, Morgado L, Dantas JM, Salgueiro CA. Diving into the redox properties of Geobacter sulfurreducens cytochromes: a model for extracellular electron transfer. Dalton Trans 2016; 44:9335-44. [PMID: 25906375 DOI: 10.1039/c5dt00556f] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Geobacter bacteria have a remarkable respiratory versatility that includes the dissimilatory reduction of insoluble metal oxides in natural habitats and electron transfer to electrode surfaces from which electricity can be harvested. In both cases, electrons need to be exported from the cell interior to the exterior via a mechanism designated as extracellular electron transfer (EET). Several c-type cytochromes from G. sulfurreducens (Gs) were identified as key players in this process. Biochemical and biophysical data have been obtained for ten Gs cytochromes, including inner-membrane associated (MacA), periplasmic (PpcA, PpcB, PpcC, PpcD, PpcE and GSU1996) and outer membrane-associated (OmcF, OmcS and OmcZ). The redox properties of these cytochromes have been determined, except for PpcC and GSU1996. In this perspective, the reduction potentials of these two cytochromes were determined by potentiometric redox titrations followed by visible spectroscopy. The data obtained are taken together with those available for other key cytochromes to present a thorough overview of the current knowledge of Gs EET mechanisms and provide a possible rationalization for the existence of several multiheme cytochromes involved in the same respiratory pathways.
Collapse
Affiliation(s)
- Telma C Santos
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | | | | | | | | |
Collapse
|
11
|
Dantas JM, Morgado L, Aklujkar M, Bruix M, Londer YY, Schiffer M, Pokkuluri PR, Salgueiro CA. Rational engineering of Geobacter sulfurreducens electron transfer components: a foundation for building improved Geobacter-based bioelectrochemical technologies. Front Microbiol 2015; 6:752. [PMID: 26284042 PMCID: PMC4519760 DOI: 10.3389/fmicb.2015.00752] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/08/2015] [Indexed: 11/22/2022] Open
Abstract
Multiheme cytochromes have been implicated in Geobacter sulfurreducens extracellular electron transfer (EET). These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by G. sulfurreducens. However, the functional characterization of multiheme cytochromes is particularly complex due to the co-existence of several microstates in solution, connecting the fully reduced and fully oxidized states. Over the last decade, new strategies have been developed to characterize multiheme redox proteins functionally and structurally. These strategies were used to reveal the functional mechanism of G. sulfurreducens multiheme cytochromes and also to identify key residues in these proteins for EET. In previous studies, we set the foundations for enhancement of the EET abilities of G. sulfurreducens by characterizing a family of five triheme cytochromes (PpcA-E). These periplasmic cytochromes are implicated in electron transfer between the oxidative reactions of metabolism in the cytoplasm and the reduction of extracellular terminal electron acceptors at the cell's outer surface. The results obtained suggested that PpcA can couple e−/H+ transfer, a property that might contribute to the proton electrochemical gradient across the cytoplasmic membrane for metabolic energy production. The structural and functional properties of PpcA were characterized in detail and used for rational design of a family of 23 single site PpcA mutants. In this review, we summarize the functional characterization of the native and mutant proteins. Mutants that retain the mechanistic features of PpcA and adopt preferential e−/H+ transfer pathways at lower reduction potential values compared to the wild-type protein were selected for in vivo studies as the best candidates to increase the electron transfer rate of G. sulfurreducens. For the first time G. sulfurreducens strains have been manipulated by the introduction of mutant forms of essential proteins with the aim to develop and improve bioelectrochemical technologies.
Collapse
Affiliation(s)
- Joana M Dantas
- Research Unit on Applied Molecular Biosciences (UCIBIO), Rede de Química e Tecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica, Portugal
| | - Leonor Morgado
- Research Unit on Applied Molecular Biosciences (UCIBIO), Rede de Química e Tecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica, Portugal
| | - Muktak Aklujkar
- Department of Biological Sciences, Towson University Towson, MD, USA
| | - Marta Bruix
- Departamento de Química Física Biológica, Instituto de Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Yuri Y Londer
- Biosciences Division, Argonne National Laboratory Lemont, IL, USA
| | | | - P Raj Pokkuluri
- Biosciences Division, Argonne National Laboratory Lemont, IL, USA
| | - Carlos A Salgueiro
- Research Unit on Applied Molecular Biosciences (UCIBIO), Rede de Química e Tecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica, Portugal
| |
Collapse
|
12
|
Kokhan O, Ponomarenko NS, Pokkuluri PR, Schiffer M, Mulfort KL, Tiede DM. Bidirectional Photoinduced Electron Transfer in Ruthenium(II)-Tris-bipyridyl-Modified PpcA, a Multi-heme c-Type Cytochrome from Geobacter sulfurreducens. J Phys Chem B 2015; 119:7612-24. [PMID: 25731703 DOI: 10.1021/jp511558f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PpcA, a tri-heme cytochrome c7 from Geobacter sulfurreducens, was investigated as a model for photosensitizer-initiated electron transfer within a multi-heme "molecular wire" protein architecture. Escherichia coli expression of PpcA was found to be tolerant of cysteine site-directed mutagenesis, demonstrated by the successful expression of natively folded proteins bearing cysteine mutations at a series of sites selected to vary characteristically with respect to the three -CXXCH- heme binding domains. The introduced cysteines readily reacted with Ru(II)-(2,2'-bpy)2(4-bromomethyl-4'-methyl-2,2'-bipyridine) to form covalently linked constructs that support both photo-oxidative and photo-reductive quenching of the photosensitizer excited state, depending upon the initial heme redox state. Excited-state electron-transfer times were found to vary from 6 × 10(-12) to 4 × 10(-8) s, correlated with the distance and pathways for electron transfer. The fastest rate is more than 10(3)-fold faster than previously reported for photosensitizer-redox protein constructs using amino acid residue linking. Clear evidence for inter-heme electron transfer within the multi-heme protein is not detected within the lifetimes of the charge-separated states. These results demonstrate an opportunity to develop multi-heme c-cytochromes for investigation of electron transfer in protein "molecular wires" and to serve as frameworks for metalloprotein designs that support multiple-electron-transfer redox chemistry.
Collapse
Affiliation(s)
- Oleksandr Kokhan
- †Chemical Sciences and Engineering Division and ‡Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Nina S Ponomarenko
- †Chemical Sciences and Engineering Division and ‡Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - P Raj Pokkuluri
- †Chemical Sciences and Engineering Division and ‡Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Marianne Schiffer
- †Chemical Sciences and Engineering Division and ‡Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Karen L Mulfort
- †Chemical Sciences and Engineering Division and ‡Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - David M Tiede
- †Chemical Sciences and Engineering Division and ‡Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| |
Collapse
|
13
|
Dantas JM, Morgado L, Marques AC, Salgueiro CA. Probing the effect of ionic strength on the functional robustness of the triheme cytochrome PpcA from Geobacter sulfurreducens: a contribution for optimizing biofuel cell's power density. J Phys Chem B 2014; 118:12416-25. [PMID: 25275217 DOI: 10.1021/jp507898x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The increase of conductivity of electrolytes favors the current production in microbial fuel cells (MFCs). Adaptation of cell cultures to higher ionic strength is a promising strategy to increase electricity production. The bacterium Geobacter sulfurreducens is considered a leading candidate for MFCs. Therefore, it is important to evaluate the impact of the ionic strength on the functional properties of key periplasmic proteins that warrants electron transfer to cell exterior. The effect of the ionic strength on the functional properties of triheme cytochrome PpcA, the most abundant periplasmic cytochrome in G. sulfurreducens, was investigated by NMR and potentiometric methods. The redox properties of heme IV are the most affected ones. Chemical shift perturbation measurements on the backbone NMR signals, at increasing ionic strength, also showed that the region close to heme IV is the most affected due to the large number of positively charged residues, which confer a highly positive electrostatic surface around this heme. The shielding of these positive charges at high ionic strength explain the observed decrease in the reduction potential of heme IV and shows that PpcA was designed to maintain its functional mechanistic features even at high ionic strength.
Collapse
Affiliation(s)
- Joana M Dantas
- Requimte-CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , Campus Caparica, 2829-516 Caparica, Portugal
| | | | | | | |
Collapse
|
14
|
Morgado L, Lourenço S, Londer YY, Schiffer M, Pokkuluri PR, Salgueiro CA. Dissecting the functional role of key residues in triheme cytochrome PpcA: a path to rational design of G. sulfurreducens strains with enhanced electron transfer capabilities. PLoS One 2014; 9:e105566. [PMID: 25153891 PMCID: PMC4143306 DOI: 10.1371/journal.pone.0105566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/21/2014] [Indexed: 11/24/2022] Open
Abstract
PpcA is the most abundant member of a family of five triheme cytochromes c7 in the bacterium Geobacter sulfurreducens (Gs) and is the most likely carrier of electrons destined for outer surface during respiration on solid metal oxides, a process that requires extracellular electron transfer. This cytochrome has the highest content of lysine residues (24%) among the family, and it was suggested to be involved in e−/H+ energy transduction processes. In the present work, we investigated the functional role of lysine residues strategically located in the vicinity of each heme group. Each lysine was replaced by glutamine or glutamic acid to evaluate the effects of a neutral or negatively charged residue in each position. The results showed that replacing Lys9 (located near heme IV), Lys18 (near heme I) or Lys22 (between hemes I and III) has essentially no effect on the redox properties of the heme groups and are probably involved in redox partner recognition. On the other hand, Lys43 (near heme IV), Lys52 (between hemes III and IV) and Lys60 (near heme III) are crucial in the regulation of the functional mechanism of PpcA, namely in the selection of microstates that allow the protein to establish preferential e−/H+ transfer pathways. The results showed that the preferred e−/H+ transfer pathways are only established when heme III is the last heme to oxidize, a feature reinforced by a higher difference between its reduction potential and that of its predecessor in the order of oxidation. We also showed that K43 and K52 mutants keep the mechanistic features of PpcA by establishing preferential e−/H+ transfer pathways at lower reduction potential values than the wild-type protein, a property that can enable rational design of Gs strains with optimized extracellular electron transfer capabilities.
Collapse
Affiliation(s)
- Leonor Morgado
- Requimte, CQFB, Departamento de Química da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (FCT/UNL), Caparica, Portugal
| | - Sílvia Lourenço
- Requimte, CQFB, Departamento de Química da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (FCT/UNL), Caparica, Portugal
| | - Yuri Y. Londer
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Marianne Schiffer
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - P. Raj Pokkuluri
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Carlos A. Salgueiro
- Requimte, CQFB, Departamento de Química da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (FCT/UNL), Caparica, Portugal
- * E-mail:
| |
Collapse
|
15
|
Kaur R, Bren KL. Redox state dependence of axial ligand dynamics in Nitrosomonas europaea cytochrome c552. J Phys Chem B 2013; 117:15720-8. [PMID: 23909651 DOI: 10.1021/jp4064577] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analysis of NMR spectra reveals that the heme axial Met ligand orientation and dynamics in Nitrosomonas europaea cytochrome c552 (Ne cyt c) are dependent on the heme redox state. In the oxidized state, the heme axial Met is fluxional, interconverting between two conformers related to each other by inversion through the Met δS atom. In the reduced state, there is no evidence of fluxionality, with the Met occupying one conformation similar to that seen in the homologous Pseudomonas aeruginosa cytochrome c551. Comparison of the observed and calculated pseudocontact shifts for oxidized Ne cyt c using the reduced protein structure as a reference structure reveals a redox-dependent change in the structure of the loop bearing the axial Met (loop 3). Analysis of nuclear Overhauser effects (NOEs) and existing structural data provides further support for the redox state dependence of the loop 3 structure. Implications for electron transfer function are discussed.
Collapse
Affiliation(s)
- Ravinder Kaur
- Center for Infectious Disease and Immunology, Research Institute, Rochester General Hospital , Rochester, New York 14621, United States
| | | |
Collapse
|
16
|
Role of Met(58) in the regulation of electron/proton transfer in trihaem cytochrome PpcA from Geobacter sulfurreducens. Biosci Rep 2012; 33:11-22. [PMID: 23030844 PMCID: PMC3522473 DOI: 10.1042/bsr20120086] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The bacterium Gs (Geobacter sulfurreducens) is capable of oxidizing a large variety of compounds relaying electrons out of the cytoplasm and across the membranes in a process designated as extracellular electron transfer. The trihaem cytochrome PpcA is highly abundant in Gs and is most probably the reservoir of electrons destined for the outer surface. In addition to its role in electron transfer pathways, we have previously shown that this protein could perform e(-)/H(+) energy transduction. This mechanism is achieved by selecting the specific redox states that the protein can access during the redox cycle and might be related to the formation of proton electrochemical potential gradient across the periplasmic membrane. The regulatory role of haem III in the functional mechanism of PpcA was probed by replacing Met(58), a residue that controls the solvent accessibility of haem III, with serine, aspartic acid, asparagine or lysine. The data obtained from the mutants showed that the preferred e(-)/H(+) transfer pathway observed for PpcA is strongly dependent on the reduction potential of haem III. It is striking to note that one residue can fine tune the redox states that can be accessed by the trihaem cytochrome enough to alter the functional pathways.
Collapse
|
17
|
On the road to improve the bioremediation and electricity-harvesting skills of Geobacter sulfurreducens: functional and structural characterization of multihaem cytochromes. Biochem Soc Trans 2012; 40:1295-301. [DOI: 10.1042/bst20120099] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extracellular electron transfer is one of the physiological hallmarks of Geobacter sulfurreducens, allowing these bacteria to reduce toxic and/or radioactive metals and grow on electrode surfaces. Aiming to functionally optimize the respiratory electron-transfer chains, such properties can be explored through genetically engineered strains. Geobacter species comprise a large number of different multihaem c-type cytochromes involved in the extracellular electron-transfer pathways. The functional characterization of multihaem proteins is particularly complex because of the coexistence of several microstates in solution, connecting the fully reduced and oxidized states. NMR spectroscopy has been used to monitor the stepwise oxidation of each individual haem and thus to obtain information on each microstate. For the structural study of these proteins, a cost-effective isotopic labelling of the protein polypeptide chains was combined with the comparative analysis of 1H-13C HSQC (heteronuclear single-quantum correlation) NMR spectra obtained for labelled and unlabelled samples. These new methodological approaches allowed us to study G. sulfurreducens haem proteins functionally and structurally, revealing functional mechanisms and key residues involved in their electron-transfer capabilities. Such advances can now be applied to the design of engineered haem proteins to improve the bioremediation and electricity-harvesting skills of G. sulfurreducens.
Collapse
|
18
|
Tran QM, Fong C, Rothery RA, Maklashina E, Cecchini G, Weiner JH. Out of plane distortions of the heme b of Escherichia coli succinate dehydrogenase. PLoS One 2012; 7:e32641. [PMID: 22393428 PMCID: PMC3290573 DOI: 10.1371/journal.pone.0032641] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/28/2012] [Indexed: 11/18/2022] Open
Abstract
The role of the heme b in Escherichia coli succinate dehydrogenase is highly ambiguous and its role in catalysis is questionable. To examine whether heme reduction is an essential step of the catalytic mechanism, we generated a series of site-directed mutations around the heme binding pocket, creating a library of variants with a stepwise decrease in the midpoint potential of the heme from the wild-type value of +20 mV down to −80 mV. This difference in midpoint potential is enough to alter the reactivity of the heme towards succinate and thus its redox state under turnover conditions. Our results show both the steady state succinate oxidase and fumarate reductase catalytic activity of the enzyme are not a function of the redox potential of the heme. As well, lower heme potential did not cause an increase in the rate of superoxide production both in vitro and in vivo. The electron paramagnetic resonance (EPR) spectrum of the heme in the wild-type enzyme is a combination of two distinct signals. We link EPR spectra to structure, showing that one of the signals likely arises from an out-of-plane distortion of the heme, a saddled conformation, while the second signal originates from a more planar orientation of the porphyrin ring.
Collapse
Affiliation(s)
- Quang M. Tran
- Membrane Protein Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Carmen Fong
- Membrane Protein Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Richard A. Rothery
- Membrane Protein Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Elena Maklashina
- Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Gary Cecchini
- Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Joel H. Weiner
- Membrane Protein Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
19
|
Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru AE, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP. Geobacter: the microbe electric's physiology, ecology, and practical applications. Adv Microb Physiol 2011; 59:1-100. [PMID: 22114840 DOI: 10.1016/b978-0-12-387661-4.00004-5] [Citation(s) in RCA: 395] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Geobacter species specialize in making electrical contacts with extracellular electron acceptors and other organisms. This permits Geobacter species to fill important niches in a diversity of anaerobic environments. Geobacter species appear to be the primary agents for coupling the oxidation of organic compounds to the reduction of insoluble Fe(III) and Mn(IV) oxides in many soils and sediments, a process of global biogeochemical significance. Some Geobacter species can anaerobically oxidize aromatic hydrocarbons and play an important role in aromatic hydrocarbon removal from contaminated aquifers. The ability of Geobacter species to reductively precipitate uranium and related contaminants has led to the development of bioremediation strategies for contaminated environments. Geobacter species produce higher current densities than any other known organism in microbial fuel cells and are common colonizers of electrodes harvesting electricity from organic wastes and aquatic sediments. Direct interspecies electron exchange between Geobacter species and syntrophic partners appears to be an important process in anaerobic wastewater digesters. Functional and comparative genomic studies have begun to reveal important aspects of Geobacter physiology and regulation, but much remains unexplored. Quantifying key gene transcripts and proteins of subsurface Geobacter communities has proven to be a powerful approach to diagnose the in situ physiological status of Geobacter species during groundwater bioremediation. The growth and activity of Geobacter species in the subsurface and their biogeochemical impact under different environmental conditions can be predicted with a systems biology approach in which genome-scale metabolic models are coupled with appropriate physical/chemical models. The proficiency of Geobacter species in transferring electrons to insoluble minerals, electrodes, and possibly other microorganisms can be attributed to their unique "microbial nanowires," pili that conduct electrons along their length with metallic-like conductivity. Surprisingly, the abundant c-type cytochromes of Geobacter species do not contribute to this long-range electron transport, but cytochromes are important for making the terminal electrical connections with Fe(III) oxides and electrodes and also function as capacitors, storing charge to permit continued respiration when extracellular electron acceptors are temporarily unavailable. The high conductivity of Geobacter pili and biofilms and the ability of biofilms to function as supercapacitors are novel properties that might contribute to the field of bioelectronics. The study of Geobacter species has revealed a remarkable number of microbial physiological properties that had not previously been described in any microorganism. Further investigation of these environmentally relevant and physiologically unique organisms is warranted.
Collapse
Affiliation(s)
- Derek R Lovley
- Department of Microbiology and Environmental Biotechnology Center, University of Massachusetts, Amherst, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Morgado L, Bruix M, Pessanha M, Londer YY, Salgueiro CA. Thermodynamic characterization of a triheme cytochrome family from Geobacter sulfurreducens reveals mechanistic and functional diversity. Biophys J 2010; 99:293-301. [PMID: 20655858 DOI: 10.1016/j.bpj.2010.04.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/09/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022] Open
Abstract
A family of five periplasmic triheme cytochromes (PpcA-E) was identified in Geobacter sulfurreducens, where they play a crucial role by driving electron transfer from the cytoplasm to the cell exterior and assisting the reduction of extracellular acceptors. The thermodynamic characterization of PpcA using NMR and visible spectroscopies was previously achieved under experimental conditions identical to those used for the triheme cytochrome c(7) from Desulfuromonas acetoxidans. Under such conditions, attempts to obtain NMR data were complicated by the relatively fast intermolecular electron exchange. This work reports the detailed thermodynamic characterization of PpcB, PpcD, and PpcE under optimal experimental conditions. The thermodynamic characterization of PpcA was redone under these new conditions to allow a proper comparison of the redox properties with those of other members of this family. The heme reduction potentials of the four proteins are negative, differ from each other, and cover different functional ranges. These reduction potentials are strongly modulated by heme-heme interactions and by interactions with protonated groups (the redox-Bohr effect) establishing different cooperative networks for each protein, which indicates that they are designed to perform different functions in the cell. PpcA and PpcD appear to be optimized to interact with specific redox partners involving e(-)/H(+) transfer via different mechanisms. Although no evidence of preferential electron transfer pathway or e(-)/H(+) coupling was found for PpcB and PpcE, the difference in their working potential ranges suggests that they may also have different physiological redox partners. This is the first study, to our knowledge, to characterize homologous cytochromes from the same microorganism and provide evidence of their different mechanistic and functional properties. These findings provide an explanation for the coexistence of five periplasmic triheme cytochromes in G. sulfurreducens.
Collapse
Affiliation(s)
- Leonor Morgado
- Requimte-Centro de Química Fina e Biotecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | | | | | | | |
Collapse
|
21
|
Londer YY, Giuliani SE, Peppler T, Collart FR. Addressing Shewanella oneidensis “cytochromome”: The first step towards high-throughput expression of cytochromes c. Protein Expr Purif 2008; 62:128-37. [DOI: 10.1016/j.pep.2008.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 06/23/2008] [Indexed: 01/20/2023]
|