1
|
Ziqubu K, Mazibuko-Mbeje SE, Dludla PV. Regulation of adipokine and batokine secretion by dietary flavonoids, as a prospective therapeutic approach for obesity and its metabolic complications. Biochimie 2025; 230:95-113. [PMID: 39551425 DOI: 10.1016/j.biochi.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Traditionally recognised as the energy reservoir and main site of adaptive thermogenesis, white and brown adipose tissues are complex endocrine organs regulating systemic energy metabolism via the secretion of bioactive molecules, termed "adipokines" and "batokines", respectively. Due to its significant role in regulating whole-body energy metabolism and other physiological processes, adipose tissue has been increasingly explored as a feasible therapeutic target for obesity. Flavonoids are one of the most significant plant polyphenolic compounds holding a great potential as therapeutic agents for combating obesity. However, understanding their mechanisms of action remains largely insufficient to formulate therapeutic theories. This review critically discusses scientific evidence highlighting the role of flavonoids in ameliorating obesity-related metabolic complications, including adipose tissue dysfunction, inflammation, insulin resistance, hepatic steatosis, and cardiovascular comorbidities in part by modulating the release of adipokines and batokines. Further discussion advocates for the use of therapeutics targeting these bioactive molecules as a potential avenue for developing effective treatment for obesity and its adverse metabolic diseases such as type 2 diabetes.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | | | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
2
|
Kumar S, Chhimwal J, Kumar S, Singh R, Patial V, Purohit R, Padwad YS. Phloretin and phlorizin mitigates inflammatory stress and alleviate adipose and hepatic insulin resistance by abrogating PPARγ S273-Cdk5 interaction in type 2 diabetic mice. Life Sci 2023; 322:121668. [PMID: 37023949 DOI: 10.1016/j.lfs.2023.121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
AIMS The rising prevalence of type 2 diabetes mellitus (T2DM) and accompanying insulin resistance is alarming globally. Natural and synthetic agonists of PPARγ are potentially attractive candidates for diabetics and are known to efficiently reverse adipose and hepatic insulin resistance, but related side effects and escalating costs are the causes of concern. Therefore, targeting PPARγ with natural ligands is advantageous and promising approach for the better management of T2DM. The present research aimed to assess the antidiabetic potential of phenolics Phloretin (PTN) and Phlorizin (PZN) in type 2 diabetic mice. MAIN METHODS In silico docking was performed to check the effect of PTN and PZN on PPARγ S273-Cdk5 interactions. The docking results were further validated in preclinical settings by utilizing a mice model of high fat diet-induced T2DM. KEY FINDINGS Computational docking and further MD-simulation data revealed that PTN and PZN inhibited the activation of Cdk5, thereby blocking the phosphorylation of PPARγ. Our in vivo results further demonstrated that PTN and PZN administration significantly improved the secretory functions of adipocytes by increasing adiponectin and reducing inflammatory cytokine levels, which ultimately reduced the hyperglycaemic index. Additionally, combined treatment of PTN and PZN decreased in vivo adipocyte expansion and increased Glut4 expression in adipose tissues. Furthermore, PTN and PZN treatment reduced hepatic insulin resistance by modulating lipid metabolism and inflammatory markers. SIGNIFICANCE In summary, our findings strongly imply that PTN and PZN are candidates as nutraceuticals in the management of comorbidities related to diabetes and its complications.
Collapse
Affiliation(s)
- Shiv Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Jyoti Chhimwal
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Suresh Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Rahul Singh
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India.
| | - Yogendra S Padwad
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
3
|
3-OH Phloretin Inhibits High-Fat Diet-Induced Obesity and Obesity-Induced Inflammation by Reducing Macrophage Infiltration into White Adipose Tissue. Molecules 2023; 28:molecules28041851. [PMID: 36838843 PMCID: PMC9964960 DOI: 10.3390/molecules28041851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Phloretin and its glycoside phlorizin have been reported to prevent obesity induced by high-fat diet (HFD), but the effect of 3-OH phloretin, a catechol metabolite of phloretin, has not been investigated. In this study, we investigated the anti-obesity effects of phloretin and 3-OH phloretin in HFD-fed mice. The body weight gain induced by HFD was more inhibited by administration of 3-OH phloretin than by phloretin. The increases in fat mass, white adipose tissue (WAT) weight, adipocyte size, and lipid accumulation by HFD were also remarkably inhibited by 3-OH phloretin and, to a lesser extent, by phloretin. The HFD-induced upregulation of chemokines and pro-inflammatory cytokines was suppressed by 3-OH phloretin, preventing M1 macrophages from infiltrating into WAT and thereby reducing WAT inflammation. 3-OH phloretin also showed a more potent effect than phloretin on suppressing the expression of adipogenesis regulator genes, such as PPARγ2, C/EBPα, FAS, and CD36. Fasting blood glucose and insulin levels increased by HFD were diminished by the administration of 3-OH phloretin, suggesting that 3-OH phloretin may alleviate obesity-induced insulin resistance. These findings suggested that 3-OH phloretin has the potential to be a natural bioactive compound that can be used in the prevention or treatment of obesity and insulin resistance.
Collapse
|
4
|
The Molecular Pharmacology of Phloretin: Anti-Inflammatory Mechanisms of Action. Biomedicines 2023; 11:biomedicines11010143. [PMID: 36672652 PMCID: PMC9855955 DOI: 10.3390/biomedicines11010143] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The isolation of phlorizin from the bark of an apple tree in 1835 led to a flurry of research on its inhibitory effect on glucose transporters in the intestine and kidney. Using phlorizin as a prototype drug, antidiabetic agents with more selective inhibitory activity towards glucose transport at the kidney have subsequently been developed. In contrast, its hydrolysis product in the body, phloretin, which is also found in the apple plant, has weak antidiabetic properties. Phloretin, however, displays a range of pharmacological effects including antibacterial, anticancer, and cellular and organ protective properties both in vitro and in vivo. In this communication, the molecular basis of its anti-inflammatory mechanisms that attribute to its pharmacological effects is scrutinised. These include inhibiting the signalling pathways of inflammatory mediators' expression that support its suppressive effect in immune cells overactivation, obesity-induced inflammation, arthritis, endothelial, myocardial, hepatic, renal and lung injury, and inflammation in the gut, skin, and nervous system, among others.
Collapse
|
5
|
Itou da Silva FS, Veiga Bizerra PF, Mito MS, Constantin RP, Klosowski EM, Lima de Souza BT, Moreira da Costa Menezes PV, Alves Bueno PS, Nanami LF, Marchiosi R, Dantas Dos Santos W, Ferrarese-Filho O, Ishii-Iwamoto EL, Constantin RP. The metabolic and toxic acute effects of phloretin in the rat liver. Chem Biol Interact 2022; 364:110054. [PMID: 35872042 DOI: 10.1016/j.cbi.2022.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
The current study sought to evaluate the acute effects of phloretin (PH) on metabolic pathways involved in the maintenance of glycemia, specifically gluconeogenesis and glycogenolysis, in the perfused rat liver. The acute effects of PH on energy metabolism and toxicity parameters in isolated hepatocytes and mitochondria, as well as its effects on the activity of a few key enzymes, were also evaluated. PH inhibited gluconeogenesis from different substrates, stimulated glycogenolysis and glycolysis, and altered oxygen consumption. The citric acid cycle activity was inhibited by PH under gluconeogenic conditions. Similarly, PH reduced the cellular ATP/ADP and ATP/AMP ratios under gluconeogenic and glycogenolytic conditions. In isolated mitochondria, PH inhibited the electron transport chain and the FoF1-ATP synthase complex as well as acted as an uncoupler of oxidative phosphorylation, inhibiting the synthesis of ATP. PH also decreased the activities of malate dehydrogenase, glutamate dehydrogenase, glucose 6-phosphatase, and glucose 6-phosphate dehydrogenase. Part of the bioenergetic effects observed in isolated mitochondria was shown in isolated hepatocytes, in which PH inhibited mitochondrial respiration and decreased ATP levels. An aggravating aspect might be the finding that PH promotes the net oxidation of NADH, which contradicts the conventional belief that the compound operates as an antioxidant. Although trypan blue hepatocyte viability tests revealed substantial losses in cell viability over 120 min of incubation, PH did not promote extensive enzyme leakage from injured cells. In line with this effect, only after a lengthy period of infusion did PH considerably stimulate the release of enzymes into the effluent perfusate of livers. In conclusion, the increased glucose release caused by enhanced glycogenolysis, along with suppression of gluconeogenesis, is the opposite of what is predicted for antihyperglycemic agents. These effects were caused in part by disruption of mitochondrial bioenergetics, a result that should be considered when using PH for therapeutic purposes, particularly over long periods and in large doses.
Collapse
Affiliation(s)
- Fernanda Sayuri Itou da Silva
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Paulo Francisco Veiga Bizerra
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Márcio Shigueaki Mito
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Renato Polimeni Constantin
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Eduardo Makiyama Klosowski
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Byanca Thais Lima de Souza
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | | | | | - Letícia Fernanda Nanami
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Rogério Marchiosi
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Wanderley Dantas Dos Santos
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Osvaldo Ferrarese-Filho
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Emy Luiza Ishii-Iwamoto
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Rodrigo Polimeni Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil; Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| |
Collapse
|
6
|
Ghanbari M, Lamuki MS, Habibi E, Sadeghimahalli F. Artemisia annua L. Extracts Improved Insulin Resistance via Changing Adiponectin, Leptin and Resistin Production in HFD/STZ Diabetic Mice. J Pharmacopuncture 2022; 25:130-137. [PMID: 35837139 PMCID: PMC9240412 DOI: 10.3831/kpi.2022.25.2.130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives Insulin resistance (IR) is major cause of type 2 diabetes (T2D), and adipokines (e.g., adiponectin, leptin, and resistin) play an important role in insulin sensitivity. Medicinal plants are frequently used for T2D treatment. This study investigates the effect of Artemisia annua L. (AA) extracts on adipokines in mice with high-fat-diet (HFD)/streptozotocin (STZ)-induced T2D. Methods We divided 60 mice into 12 groups (n = 5 per group) control, untreated T2D, treated T2D, and 9 other groups. T2D was induced in all groups, except controls, by 8 weeks of HFD and STZ injection. The treated T2D group was administered 250 mg/kg of metformin (MTF), while the nine other groups were treated with 100, 200, and 400 mg/kg of hot-water extract (HWE), cold-water extract (CWE), and alcoholic extract (ALE) of AA (daily oral gavage) along with 250 mg/kg of MTF for 4 weeks. The intraperitoneal glucose tolerance test (IPGTT) was performed, and the homeostasis model assessment of adiponectin (HOMA-AD) index and blood glucose and serum insulin, leptin, adiponectin, and resistin levels were measured. Results Similar to MTF, all three types of AA extracts (HWEs, CWEs, and ALEs) significantly (p < 0.0001) decreased the area under the curve (AUC) of glucose during the IPGTT, the HOMA-AD index, blood glucose levels, and serum insulin, leptin, and resistin levels and increased serum adiponectin levels in the MTF group compared to the T2D group (p < 0.0001). The HWEs affected adipokine release, while the CWEs and ALEs decreased leptin and resistin production. Conclusion Water and alcoholic AA extracts have an antihyperglycemic and antihyperinsulinemic effect on HFD/STZ diabetic mice. In addition, they decrease IR by reducing leptin and resistin production and increasing adiponectin secretion from adipocytes.
Collapse
Affiliation(s)
- Mahshid Ghanbari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Manzandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh Lamuki
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Manzandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Emran Habibi
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Forouzan Sadeghimahalli
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Physiology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
7
|
Inhibition of palmitic acid induced adipogenesis by natural polyphenols in 3T3-L1 adipocytes. In Vitro Cell Dev Biol Anim 2022; 58:396-407. [PMID: 35678984 DOI: 10.1007/s11626-022-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/30/2022] [Indexed: 11/05/2022]
Abstract
Dietary free fatty acids induce preadipocyte differentiation in the presence of a hormonal cocktail in 3T3-L1 adipocytes. Plant polyphenols are curb adipocyte differentiation and protect from metabolic stress. In the present study, we examined the effects of the saturated fatty acid, palmitic acid (PA) in presence of flavonoids, chrysin (CR) and hesperidin (HD) and phenolic acid, syringic acid (SYA) and sinapic acid (SIA). Adipocytes were incubated for 10 d with 100 μmol of PA along with 10-100 µmol CR/HD and 100-1000 µmol SYA/SIA. PA induced clonal expansion of preadipocytes, differentiation and oxidative stress in 3T3-L1 cells following 10 d of differentiation. Adipocytes treated with PA exhibited an increase of 300% in clonal population, 110% lipid and 172% reactive oxygen species accumulation. But treatment with CR, HD, SYA and SIA in the presence of PA concentration-dependent effect was observed. Concentrations of CR/HD and SYA/SIA inhibited PA-induced mRNA expression of PPARγ, C/EBPα, SREBP-1c, FAS and NOX4. Moreover, CR, HD, SYA and SIA did not exhibit toxicity in Drosophila DNA. In summary, these results suggest that dietary fatty acids act directly on adipocytes and addition of CR, HD, SYA and SIA resulted in reduction of PA-induced negative effects on 3T3-L1 adipocytes. HIGHLIGHTS: • Palmitic acid, the common dietary free fatty acid, is known to induce adipogenesis in 3T3-L1 adipocytes. • Treatment of differentiating adipocytes with flavonoids and phenolic acids reduced palmitic acid-induced clonal expansion of preadipocytes. • Phytocompounds reduced lipid accumulation and triglyceride production as well as ROS accumulation. • Thus, the phytocompounds showed effective anti-adipogenic activity even in palmitic acid challenged environment in adipocytes.
Collapse
|
8
|
Casado-Díaz A, Rodríguez-Ramos Á, Torrecillas-Baena B, Dorado G, Quesada-Gómez JM, Gálvez-Moreno MÁ. Flavonoid Phloretin Inhibits Adipogenesis and Increases OPG Expression in Adipocytes Derived from Human Bone-Marrow Mesenchymal Stromal-Cells. Nutrients 2021; 13:4185. [PMID: 34836440 PMCID: PMC8623874 DOI: 10.3390/nu13114185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Phloretin (a flavonoid abundant in apple), has antioxidant, anti-inflammatory, and glucose-transporter inhibitory properties. Thus, it has interesting pharmacological and nutraceutical potential. Bone-marrow mesenchymal stem cells (MSC) have high differentiation capacity, being essential for maintaining homeostasis and regenerative capacity in the organism. Yet, they preferentially differentiate into adipocytes instead of osteoblasts with aging. This has a negative impact on bone turnover, remodeling, and formation. We have evaluated the effects of phloretin on human adipogenesis, analyzing MSC induced to differentiate into adipocytes. Expression of adipogenic genes, as well as genes encoding OPG and RANKL (involved in osteoclastogenesis), protein synthesis, lipid-droplets formation, and apoptosis, were studied. Results showed that 10 and 20 µM phloretin inhibited adipogenesis. This effect was mediated by increasing beta-catenin, as well as increasing apoptosis in adipocytes, at late stages of differentiation. In addition, this chemical increased OPG gene expression and OPG/RANKL ratio in adipocytes. These results suggest that this flavonoid (including phloretin-rich foods) has interesting potential for clinical and regenerative-medicine applications. Thus, such chemicals could be used to counteract obesity and prevent bone-marrow adiposity. That is particularly useful to protect bone mass and treat diseases like osteoporosis, which is an epidemic worldwide.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición—GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, 14004 Córdoba, Spain; (Á.R.-R.); (B.T.-B.); (J.M.Q.-G.); (M.Á.G.-M.)
| | - Ángel Rodríguez-Ramos
- Unidad de Gestión Clínica de Endocrinología y Nutrición—GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, 14004 Córdoba, Spain; (Á.R.-R.); (B.T.-B.); (J.M.Q.-G.); (M.Á.G.-M.)
| | - Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición—GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, 14004 Córdoba, Spain; (Á.R.-R.); (B.T.-B.); (J.M.Q.-G.); (M.Á.G.-M.)
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, 14071 Córdoba, Spain;
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición—GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, 14004 Córdoba, Spain; (Á.R.-R.); (B.T.-B.); (J.M.Q.-G.); (M.Á.G.-M.)
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición—GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, 14004 Córdoba, Spain; (Á.R.-R.); (B.T.-B.); (J.M.Q.-G.); (M.Á.G.-M.)
| |
Collapse
|
9
|
Lee JS, Hyun IK, Yoon JW, Seo HJ, Kang SS. Bioconversion Products of Whey by Lactic Acid Bacteria Exert Anti-Adipogenic Effect. Food Sci Anim Resour 2021; 41:145-152. [PMID: 33506224 PMCID: PMC7810400 DOI: 10.5851/kosfa.2020.e78] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/04/2020] [Accepted: 09/09/2020] [Indexed: 01/20/2023] Open
Abstract
Microbial bioconversion using lactic acid bacteria (LAB) provides several human
health benefits. Although whey and whey-derived bioactive compounds can
contribute to an improvement in human health, the potential anti-obesity effect
of whey bioconversion by LAB has not been well studied. This study aimed to
investigate whether bioconversion of whey by Pediococcus
pentosaceus KI31 and Lactobacillus sakei KI36
(KI31-W and KI36-W, respectively) inhibits 3T3-L1 preadipocyte differentiation.
Both KI31-W and KI36-W reduced intracellular lipid accumulation significantly,
without decreasing 3T3-L1 preadipocyte proliferation. In addition,
obesity-related transcription factor (peroxisome proliferator-activated receptor
γ) and genes (adipocyte fatty acid-binding protein and lipoprotein
lipase) were down-regulated significantly in 3T3-L1 cells in the presence of
KI31-W and KI36-W. Collectively, these results suggest that bioconversion of
whey by LAB exhibits anti-adipogenic activity and may be applied as a
therapeutic agent for obesity.
Collapse
Affiliation(s)
- Ji Soo Lee
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea
| | - In Kyung Hyun
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea
| | - Ji-Won Yoon
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea
| | - Hye-Jin Seo
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea
| | - Seok-Seong Kang
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea
| |
Collapse
|
10
|
Videira NB, Dias MMG, Terra MF, de Oliveira VM, García-Arévalo M, Avelino TM, Torres FR, Batista FAH, Figueira ACM. PPAR Modulation Through Posttranslational Modification Control. NUCLEAR RECEPTORS 2021:537-611. [DOI: 10.1007/978-3-030-78315-0_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Nguyen NA, Jang J, Le TK, Nguyen THH, Woo SM, Yoo SK, Lee YJ, Park KD, Yeom SJ, Kim GJ, Kang HS, Yun CH. Biocatalytic Production of a Potent Inhibitor of Adipocyte Differentiation from Phloretin Using Engineered CYP102A1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6683-6691. [PMID: 32468814 DOI: 10.1021/acs.jafc.0c03156] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we investigated an efficient enzymatic strategy for producing potentially valuable phloretin metabolites from phlorizin, a glucoside of phloretin that is rich in apple pomace. Almond β-glucosidase efficiently removed phlorizin's glucose moiety to produce phloretin. CYP102A1 engineered by site-directed mutagenesis, domain swapping, and random mutagenesis catalyzed the highly regioselective C-hydroxylation of phloretin into 3-OH phloretin with high conversion yields. Under the optimal hydroxylation conditions of 15 g cells L-1 and a 20 mM substrate for whole-cell biocatalysis, phloretin was regioselectively hydroxylated into 3.1 mM 3-OH phloretin each hour. Furthermore, differentiation of 3T3-L1 preadipocytes into adipocytes and lipid accumulation were dramatically inhibited by 3-OH phloretin but promoted by phloretin. Consistent with these inhibitory effects, the expression of adipogenic regulator genes was downregulated by 3-OH phloretin. We propose a platform for the sustainable production and value creation of phloretin metabolites from apple pomace capable of inhibiting adipogenesis.
Collapse
Affiliation(s)
- Ngoc Anh Nguyen
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Jin Jang
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Thien-Kim Le
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Thi Huong Ha Nguyen
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Su-Min Woo
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Su-Kyoung Yoo
- Department of Biological Sciences and Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Young Ju Lee
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea
| | - Ki Deok Park
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences and Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyung-Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| |
Collapse
|
12
|
Liddle DM, Kavanagh ME, Wright AJ, Robinson LE. Apple Flavonols Mitigate Adipocyte Inflammation and Promote Angiogenic Factors in LPS- and Cobalt Chloride-Stimulated Adipocytes, in Part by a Peroxisome Proliferator-Activated Receptor-γ-Dependent Mechanism. Nutrients 2020; 12:nu12051386. [PMID: 32408695 PMCID: PMC7284758 DOI: 10.3390/nu12051386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue (AT) expansion induces local hypoxia, a key contributor to the chronic low-grade inflammation that drives obesity-associated disease. Apple flavonols phloretin (PT) and phlorizin (PZ) are suggested anti-inflammatory molecules but their effectiveness in obese AT is inadequately understood. Using in vitro models designed to reproduce the obese AT microenvironment, 3T3-L1 adipocytes were cultured for 24 h with PT or PZ (100 μM) concurrent with the inflammatory stimulus lipopolysaccharide (LPS; 10 ng/mL) and/or the hypoxia mimetic cobalt chloride (CoCl2; 100 μM). Within each condition, PT was more potent than PZ and its effects were partially mediated by peroxisome proliferator-activated receptor (PPAR)-γ (p < 0.05), as tested using the PPAR-γ antagonist bisphenol A diglycidyl ether (BADGE). In LPS-, CoCl2-, or LPS + CoCl2-stimulated adipocytes, PT reduced mRNA expression and/or secreted protein levels of inflammatory and macrophage chemotactic adipokines, and increased that of anti-inflammatory and angiogenic adipokines, which was consistent with reduced mRNA expression of M1 polarization markers and increased M2 markers in RAW 264.7 macrophages cultured in media collected from LPS + CoCl2-simulated adipocytes (p < 0.05). Further, within LPS + CoCl2-stimulated adipocytes, PT reduced reactive oxygen species accumulation, nuclear factor-κB activation, and apoptotic protein expression (p < 0.05). Overall, apple flavonols attenuate critical aspects of the obese AT phenotype.
Collapse
|
13
|
Jeong YU, Park YJ. Ergosterol Peroxide from the Medicinal Mushroom Ganoderma lucidum Inhibits Differentiation and Lipid Accumulation of 3T3-L1 Adipocytes. Int J Mol Sci 2020; 21:ijms21020460. [PMID: 31936890 PMCID: PMC7014426 DOI: 10.3390/ijms21020460] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
Ergosterol peroxide is a natural compound of the steroid family found in many fungi, and it possesses antioxidant, anti-inflammatory, anticancer and antiviral activities. The anti-obesity activity of several edible and medicinal mushrooms has been reported, but the effect of mushroom-derived ergosterol peroxide on obesity has not been studied. Therefore, we analyzed the effect of ergosterol peroxide on the inhibition of triglyceride synthesis at protein and mRNA levels and differentiation of 3T3-L1 adipocytes. Ergosterol peroxide inhibited lipid droplet synthesis of differentiated 3T3-L1 cells, expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAT/enhancer-binding protein alpha (C/EBPα), the major transcription factors of differentiation, and also the expression of sterol regulatory element-binding protein-1c (SREBP-1c), which promotes the activity of PPARγ, resulting in inhibition of differentiation. It further inhibited the expression of fatty acid synthase (FAS), fatty acid translocase (FAT), and acetyl-coenzyme A carboxylase (ACC), which are lipogenic factors. In addition, it inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) involved in cell proliferation and activation of early differentiation transcription factors in the mitotic clonal expansion (MCE) stage. As a result, ergosterol peroxide significantly inhibited the synthesis of triglycerides and differentiation of 3T3-L1 cells, and is, therefore, a possibile prophylactic and therapeutic agent for obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Yong-Un Jeong
- Department of Medicinal Bioscience, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea;
| | - Young-Jin Park
- Department of Medicinal Bioscience, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea;
- Research Institute for Biomedical & Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea
- Correspondence: ; Tel.: +82-43-840-3601
| |
Collapse
|
14
|
Kong Y, Zhang S, Wu R, Su X, Peng D, Zhao M, Su Y. New insights into different adipokines in linking the pathophysiology of obesity and psoriasis. Lipids Health Dis 2019; 18:171. [PMID: 31521168 PMCID: PMC6745073 DOI: 10.1186/s12944-019-1115-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic, systemic, hyper-proliferative immune-mediated inflammatory skin disease. The results of epidemiological investigations have shown that psoriasis affects around 2% of the general population worldwide, and the total number of psoriasis patients is more than 6 million in China. Apart from the skin manifestations, psoriasis has been verified to associate with several metabolic comorbidities, such as insulin resistance, diabetes and obesity. However, the underlying mechanism is still not elucidated. Adipocytes, considered as the active endocrine cells, are dysfunctional in obesity which displays increased synthesis and secretion of adipokines with other modified metabolic properties. Currently, growing evidence has pointed to the central role of adipokines in adipose tissue and the immune system, providing new insights into the effect of adipokines in linking the pathophysiology of obesity and psoriasis. In this review, we summarize the current understanding of the pathological role of adipokines and the potential mechanisms whereby different adipokines link obesity and psoriasis. Furthermore, we also provide evidence which identifies a potential therapeutic target aiming at adipokines for the management of these two diseases.
Collapse
Affiliation(s)
- Yi Kong
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Suhan Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ruifang Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Xin Su
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| | - Yuwen Su
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
15
|
Phloretin and phloridzin improve insulin sensitivity and enhance glucose uptake by subverting PPARγ/Cdk5 interaction in differentiated adipocytes. Exp Cell Res 2019; 383:111480. [PMID: 31279631 DOI: 10.1016/j.yexcr.2019.06.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 11/21/2022]
Abstract
Activators of peroxisome proliferator-activated receptor-γ (PPARγ agonists) are therapeutically promising candidates against insulin resistance and hyperglycemia. Synthetic PPARγ agonists are known to effectively enhance insulin sensitivity, but these are also associated with adverse side-effects and rising cost of treatment. Therefore, natural PPARγ targeting ligands are desirable alternatives for the management of insulin resistance associated with type 2 diabetes. Phloretin (PT) and Phloridzin (PZ) are predominant apple phenolics, which are recognized for their various pharmacological functions. The present study assessed the potential of PT and PZ in enhancing insulin sensitivity and glucose uptake by inhibiting Cdk5 activation and corresponding PPARγ phosphorylation in differentiated 3T3L1 cells. In silico docking and subsequent validation using 3T3L1 cells revealed that PT and PZ not only block the ser273 site of PPARγ but also inhibit the activation of Cdk5 itself, thereby, indicating their potent PPARγ regulatory attributes. Corroborating this, application of PT and PZ significantly enhanced the accumulation of cellular triglycerides as well as expression of insulin-sensitizing genes in adipocytes ultimately resulting in improved glucose uptake. Taken together, the present study reports that PT and PZ inhibit Cdk5 activation, which could be directly influencing the apparent PPARγ inhibition at ser273, ultimately resulting in improved insulin sensitivity and glucose uptake.
Collapse
|
16
|
Takeno A, Kanazawa I, Tanaka KI, Notsu M, Sugimoto T. Phloretin Suppresses Bone Morphogenetic Protein-2-Induced Osteoblastogenesis and Mineralization via Inhibition of Phosphatidylinositol 3-kinases/Akt Pathway. Int J Mol Sci 2019; 20:ijms20102481. [PMID: 31137461 PMCID: PMC6566987 DOI: 10.3390/ijms20102481] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
Phloretin has pleiotropic effects, including glucose transporter (GLUT) inhibition. We previously showed that phloretin promoted adipogenesis of bone marrow stromal cell (BMSC) line ST2 independently of GLUT1 inhibition. This study investigated the effect of phloretin on osteoblastogenesis of ST2 cells and osteoblastic MC3T3-E1 cells. Treatment with 10 to 100 µM phloretin suppressed mineralization and expression of osteoblast differentiation markers, such as alkaline phosphatase (ALP), osteocalcin (OCN), type 1 collagen, runt-related transcription factor 2 (Runx2), and osterix (Osx), while increased adipogenic markers, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid-binding protein 4, and adiponectin. Phloretin also inhibited mineralization and decreased osteoblast differentiation markers of MC3T3-E1 cells. Phloretin suppressed phosphorylation of Akt in ST2 cells. In addition, treatment with a phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor, LY294002, suppressed the mineralization and the expression of osteoblast differentiation markers other than ALP. GLUT1 silencing by siRNA did not affect mineralization, although it decreased the expression of OCN and increased the expression of ALP, Runx2, and Osx. The effects of GLUT1 silencing on osteoblast differentiation markers and mineralization were inconsistent with those of phloretin. Taken together, these findings suggest that phloretin suppressed osteoblastogenesis of ST2 and MC3T3-E1 cells by inhibiting the PI3K/Akt pathway, suggesting that the effects of phloretin may not be associated with glucose uptake inhibition.
Collapse
Affiliation(s)
- Ayumu Takeno
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane 693-8501, Japan.
| | - Ippei Kanazawa
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane 693-8501, Japan.
| | - Ken-Ichiro Tanaka
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane 693-8501, Japan.
| | - Masakazu Notsu
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane 693-8501, Japan.
| | - Toshitsugu Sugimoto
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane 693-8501, Japan.
| |
Collapse
|
17
|
Matsubara T, Takakura N, Urata M, Muramatsu Y, Tsuboi M, Yasuda K, Addison WN, Zhang M, Matsuo K, Nakatomi C, Shigeyama-Tada Y, Kaneuji T, Nakamichi A, Kokabu S. Geranylgeraniol Induces PPARγ Expression and Enhances the Biological Effects of a PPARγ Agonist in Adipocyte Lineage Cells. In Vivo 2019; 32:1339-1344. [PMID: 30348686 DOI: 10.21873/invivo.11384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The global incidence of diabetes mellitus (DM) has risen precipitously, even in middle- and low-income countries. Peroxisome proliferator-activated receptor γ (PPARγ) plays an important role in the control of cellular glucose metabolism. Activation of PPARγ beneficially results in increased insulin sensitivity. However, the expression of PPARγ is reduced by obesity and several nutritional factors. Here we examined the effect of geranylgeraniol (GGOH), a bioactive compound found naturally in fruits, vegetables, and grains, on the expression and activation of PPARγ. MATERIALS AND METHODS C3H10T1/2 mouse embryonic fibroblasts and 3T3-L1 pre-adipocytes were used as in vitro models of adipocyte differentiation and function. Quantitative reverse-transcriptase polymerase chain reaction, western blotting, Oil Red O staining, and luciferase assay were performed to respectively assess mRNA expression, protein levels, lipid droplet formation and transcriptional activity. RESULTS GGOH increased the expression of PPARγ in adipocyte lineage cells. GGOH also enhanced adipogenesis induced by rosiglitazone, a thiazolidinedione class PPARγ agonist. CONCLUSION GGOH induces PPARγ expression and enhances the biological effects of a PPARγ agonist in adipocyte lineage cells.
Collapse
Affiliation(s)
- Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Japan
| | - Nana Takakura
- Division of Molecular Signaling and Biochemistry, School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Japan
| | - Mariko Urata
- Division of Molecular Signaling and Biochemistry, School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Japan
| | - Yuya Muramatsu
- Division of Molecular Signaling and Biochemistry, School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Japan
| | - Makoto Tsuboi
- Division of Molecular Signaling and Biochemistry, School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Japan
| | - Kazuma Yasuda
- Division of Molecular Signaling and Biochemistry, School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Japan
| | - William N Addison
- Research Unit, Shriners Hospitals for Children-Canada, Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Min Zhang
- Division of Oral Pathology, Department of Health Promotion, School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Japan
| | - Kou Matsuo
- Division of Oral Pathology, Department of Health Promotion, School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Japan
| | - Chihiro Nakatomi
- Division of Molecular Signaling and Biochemistry, School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Japan
| | - Yukiyo Shigeyama-Tada
- Division of Dental Anesthesiology, Department of Control of Physical Functions, School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Japan
| | - Takeshi Kaneuji
- Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsuko Nakamichi
- Department of Oral Functional Management, School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Japan
| |
Collapse
|
18
|
Yang Q, Han L, Li J, Xu H, Liu X, Wang X, Pan C, Lei C, Chen H, Lan X. Activation of Nrf2 by Phloretin Attenuates Palmitic Acid-Induced Endothelial Cell Oxidative Stress via AMPK-Dependent Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:120-131. [PMID: 30525573 DOI: 10.1021/acs.jafc.8b05025] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phloretin, a dihydrochalcone structural flavonoid compound, possesses antioxidant activity. In this study, we conducted studies to explore the function of phloretin on high palmitic acid-induced oxidative stress in human umbilical vein endothelial cells and investigated the potential mechanism using ribonucleic acid sequencing (RNA-Seq). Our findings reveal that phloretin significantly decreased the levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), increased superoxide dismutase (SOD) and glutathione peroxidase-1 (Gpx-1) activity, and restored the loss of mitochondrial membrane potential (MMP). Next, whole transcriptome analysis was performed using RNA-Seq The results indicated more than 3000 differentially expressed genes (DEGs). Gene Ontology analysis revealed that the DEGs were categorized functionally, mainly by the biological processes, cell metabolism, and cellular response to chemical stimulus. The Kyoto Encyclopedia of Genes and Genomes indicated that they were mainly enriched in cAMP, apoptosis, and cytoskeletal regulation signaling pathways. Furthermore, on the basis of the results of RNA-Seq and Western blotting, our study verified that phloretin upregulated the expression of p-Nrf2 and HO-1 by promoting the phosphorylation of AMPK at Thr172 through activation of liver kinase B1. In conclusion, phloretin attenuates PA-induced oxidative stress in HUVECs via the AMPK/Nrf2 antioxidative pathway.
Collapse
Affiliation(s)
- Qing Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling 712100 , P. R. China
| | - Lin Han
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , P. R. China
| | - Jie Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling 712100 , P. R. China
| | - Han Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling 712100 , P. R. China
| | - Xinfeng Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling 712100 , P. R. China
| | - Xinyu Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling 712100 , P. R. China
| | - Chuanying Pan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling 712100 , P. R. China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling 712100 , P. R. China
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling 712100 , P. R. China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling 712100 , P. R. China
| |
Collapse
|
19
|
Hung MW, Wu CW, Kokubu D, Yoshida S, Miyazaki H. ε-Viniferin is More Effective than Resveratrol in Promoting Favorable Adipocyte Differentiation with Enhanced Adiponectin Expression and Decreased Lipid Accumulation. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ming-Wei Hung
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Che-Wei Wu
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Daichi Kokubu
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Shigeki Yoshida
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Hitoshi Miyazaki
- Faculty of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
20
|
Xu X, Chen X, Huang Z, Chen D, Yu B, Chen H, Zheng P, Luo Y, Yu J. An effect of dietary phloretin supplementation on feed intake in mice. Food Funct 2019; 10:5752-5758. [DOI: 10.1039/c9fo00815b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dietary phloretin supplementation promotes feed intake in mice.
Collapse
Affiliation(s)
- Xiaojiao Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| | - Hong Chen
- College of Food Science
- Sichuan Agricultural University
- Yaan
- P. R. China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| |
Collapse
|
21
|
Phloridzin, an Apple Polyphenol, Exerted Unfavorable Effects on Bone and Muscle in an Experimental Model of Type 2 Diabetes in Rats. Nutrients 2018; 10:nu10111701. [PMID: 30405066 PMCID: PMC6267570 DOI: 10.3390/nu10111701] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022] Open
Abstract
It is believed that apple fruits contain components with health-promoting effects, including some antidiabetic activity. One of the most known apple compounds is phloridzin, a glucoside of phloretin. Phloridzin and phloretin were reported to exert some favorable skeletal effects in estrogen-deficient rats and mice. The aim of the study was to investigate the effects of phloridzin on musculoskeletal system in rats with type 2 diabetes induced by a high-fat diet (HFD) and streptozotocin (STZ). The experiments were performed on mature female Wistar rats, divided into control rats (fed a standard laboratory diet), HFD/STZ control rats, and HFD/STZ rats receiving phloridzin (20 or 50 mg/kg/day per os) for four weeks. Serum biochemical parameters, muscle mass and strength, bone mass, density, histomorphometric parameters and mechanical properties were determined. The HFD/STZ rats developed hyperglycemia, with decreases in the muscle mass and strength and profound osteoporotic changes. Phloridzin at 20 mg/kg markedly augmented the unfavorable effects of diabetes on the muscle mass and strength and decreased growth of bones, whereas, at 50 mg/kg, it did not affect most of the investigated musculoskeletal parameters. Results of the study indicate the possibility of unfavorable effects of phloridzin on the musculoskeletal system in conditions of hyperglycemia.
Collapse
|
22
|
Phloretin Promotes Adipogenesis via Mitogen-Activated Protein Kinase Pathways in Mouse Marrow Stromal ST2 Cells. Int J Mol Sci 2018; 19:ijms19061772. [PMID: 29904032 PMCID: PMC6032296 DOI: 10.3390/ijms19061772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022] Open
Abstract
Phloretin, a glucose transporter (GLUT) inhibitor, has pleiotropic effects. The present study examined the effects of phloretin on the commitment of marrow stromal cells to adipocytes, using the mouse marrow stromal cell line ST2. Oil red O staining showed that treatment with phloretin 10–100 µM promoted lipid accumulation. Real-time PCR showed that phloretin significantly increased the expression of adipogenic markers, including PPARγ, C/EBPα, fatty acid synthase, fatty acid-binding protein 4, and adiponectin. Western blotting showed that phloretin inhibited ERK1/2 and JNK but activated p38 MAPK. Treatment with a MAPK/ERK kinase inhibitor and a JNK inhibitor enhanced adipogenesis, similar to phloretin. In contrast, a p38 MAPK inhibitor suppressed phloretin-induced adipogenesis. Although phloretin phosphorylated AMP-activated protein kinase (AMPK), co-incubation with an AMPK inhibitor did not block phloretin-induced adipogenesis. The 2-deoxyglucose colorimetric assay showed that phloretin and siRNA silencing of GLUT1 decreased glucose uptake. However, unlike phloretin treatment, GLUT1 silencing inhibited adipogenesis. In addition, phloretin enhanced adipogenesis in GLUT1 knocked-down cells. Taken together, phloretin induced adipogenesis of marrow stromal cells by inhibiting ERK1/2 and JNK and by activating p38 MAPK. The adipogenic effects of phloretin were independent of glucose uptake inhibition. Phloretin may affect energy metabolism by influencing adipogenesis and adiponectin expression.
Collapse
|
23
|
Liu S, Yuan Y, Zhou Y, Zhao M, Chen Y, Cheng J, Lu Y, Liu J. Phloretin attenuates hyperuricemia-induced endothelial dysfunction through co-inhibiting inflammation and GLUT9-mediated uric acid uptake. J Cell Mol Med 2017; 21:2553-2562. [PMID: 28402018 PMCID: PMC5618667 DOI: 10.1111/jcmm.13176] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/20/2017] [Indexed: 02/05/2023] Open
Abstract
Hyperuricemia is an important risk factor for cardiovascular and renal diseases. Phloretin had shown antioxidant and anti‐inflammatory properties, but its role in endothelial injury is rarely reported. In this study, we aimed to investigate the protective effect of phloretin on UA‐induced injury in human umbilical vein endothelial cells. The effects of UA and phloretin on cell viability, inflammation, THP‐1 monocyte adhesion, endothelial cell tube formation, GLUT9 expression and UA uptake in human umbilical vein endothelial cells were evaluated. The changes of nuclear factor‐kappa B/extracellular regulated protein kinases signalling were also analysed. Our results showed that UA reduced cell viability and tube formation, and increased inflammation and monocytes adhesion in human umbilical vein endothelial cells in a dose‐dependent manner. In contrast, phloretin significantly attenuated pro‐inflammatory factors expression and endothelial injury induced by UA. Phloretin inhibited the activation of extracellular regulated protein kinases/nuclear factor‐kappa B pathway, and reduced GLUT9 and it mediated UA uptake in human umbilical vein endothelial cells. These results indicated that phloretin attenuated UA‐induced endothelial injury via a synergic mechanism including direct anti‐inflammatory effect and lowering cellular UA uptake. Our study suggested that phloretin might be a promising therapy for hyperuricemia‐related cardiovascular diseases.
Collapse
Affiliation(s)
- Shuyun Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yijie Zhou
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Zhao
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Li KK, Peng JM, Zhu W, Cheng BH, Li CM. Gallocatechin gallate (GCG) inhibits 3T3-L1 differentiation and lipopolysaccharide induced inflammation through MAPK and NF-κB signaling. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
25
|
Kim IH, Nam TJ. Enzyme-treated Ecklonia cava extract inhibits adipogenesis through the downregulation of C/EBPα in 3T3-L1 adipocytes. Int J Mol Med 2017; 39:636-644. [PMID: 28204815 PMCID: PMC5360387 DOI: 10.3892/ijmm.2017.2869] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/12/2017] [Indexed: 12/17/2022] Open
Abstract
In this study, we examined the inhibitory effects of enzyme- treated Ecklonia cava (EEc) extract on the adipogenesis of 3T3-L1 adipocytes. The components of Ecklonia cava (E. cava) were first separated and purified using the digestive enzymes pectinase (Rapidase® X‑Press L) and cellulase (Rohament® CL). We found that the EEc extract contained three distinct phlorotannins: eckol, dieckol and phlorofucofuroeckol-A. Among the phlorotannins, dieckol was the most abundant in the EEc extract at 16 mg/g. Then we examined the inhibitory effects of EEc extract treatment on differentiation‑related transcription factors and on adipogenesis‑related gene expression in vitro using 3T3-L1 adipocytes. 3T3‑L1 pre‑adipocytes were used to determine the concentrations of the EEc extract and Garcinia cambogia (Gar) extract that did not result in cytotoxicity. Glucose utilization and triglyceride (TG) accumulation in the EEc‑treated adipocytes were similarly inhibited by 50 µg/ml EEc and 200 µg/ml Gar, and these results were confirmed by Oil Red O staining. Protein expression of adipogenesis differentiation‑related transcription factors following treatment with the EEc extract was also examined. Only the expression of CCAAT/enhancer‑binding protein (C/EBP)α was decreased, while there was no effect on the expression of C/EBPβ, C/EBPδ, and peroxisome proliferator‑activated receptor γ (PPARγ). Treatment with the EEc extract decreased the expression levels of adipogenesis‑related genes, in particular sterol regulatory element binding protein‑1c (SREBP‑1c), adipocyte fatty acid binding protein (A‑FABP), fatty acid synthase (FAS) and adiponectin. These results suggest that EEc extract treatment has an inhibitory effect on adipogenesis, specifically by affecting the activation of the C/EBPα signaling pathway and the resulting adipogenesis-related gene expression.
Collapse
Affiliation(s)
- In-Hye Kim
- Institute of Fisheries Science, Pukyong National University, Busan 619-911
| | - Taek-Jeong Nam
- Institute of Fisheries Science, Pukyong National University, Busan 619-911
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| |
Collapse
|
26
|
Shen X, Zhou N, Mi L, Hu Z, Wang L, Liu X, Zhang S. Phloretin exerts hypoglycemic effect in streptozotocin-induced diabetic rats and improves insulin resistance in vitro. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:313-324. [PMID: 28223777 PMCID: PMC5304989 DOI: 10.2147/dddt.s127010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present study investigated the possible antiobesity and hypoglycemic effects of phloretin (Ph). In an attempt to discover the hypoglycemic effect and potential mechanism of Ph, we used the streptozotocin-induced diabetic rats and (L6) myotubes. Daily oral treatment with Ph for 4 weeks significantly (P<0.05) reduced postprandial blood glucose and improved islet injury and lipid metabolism. Glucose consumption and glucose tolerance were improved by Ph via GOD–POD method. Western blot results revealed that the expression of Akt, PI3K, IRS-1, and GLUT4 were upregulated in skeletal muscle of type 2 diabetes (T2D) rats and in L6 myotubes by Ph. The immunofluorescence studies confirmed that Ph improved the translocation of GLUT4 in L6 myotubes. Ph exerted hypoglycemic effects in vivo and in vitro, hence it may play an important role in the management of diabetes.
Collapse
Affiliation(s)
- Xin Shen
- Department of Medicinal Chemistry, School of Pharmacy
| | - Nan Zhou
- Department of Medicinal Chemistry, School of Pharmacy
| | - Le Mi
- Department of Medicinal Chemistry, School of Pharmacy
| | - Zishuo Hu
- Student Brigade, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Libin Wang
- Department of Medicinal Chemistry, School of Pharmacy
| | - Xueying Liu
- Department of Medicinal Chemistry, School of Pharmacy
| | | |
Collapse
|
27
|
Li KK, Wong HL, Hu T, Zhang C, Han XQ, Ye CX, Leung PC, Cheng BH, Ko CH. Impacts ofCamelliakucha and its main chemical components on the lipid accumulation in 3T3-L1 adipocytes. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kai Kai Li
- College of Food Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
- Institute of Chinese Medicine; The Chinese University of Hong Kong; Shatin New Territories Hong Kong SAR 999077 China
| | - Hing Lok Wong
- Institute of Chinese Medicine; The Chinese University of Hong Kong; Shatin New Territories Hong Kong SAR 999077 China
| | - Tianyong Hu
- Shenzhen Key Laboratory of ENT; Longgang ENT hospital & Institute of ENT; Shenzhen 518172 China
| | - Cheng Zhang
- Institute of Chinese Medicine; The Chinese University of Hong Kong; Shatin New Territories Hong Kong SAR 999077 China
| | - Xiao Qiang Han
- Institute of Chinese Medicine; The Chinese University of Hong Kong; Shatin New Territories Hong Kong SAR 999077 China
| | - Chuang Xing Ye
- Department of Biology; School of Life Sciences; Sun Yat-Sen University; Guangzhou 510275 China
| | - Ping Chung Leung
- Institute of Chinese Medicine; The Chinese University of Hong Kong; Shatin New Territories Hong Kong SAR 999077 China
| | - Bao Hui Cheng
- Shenzhen Key Laboratory of ENT; Longgang ENT hospital & Institute of ENT; Shenzhen 518172 China
| | - Chun Hay Ko
- Institute of Chinese Medicine; The Chinese University of Hong Kong; Shatin New Territories Hong Kong SAR 999077 China
| |
Collapse
|
28
|
Ebrahimi E, Shirali S, Afrisham R. Effect and Mechanism of Herbal Ingredients in Improving Diabetes Mellitus Complications. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-31657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
29
|
Effect and Mechanism of Herbal Ingredients in Improving Diabetes Mellitus Complications. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.5812/jjnpp.31657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
30
|
Arumugam B, Palanisamy UD, Chua KH, Kuppusamy UR. Potential antihyperglycaemic effect of myricetin derivatives from Syzygium malaccense. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
31
|
Li KK, Liu CL, Shiu HT, Wong HL, Siu WS, Zhang C, Han XQ, Ye CX, Leung PC, Ko CH. Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes. Sci Rep 2016; 6:20172. [PMID: 26833256 PMCID: PMC4735603 DOI: 10.1038/srep20172] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/23/2015] [Indexed: 11/09/2022] Open
Abstract
Cocoa tea (Camellia ptilophylla) is a naturally decaffeinated tea plant. Previously we found that cocoa tea demonstrated a beneficial effect against high-fat diet induced obesity, hepatic steatosis, and hyperlipidemia in mice. The present study aimed to investigate the anti-adipogenic effect of cocoa tea in vitro using preadipocytes 3T3-L1. Adipogenic differentiation was confirmed by Oil Red O stain, qPCR and Western blot. Our results demonstrated that cocoa tea significantly inhibited triglyceride accumulation in mature adipocytes in a dose-dependent manner. Cocoa tea was shown to suppress the expressions of key adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPAR γ) and CCAAT/enhancer binding protein (C/EBP α). The tea extract was subsequently found to reduce the expressions of adipocyte-specific genes such as sterol regulatory element binding transcription factor 1c (SREBP-1c), fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC), fatty acid translocase (FAT) and stearoylcoenzyme A desaturase-1 (SCD-1). In addition, JNK, ERK and p38 phosphorylation were inhibited during cocoa tea inhibition of 3T3-L1 adipogenic differentiation. Taken together, this is the first study that demonstrates cocoa tea has the capacity to suppress adipogenesis in pre-adipocyte 3T3-L1 similar to traditional green tea.
Collapse
Affiliation(s)
- Kai Kai Li
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Chuek Lun Liu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hoi Ting Shiu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hing Lok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Wing Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Cheng Zhang
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiao Qiang Han
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Chuang Xing Ye
- Department of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Chun Hay Ko
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
32
|
de Oliveira MR. Phloretin-induced cytoprotective effects on mammalian cells: A mechanistic view and future directions. Biofactors 2016; 42:13-40. [PMID: 26826024 DOI: 10.1002/biof.1256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/19/2015] [Indexed: 11/11/2022]
Abstract
Phloretin (C15 H14 O5 ), a dihydrochalcone flavonoid, is mainly found in fruit, leaves, and roots of apple tree. Phloretin exerts antioxidant, anti-inflammatory, and anti-tumor activities in mammalian cells through mechanisms that have been partially elucidated throughout the years. Phloretin bioavailability is well known in humans, but still remains to be better studied in experimental animals, such as mouse and rat. The focus of the present review is to gather information regarding the mechanisms involved in the phloretin-elicited effects in different in vitro and in vivo experimental models. Several manuscripts were analyzed and data raised by authors were described and discussed here in a mechanistic manner. Comparisons between the effects elicited by phloretin and phloridzin were made whenever possible, as well as with other polyphenols, clarifying questions about the use of phloretin as a potential therapeutic agent. Toxicological aspects associated to phloretin exposure were also discussed here. Furthermore, a special section containing future directions was created as a suggestive guide towards the elucidation of phloretin-related actions in mammalian cells and tissues.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry/ICET, Postgraduate Program in Chemistry (PPGQ), Federal University of Mato Grosso (UFMT), CEP, Cuiaba, MT, Brazil
| |
Collapse
|
33
|
Matsukawa T, Inaguma T, Han J, Villareal MO, Isoda H. Cyanidin-3-glucoside derived from black soybeans ameliorate type 2 diabetes through the induction of differentiation of preadipocytes into smaller and insulin-sensitive adipocytes. J Nutr Biochem 2015; 26:860-7. [PMID: 25940979 DOI: 10.1016/j.jnutbio.2015.03.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 12/31/2022]
Abstract
Black soybean is a health food has been reported to have antidiabetes effect. The onset of diabetes is closely associated with adipocyte differentiation, and at present, the effect of black soybean on adipocyte differentiation is unknown. Here, we investigated the antidiabetes effect of black soybean, and its anthocyanin cyanidin-3-glucoside (Cy3G), on adipocyte differentiation. Orally administered black soybean seed coat extract (BSSCE) reduced the body and white adipose tissue (WAT) weight of db/db mice accompanied by a decrease in the size of adipocytes in WAT. Furthermore, 3T3-Ll cells treated with BSSCE and Cy3G were observed to differentiate into smaller adipocytes which correlated with increased PPARγ and C/EBPα gene expressions, increased adiponectin secretion, decreased tumor necrosis factor-α secretion, activation of insulin signalling and increased glucose uptake. C2C12 myotubes cultured with conditioned medium, obtained from 3T3-L1 adipocyte cultures treated with Cy3G, also showed significantly increased expression of PGC-1α, SIRT1 and UCP-3 genes. Here we report that BSSCE, as well as its active compound Cy3G, has antidiabetes effects on db/db mice by promoting adipocyte differentiation. This notion is supported by BSSCE and Cy3G inducing the differentiation of 3T3-L1 preadipocytes into smaller, insulin-sensitive adipocytes, and it induced the activation of skeletal muscle metabolism. This is the first report on the modulation effect of Cy3G on adipocyte differentiation.
Collapse
Affiliation(s)
- Toshiya Matsukawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan
| | - Tetsuya Inaguma
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan
| | - Junkyu Han
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan; Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan
| | - Myra O Villareal
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan; Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan; Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan.
| |
Collapse
|
34
|
Li QY, Chen L, Yan MM, Shi XJ, Zhong MK. Tectorigenin regulates adipogenic differentiation and adipocytokines secretion via PPARγ and IKK/NF-κB signaling. PHARMACEUTICAL BIOLOGY 2015; 53:1567-1575. [PMID: 25856699 DOI: 10.3109/13880209.2014.993038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Obesity is associated with a number of diseases with metabolic abnormalities such as type 2 diabetes (T2D). OBJECTIVE We investigate the effects of tectorigenin on 3T3-L1 preadipocyte differentiation and adipocytokines secretion. MATERIALS AND METHODS The effects of tectorigenin on adipocyte differentiation were studied using Oil Red O staining. Effects of tectorigenin on adipogenesis-related genes expression and adipocytokines secretion were measured by the real-time quantitative RT-PCR and ELISA method, respectively. Reporter gene assays were performed to determine the PPARγ and NF-κB transactivation. We also used [(3)H]-2-deoxy-d-glucose to study the glucose uptake, and the IKK/NF-κB signaling pathway was assessed by western blot analysis. HFD/STZ rats were used to evaluate the therapeutic efficacies of tectorigenin. RESULTS Tectorigenin 10, 25, 50, and 75 μM inhibited 3T3-L1 adipogenesis and related genes transcription. TNF-α-induced changes of IL-6, MCP-1, as well as adiponectin in 3T3-L1 were markedly reversed by tectorigenin at 75 μM. Further investigation using reporter gene revealed that tectorigenin was a partial PPARγ agonist with an IC50 value of 13.3 μM. Tectorigenin improved basal and insulin-stimulated glucose uptake in mature 3T3-L1 adipocytes. Moreover, tectorigenin antagonized TNF-α-induced NF-κB transactivation and p65 nuclear translocation. Although tectorigenin (50 and 100 mg/kg) displayed the ability to promote insulin sensitivity and improve glucose metabolism in HFD/STZ rats, it did not cause significant side effects such as body weight gain, fluid retention, or cardiac hypertrophy. DISCUSSION AND CONCLUSION These results suggest that tectorigenin may ameliorate hyperglycemia by blocking preadipocyte differentiation and adipocytokines secretion in which PPARγ and NF-κB signaling pathways were involved.
Collapse
Affiliation(s)
- Qun-Yi Li
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University , Shanghai , China
| | | | | | | | | |
Collapse
|
35
|
Shu G, Lu NS, Zhu XT, Xu Y, Du MQ, Xie QP, Zhu CJ, Xu Q, Wang SB, Wang LN, Gao P, Xi QY, Zhang YL, Jiang QY. Phloretin promotes adipocyte differentiation in vitro and improves glucose homeostasis in vivo. J Nutr Biochem 2014; 25:1296-308. [PMID: 25283330 DOI: 10.1016/j.jnutbio.2014.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 07/03/2014] [Accepted: 07/21/2014] [Indexed: 10/24/2022]
Abstract
Adipocyte dysfunction is associated with many metabolic diseases such as obesity, insulin resistance and diabetes. Previous studies found that phloretin promotes 3T3-L1 cells differentiation, but the underlying mechanisms for phloretin's effects on adipogenesis remain unclear. In this study, we demonstrated that phloretin enhanced the lipid accumulation in porcine primary adipocytes in a time-dependent manner. Furthermore, phloretin increased the utilization of glucose and nonesterified fatty acid, while it decreased the lactate output. Microarray analysis revealed that genes associated with peroxisome proliferator-activated receptor-γ (PPARγ), mitogen-activated protein kinase and insulin signaling pathways were altered in response to phloretin. We further confirmed that phloretin enhanced expression of PPARγ, CAAT enhancer binding protein-α (C/EBPα) and adipose-related genes, such as fatty acids translocase and fatty acid synthase. In addition, phloretin activated the Akt (Thr308) and extracellular signal-regulated kinase, and therefore, inactivated Akt targets protein. Wortmannin effectively blocked the effect of phloretin on Akt activity and the protein levels of PPARγ, C/EBPα and fatty acid binding protein-4 (FABP4/aP2). Oral administration of 5 or 10 mg/kg phloretin to C57BL BKS-DB mice significantly decreased the serum glucose level and improved glucose tolerance. In conclusion, phloretin promotes the adipogenesis of porcine primary preadipocytes through Akt-associated signaling pathway. These findings suggested that phloretin might be able to increase insulin sensitivity and alleviate the metabolic diseases.
Collapse
Affiliation(s)
- Gang Shu
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Nai-Sheng Lu
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China; Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xiao-Tong Zhu
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Rm 8070, Houston, TX 77030, USA
| | - Min-Qing Du
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Qiu-Ping Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Can-Jun Zhu
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Qi Xu
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Song-Bo Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Li-Na Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Ping Gao
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Qian-Yun Xi
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Yong-Liang Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Qing-Yan Jiang
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China; National Engineering Research Center For Breeding Swine Industry, Guangzhou, China.
| |
Collapse
|
36
|
Leucaena leucocephala fruit aqueous extract stimulates adipogenesis, lipolysis, and glucose uptake in primary rat adipocytes. ScientificWorldJournal 2014; 2014:737263. [PMID: 25180205 PMCID: PMC4142670 DOI: 10.1155/2014/737263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/18/2014] [Accepted: 07/19/2014] [Indexed: 11/25/2022] Open
Abstract
Leucaena leucocephala had been traditionally used to treat diabetes. The present study was designed to evaluate in vitro “insulin-like” activities of Leucaena leucocephala (Lam.) deWit. aqueous fruit extract on lipid and glucose metabolisms. The ability of the extract to stimulate adipogenesis, inhibit lipolysis, and activate radio-labeled glucose uptake was assessed using primary rat adipocytes. Quantitative Real-Time RT-PCR was performed to investigate effects of the extract on expression levels of genes (protein kinases B, AKT; glucose transporter 4, GLUT4; hormone sensitive lipase, HSL; phosphatidylinositol-3-kinases, PI3KA; sterol regulatory element binding factor 1, Srebp1) involved in insulin-induced signaling pathways. L. leucocephala aqueous fruit extract stimulated moderate adipogenesis and glucose uptake into adipocytes when compared to insulin. Generally, the extract exerted a considerable level of lipolytic effect at lower concentration but decreased gradually at higher concentration. The findings concurred with RT-PCR analysis. The expressions of GLUT4 and HSL genes were upregulated by twofold and onefold, respectively, whereas AKT, PI3KA, and Srebp1 genes were downregulated. The L. leucocephala aqueous fruit extract may be potentially used as an adjuvant in the treatment of Type 2 diabetes mellitus and weight management due to its enhanced glucose uptake and balanced adipogenesis and lipolysis properties.
Collapse
|
37
|
Gouranton E, Romier B, Marcotorchino J, Tourniaire F, Astier J, Peiretti F, Landrier JF. Visfatin is involved in TNFα-mediated insulin resistance via an NAD(+)/Sirt1/PTP1B pathway in 3T3-L1 adipocytes. Adipocyte 2014; 3:180-9. [PMID: 25068084 PMCID: PMC4110094 DOI: 10.4161/adip.28729] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/21/2014] [Accepted: 03/31/2014] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor α (TNFα) is a well-known mediator of inflammation in the context of obesity in adipose tissue. Its action appears to be directly linked to perturbations of the insulin pathway, leading to the development of insulin resistance. Visfatin has been suspected to be linked to insulin sensitivity, but the mechanism involved is still partly unknown. The aim of this study was to evaluate the role of visfatin in the impairment of the insulin pathway by TNFα activity in 3T3-L1 adipocytes and to unveil the mechanisms involved in such impairment.
We demonstrated in 3T3-L1 adipocytes that visfatin was involved in TNFα-mediated insulin resistance in adipocytes. Indeed, after TNFα treatment in 3T3-L1 cells, visfatin was downregulated, leading to decreased nicotinamide adenine dinucleotide (NAD+) concentrations in cells. This decrease was followed by a decrease in Sirt1 activity, which was linked to an increase in PTP1B expression. The modulation of PTP1B by visfatin was likely responsible for the observed decreases in glucose uptake and Akt phosphorylation in 3T3-L1 adipocytes.
Here, we demonstrated a complete pathway involving visfatin, NAD+, Sirt1, and PTP1B that led to the perturbation of insulin signaling by TNFα in 3T3-L1 adipocytes.
Collapse
|
38
|
Riya MP, Antu KA, Vinu T, Chandrakanth KC, Anilkumar KS, Raghu KG. An in vitro study reveals nutraceutical properties of Ananas comosus (L.) Merr. var. Mauritius fruit residue beneficial to diabetes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:943-950. [PMID: 23929507 DOI: 10.1002/jsfa.6340] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/01/2013] [Accepted: 08/08/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Rapid urbanisation and nutritional transition is fuelling the increased global incidence of type 2 diabetes. Pineapple fruit residue was explored for its nutraceutical properties as an alternative or adjunct to currently available treatment regime. Ethyl acetate and methanolic extracts of pineapple fruit residue were evaluated for anti-diabetic activity in cell free and cell based systems. Specifically, we assessed: (1) antioxidant potential, (2) anti-glycation potential, (3) carbohydrate digestive enzyme inhibition, and (4) lipid accumulation and glycerol-3-phosphate dehydrogenase activity in differentiating 3T3-L1 cells. RESULTS The active components in the ethyl acetate and methanolic extracts were identified as sinapic acid, daucosterol, 2-methylpropanoate, 2,5-dimethyl-4-hydroxy-3(2H)-furanone, methyl 2-methylbutanoate and triterpenoid ergosterol using DART/HRMS and ESI/HRMS. Micronutrient analysis revealed the presence of magnesium, potassium and calcium. Adipogenic potential, anti-glycation property of the ethyl acetate extract, and DNA damage protection capacity of the methanolic extract are promising. CONCLUSION Results from this study clearly indicate that pineapple fruit residue could be utilised as a nutraceutical against diabetes and related complications.
Collapse
Affiliation(s)
- Mariam Philip Riya
- Agroprocessing and Natural Products Division, Council of Scientific and Industrial Research, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-, 695019, Kerala, India
| | | | | | | | | | | |
Collapse
|
39
|
Lin CC, Chu CL, Ng CS, Lin CY, Chen DY, Pan IH, Huang KJ. Immunomodulation of phloretin by impairing dendritic cell activation and function. Food Funct 2014; 5:997-1006. [DOI: 10.1039/c3fo60548e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Nan Xia J, Qin Zhang D, Du J, Wen J. Regulation effects of TZQ-F on adipocyte differentiation and insulin action. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:692-699. [PMID: 24095827 DOI: 10.1016/j.jep.2013.09.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/23/2013] [Accepted: 09/23/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE TZQ has been used in traditional Chineses medicine for treating diabetes. Based on the recipe of traditional anti-diabetic formula TZQ, we have developed TZQ-F which has been in phase 2 clinical trails. To study the mechanisms by which TZQ-F ameliorates diabetes, we examined whether treatment with TZQ-F improves hyperinsulinemia, hyperglycemia and obesity in type 2 diabetic KKA(y) mice and whether this is associated with an improvement of adipocyte differentiation and insulin action. METHODS TZQ-F, fenofibrate, rosiglitazone or distilled water was administered to 7-week-old diabetic KKA(y) and nondiabetic C57BL/6J mice for 8 weeks. Insulin resistance index, body weight and levels of serum blood glucose, leptin, insulin and adiponectin were evaluated. The expression of peroxisome proliferator-activated receptor γ (PPARγ) in skeletal muscle and liver tissues were determined with real-time PCR and western boltting. The mRNA expressions of insulin receptor (InsR), insulin receptor substrate-1 (IRS-1), insulin receptor substrate-2 (IRS-2), glucose transporter-1 (Glut-1) and Phosphoenolpyruvate 3-kinases (PI3K) in skeletal muscle and liver tissues were determined with real-time PCR. Histopathology of liver has been observed. RESULTS Treatment of TZQ-F for 8 weeks ameliorated hyperglycemia, hyperinsulinemia, hyperleptinemia and hypoadiponectinemia in KKA(y) mice. TZQ-F also up-regulated expression of PPARγ in liver tissue. However, it had no effect on regulation of expression of PPARγ in muscle tissue. In addition, TZQ-F upregulates InsR, IRS-1, IRS-2, Glut-1, and PI3K mRNA expression. Consistent with the in vivo results, histology study demonstrated that TZQ-F alleviated pathologic changes of the liver induced by high-fat diet. CONCLUSIONS These results first indicate that TZQ-F can be beneficial for reducing hyperinsulinemia, hyperglycemia and obesity through its potency of regulating adipocyte differentiation and insulin action.
Collapse
Affiliation(s)
- Jia Nan Xia
- Tianjin University of Traditional Chinese Medicine, #312 Anshanxi Road, Nankai District, Tianjin, 300193, China.
| | | | | | | |
Collapse
|
41
|
Pereira-Fernandes A, Demaegdt H, Vandermeiren K, Hectors TLM, Jorens PG, Blust R, Vanparys C. Evaluation of a screening system for obesogenic compounds: screening of endocrine disrupting compounds and evaluation of the PPAR dependency of the effect. PLoS One 2013; 8:e77481. [PMID: 24155963 PMCID: PMC3796469 DOI: 10.1371/journal.pone.0077481] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/02/2013] [Indexed: 12/21/2022] Open
Abstract
Recently the environmental obesogen hypothesis has been formulated, proposing a role for endocrine disrupting compounds (EDCs) in the development of obesity. To evaluate this hypothesis, a screening system for obesogenic compounds is urgently needed. In this study, we suggest a standardised protocol for obesogen screening based on the 3T3-L1 cell line, a well-characterised adipogenesis model, and direct fluorescent measurement using Nile red lipid staining technique. In a first phase, we characterised the assay using the acknowledged obesogens rosiglitazone and tributyltin. Based on the obtained dose-response curves for these model compounds, a lipid accumulation threshold value was calculated to ensure the biological relevance and reliability of statistically significant effects. This threshold based method was combined with the well described strictly standardized mean difference (SSMD) method for classification of non-, weak- or strong obesogenic compounds. In the next step, a range of EDCs, used in personal and household care products (parabens, musks, phthalates and alkylphenol compounds), were tested to further evaluate the obesogenicity screening assay for its discriminative power and sensitivity. Additionally, the peroxisome proliferator activated receptor γ (PPARγ) dependency of the positive compounds was evaluated using PPARγ activation and antagonist experiments. Our results showed the adipogenic potential of all tested parabens, several musks and phthalate compounds and bisphenol A (BPA). PPARγ activation was associated with adipogenesis for parabens, phthalates and BPA, however not required for obesogenic effects induced by Tonalide, indicating the role of other obesogenic mechanisms for this compound.
Collapse
Affiliation(s)
- Anna Pereira-Fernandes
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
42
|
Hui H, Chen Y, Yang H, Zhao K, Wang Q, Zhao L, Wang X, Li Z, Lu N, Guo Q. Oroxylin A has therapeutic potential in acute myelogenous leukemia by dual effects targeting PPARγ and RXRα. Int J Cancer 2013; 134:1195-206. [DOI: 10.1002/ijc.28435] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/29/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Hui Hui
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical UniversityNanjing People's Republic of China
| | - Yan Chen
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical UniversityNanjing People's Republic of China
| | - Hao Yang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical UniversityNanjing People's Republic of China
| | - Kai Zhao
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical UniversityNanjing People's Republic of China
| | - Qian Wang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical UniversityNanjing People's Republic of China
| | - Li Zhao
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical UniversityNanjing People's Republic of China
| | - Xiaotang Wang
- Department of Chemistry and BiochemistryFlorida International UniversityMiami FL
| | - Zhiyu Li
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical UniversityNanjing People's Republic of China
| | - Na Lu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical UniversityNanjing People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical UniversityNanjing People's Republic of China
| |
Collapse
|
43
|
Huang WC, Chang WT, Wu SJ, Xu PY, Ting NC, Liou CJ. Phloretin and phlorizin promote lipolysis and inhibit inflammation in mouse 3T3-L1 cells and in macrophage-adipocyte co-cultures. Mol Nutr Food Res 2013; 57:1803-13. [PMID: 23776070 DOI: 10.1002/mnfr.201300001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 03/18/2013] [Accepted: 04/05/2013] [Indexed: 12/14/2022]
Abstract
SCOPE Previous studies found that phloretin (PT) and phlorizin (PZ) could inhibit glucose transport, with PT being a better inhibitor of lipid peroxidation. This study aimed to evaluate the antiobesity effects of PT and PZ in 3T3-L1 cells and if they can modulate the relationship between adipocytes and macrophages. METHODS AND RESULTS Differentiated 3T3-L1 cells were treated with PT or PZ. Subsequently, transcription factors of adipogenesis and lipolysis proteins were measured. In addition, RAW 264.7 macrophages treated with PT or PZ were cultured in differentiated media from 3T3-L1 cells to analyze inflammatory mediators and signaling pathways. PT significantly enhanced glycerol release and inhibited the adipogenesis-related transcription factors. PT also promoted phosphorylation of AMP-activated protein kinase and increased activity of adipose triglyceride lipase and hormone-sensitive lipase. PT suppressed the nuclear transcription factor kappa-B and mitogen-activated protein kinase pathways when RAW 264.7 cells were cultured in differentiated media from 3T3-L1 cells. PZ improved lipolysis and inhibited the macrophage inflammatory response less effectively than PT. CONCLUSION This study suggests that PT is more effective than PZ at increasing lipolysis in adipocytes. In addition, PT also suppresses inflammatory response in macrophage that is stimulated by differentiated media from 3T3-L1 cells.
Collapse
Affiliation(s)
- Wen-Chung Huang
- Department of Nursing, Chang Gung University of Science and Technology, Kwei-Shan, Tao-Yuan, Taiwan, R.O.C
| | | | | | | | | | | |
Collapse
|
44
|
Avior Y, Bomze D, Ramon O, Nahmias Y. Flavonoids as dietary regulators of nuclear receptor activity. Food Funct 2013; 4:831-44. [PMID: 23598551 PMCID: PMC3781338 DOI: 10.1039/c3fo60063g] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolic diseases such as obesity, type II diabetes, and dyslipidemia are a rising cause of mortality worldwide. The progression of many metabolic diseases is fundamentally regulated on the transcriptional level by a family of ligand-activated transcription factors, called nuclear receptors, which detect and respond to metabolic changes. Their role in maintaining metabolic homeostasis makes nuclear receptors an important pharmaceutical and dietary target. This review will present the growing evidence that flavonoids, natural secondary plant metabolites, are important regulators of nuclear receptor activity. Structural similarities between flavonoids and cholesterol derivatives combined with the promiscuous nature of most nuclear receptors provide a wealth of possibilities for pharmaceutical and dietary modulation of metabolism. While the challenges of bringing flavonoid-derived therapeutics to the market are significant, we consider this rapidly growing field to be an essential aspect of the functional food initiative and an important mine for pharmaceutical compounds.
Collapse
Affiliation(s)
- Yishai Avior
- School of Computer Science and Engineering, Center for Bioengineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus (Givat Ram), Silberman 3-512, Jerusalem 91904, Israel.
| | - David Bomze
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ory Ramon
- School of Computer Science and Engineering, Center for Bioengineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus (Givat Ram), Silberman 3-512, Jerusalem 91904, Israel.
| | - Yaakov Nahmias
- School of Computer Science and Engineering, Center for Bioengineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus (Givat Ram), Silberman 3-512, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Pereira-Fernandes A, Vanparys C, Hectors TLM, Vergauwen L, Knapen D, Jorens PG, Blust R. Unraveling the mode of action of an obesogen: mechanistic analysis of the model obesogen tributyltin in the 3T3-L1 cell line. Mol Cell Endocrinol 2013; 370:52-64. [PMID: 23428407 DOI: 10.1016/j.mce.2013.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 12/30/2022]
Abstract
Obesogenic compounds are chemicals that have an influence on obesity development. This study was designed to unravel the molecular mechanisms of the model obesogen TBT, using microarray analysis in the 3T3-L1 in vitro system, and to evaluate the use of toxicogenomics for obesogen screening. The microarray results revealed enrichment of Gene Ontology terms involved in energy and fat metabolism after 10 days of TBT exposure. Pathway analysis unveiled PPAR signalling pathway as the sole pathway significantly enriched after 1 day and the most significantly enriched pathway after 10 days of exposure. To our knowledge, this is the first study delivering an in depth mechanistic outline of the mode of action of TBT as an obesogen, combining effects on both cell physiological and gene expression level. Furthermore, our results show that combining transcriptomics with 3T3-L1 cells is a promising tool for screening of potential obesogenic compounds.
Collapse
Affiliation(s)
- Anna Pereira-Fernandes
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | | | | | | | | | | | | |
Collapse
|
46
|
Noh JR, Kim YH, Hwang JH, Gang GT, Yeo SH, Kim KS, Oh WK, Ly SY, Lee IK, Lee CH. Scoparone inhibits adipocyte differentiation through down-regulation of peroxisome proliferators-activated receptor γ in 3T3-L1 preadipocytes. Food Chem 2013; 141:723-30. [PMID: 23790840 DOI: 10.1016/j.foodchem.2013.04.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 09/26/2012] [Accepted: 04/07/2013] [Indexed: 12/11/2022]
Abstract
This study was performed to investigate the effect of scoparone on the differentiation of 3T3-L1 preadipocytes. Scoparone inhibited triglyceride (TG) accumulation in the mature adipocytes, evidenced by Oil-red O staining and intracellular quantification. Real time-PCR analysis showed that scoparone significantly down-regulated the mRNA expression of key adipogenic transcription factors, PPARγ, C/EBPα, compared with mature adipocytes. Scoparone appeared to reduce mRNA expression of SREBP1c and FAS being related to the late stage of adipogenesis. Furthermore, aP2 and CD36/FAT, as adipocyte-specific genes, were decreased in mature adipocytes by scoparone treatment. Moreover, scoparone inhibited the up-regulated expression of PPARγ target genes by rosiglitazone to near that observed in cells treated with GW9662. The luciferase assay revealed that scoparone negatively regulates the transcriptional activity of PPARγ. Chromatin immunoprecipitation assay also showed that participation of scoparone in the regulation of PPARγ. Collectively, scoparone has a PPARγ antagonic effect and suppresses differentiation through down-regulation of adipogenic genes by PPARγ inhibition in 3T3-L1 preadipocytes.
Collapse
Affiliation(s)
- Jung-Ran Noh
- Laboraotry Animal Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Romier B, Tourniaire F, Marcotorchino J, Gouranton E, Astier J, Malezet C, Blouin E, Landrier JF. Bioeffects of a combination of trace elements on adipocyte biology. Metallomics 2013; 5:524-31. [PMID: 23503329 DOI: 10.1039/c3mt20209g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The white adipose tissue plays a major role in the development of obesity and associated metabolic complications by producing a variety of pro and anti-inflammatory adipokines. Recently, studies in humans or in animals have shown a beneficial effect of certain trace elements such as zinc on insulin resistance and adipokine secretion. The aim of our study was to test the effect of a zinc-nickel-cobalt solution (ZnNiCo) on adipocyte function and to identify potential health effects of this solution in the context of obesity and associated disorders. No impact of ZnNiCo on adipogenesis was observed in 3T3-L1 cells. Gene expression in murine and human adipocytes was examined in the presence of ZnNiCo using whole genome microarrays. This transcriptomic analysis indicated that ZnNiCo affected the expression levels of genes in adipocytes under basal conditions or incubated with TNF-α and showed a down regulation of several inflammatory genes belonging to the cytokine and chemokine families (P < 0.01). These data were confirmed in mice fed with a high fat diet supplemented with ZnNiCo (P < 0.05). A modulation of NF-κB activation (evaluated by ELISA; P < 0.05) by ZnNiCo could explain at least in part these observations. The trace elements present in ZnNiCo are able to modulate the expression level of several inflammation related transcripts in adipocytes. These studies suggest that ZnNiCo could play a role in the prevention of inflammation in adipose tissue in obesity.
Collapse
|
48
|
Manaharan T, Ming CH, Palanisamy UD. Syzygium aqueum leaf extract and its bioactive compounds enhances pre-adipocyte differentiation and 2-NBDG uptake in 3T3-L1 cells. Food Chem 2013; 136:354-63. [DOI: 10.1016/j.foodchem.2012.08.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 08/09/2012] [Accepted: 08/22/2012] [Indexed: 12/20/2022]
|
49
|
Syzygium aqueum leaf extract and its bioactive compounds enhances pre-adipocyte differentiation and 2-NBDG uptake in 3T3-L1 cells. Food Chem 2013. [DOI: 10.1016/j.foodchem.2012.08.056 pmid: 23122070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
50
|
Christiaens V, Van Hul M, Lijnen HR, Scroyen I. CD36 promotes adipocyte differentiation and adipogenesis. Biochim Biophys Acta Gen Subj 2012; 1820:949-56. [DOI: 10.1016/j.bbagen.2012.04.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/13/2012] [Accepted: 04/01/2012] [Indexed: 12/20/2022]
|