1
|
Correia S, Hébraud M, Chafsey I, Chambon C, Viala D, Torres C, Caniça M, Capelo JL, Poeta P, Igrejas G. Subproteomic signature comparison of in vitro selected fluoroquinolone resistance and ciprofloxacin stress in Salmonella Typhimurium DT104B. Expert Rev Proteomics 2017; 14:941-961. [PMID: 28871888 DOI: 10.1080/14789450.2017.1375856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Fluoroquinolone resistance in nontyphoidal Salmonella is a situation of serious and international concern, particularly in S. Typhimurium DT104B multiresistant strains. Although known to be multifactorial, fluoroquinolone resistance is still far from a complete understanding. METHODS Subproteome changes between an experimentally selected fluoroquinolone-resistant strain (Se6-M) and its parent strain (Se6), and also in Se6-M under ciprofloxacin (CIP) stress, were evaluated in order to give new insights into the mechanisms involved. Proteomes were compared at the intracellular and membrane levels by a 2-DE~LC-MS/MS and a shotgun LC-MS/MS approach, respectively. RESULTS In total, 35 differentially abundant proteins were identified when comparing Se6 with Se6-M (25 more abundant in Se6 and 10 more abundant in Se6-M) and 82 were identified between Se6-M and Se6-M+CIP (51 more abundant in Se6-M and 31 more abundant under ciprofloxacin stress). CONCLUSION Several proteins with known and possible roles in quinolone resistance were identified which provide important information about mechanism-related differential protein expression, supporting the current knowledge and also leading to new testable hypotheses on the mechanism of action of fluoroquinolone drugs.
Collapse
Affiliation(s)
- Susana Correia
- a Functional Genomics and Proteomics Unit , University of Trás-os-Montes and Alto Douro , Vila Real , Portugal.,b Department of Genetics and Biotechnology , University of Trás-os-Montes and Alto Douro , Vila Real , Portugal.,c Veterinary Science Department , University of Trás-os-Montes and Alto Douro , Vila Real , Portugal.,d UCIBIO-REQUIMTE, Faculty of Science and Technology , Nova University of Lisbon , Caparica , Portugal
| | - Michel Hébraud
- e UR454 Microbiology , Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes , site de Theix , Saint-Genès Champanelle , France.,f Plate-Forme d'Exploration du Métabolisme composante protéomique, UR370 QuaPA , Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes , site de Theix , Saint-Genès Champanelle , France
| | - Ingrid Chafsey
- e UR454 Microbiology , Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes , site de Theix , Saint-Genès Champanelle , France
| | - Christophe Chambon
- f Plate-Forme d'Exploration du Métabolisme composante protéomique, UR370 QuaPA , Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes , site de Theix , Saint-Genès Champanelle , France
| | - Didier Viala
- f Plate-Forme d'Exploration du Métabolisme composante protéomique, UR370 QuaPA , Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes , site de Theix , Saint-Genès Champanelle , France
| | - Carmen Torres
- g Área de Bioquímica y Biología Molecular , Universidad de La Rioja , Logroño , Spain
| | - Manuela Caniça
- h National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR-HAI), Department of Infectious Diseases , National Health Institute Doutor Ricardo Jorge (INSA) , Lisbon , Portugal
| | - José Luis Capelo
- d UCIBIO-REQUIMTE, Faculty of Science and Technology , Nova University of Lisbon , Caparica , Portugal.,i Faculty of Sciences and Technology , ProteoMass Scientific Society , Caparica , Portugal
| | - Patrícia Poeta
- c Veterinary Science Department , University of Trás-os-Montes and Alto Douro , Vila Real , Portugal.,d UCIBIO-REQUIMTE, Faculty of Science and Technology , Nova University of Lisbon , Caparica , Portugal
| | - Gilberto Igrejas
- a Functional Genomics and Proteomics Unit , University of Trás-os-Montes and Alto Douro , Vila Real , Portugal.,b Department of Genetics and Biotechnology , University of Trás-os-Montes and Alto Douro , Vila Real , Portugal.,d UCIBIO-REQUIMTE, Faculty of Science and Technology , Nova University of Lisbon , Caparica , Portugal
| |
Collapse
|
2
|
Guo Z, Li X, Li J, Yang X, Zhou Y, Lu C, Shen Y. Licoflavonol is an inhibitor of the type three secretion system of Salmonella enterica serovar Typhimurium. Biochem Biophys Res Commun 2016; 477:998-1004. [DOI: 10.1016/j.bbrc.2016.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/03/2016] [Indexed: 10/21/2022]
|
3
|
Impacts of experimentally induced and clinically acquired quinolone resistance on the membrane and intracellular subproteomes of Salmonella Typhimurium DT104B. J Proteomics 2016; 145:46-59. [PMID: 27063838 DOI: 10.1016/j.jprot.2016.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 11/23/2022]
Abstract
UNLABELLED Antimicrobial resistance is a growing public health threat worldwide that is still far from a complete understanding. Salmonella Typhimurium DT104 multiresistant strains with additional quinolone resistance are highly adaptive and have been responsible for global outbreaks and high mortality. In order to give new insights about the resistance mechanisms involved, the developed work aimed to point out subproteome changes between a DT104B clinical strain (Se20) that acquired quinolone resistance after patient treatment and an in vitro induced clonally related highly-resistant mutant (Se6-M). The intracellular subproteomes were compared by a 2-DE/LC-MS/MS approach and a total of 50 unique proteins were identified (32 more abundant in Se20 and 18 more abundant in Se6-M). The membrane subproteomes were analysed by a shotgun LC-MS/MS approach, where 7 differentially abundant proteins were identified (5 more abundant in Se6-M and 2 more abundant in Se20). Several proteins known to be directly related to quinolone resistance mechanisms (AAC(6')-Ib-cr4, OmpC, OmpD, OmpX, etc.) and MipA, recently reported as novel antibiotic resistance-related protein, were identified. Other proteins (Fur, SodA, SucB, AtpD/AtpG, OmpC, GltI, CheM/CheB, etc.) reflecting the metabolic re-adjustments occurred in each strain in order to acquire quinolone resistance were also identified. Moreover, proteins involved in lipopolysaccharide biosynthesis (RfbF, RfbG, GmhA) and export (LptA) were detected, supporting the importance of exploring these proteins as targets for the development of new antimicrobial agents. In conclusion, this study provides new insights into the mechanisms involved in the acquisition of antibiotic resistance, which can be highly valuable for the development of improved therapeutic strategies. BIOLOGICAL SIGNIFICANCE This comparative proteomic study revealed a large number of differentially regulated proteins involved in antibiotic resistance which can be of great value to drug discovery, research and development programmes.
Collapse
|
4
|
Correia S, Nunes-Miranda JD, Pinto L, Santos HM, de Toro M, Sáenz Y, Torres C, Capelo JL, Poeta P, Igrejas G. Complete proteome of a quinolone-resistant Salmonella Typhimurium phage type DT104B clinical strain. Int J Mol Sci 2014; 15:14191-219. [PMID: 25196519 PMCID: PMC4159846 DOI: 10.3390/ijms150814191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 06/27/2014] [Accepted: 07/25/2014] [Indexed: 11/26/2022] Open
Abstract
Salmonellosis is one of the most common and widely distributed foodborne diseases. The emergence of Salmonella strains that are resistant to a variety of antimicrobials is a serious global public health concern. Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) is one of these emerging epidemic multidrug resistant strains. Here we collate information from the diverse and comprehensive range of experiments on Salmonella proteomes that have been published. We then present a new study of the proteome of the quinolone-resistant Se20 strain (phage type DT104B), recovered after ciprofloxacin treatment and compared it to the proteome of reference strain SL1344. A total of 186 and 219 protein spots were recovered from Se20 and SL1344 protein extracts, respectively, after two-dimensional gel electrophoresis. The signatures of 94% of the protein spots were successfully identified through matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). Three antimicrobial resistance related proteins, whose genes were previously detected by polymerase chain reaction (PCR), were identified in the clinical strain. The presence of these proteins, dihydropteroate synthase type-2 (sul2 gene), aminoglycoside resistance protein A (strA gene) and aminoglycoside 6'-N-acetyltransferase type Ib-cr4 (aac(6')-Ib-cr4 gene), was confirmed in the DT104B clinical strain. The aac(6')-Ib-cr4 gene is responsible for plasmid-mediated aminoglycoside and quinolone resistance. This is a preliminary analysis of the proteome of these two S. Typhimurium strains and further work is being developed to better understand how antimicrobial resistance is developing in this pathogen.
Collapse
Affiliation(s)
- Susana Correia
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Júlio D Nunes-Miranda
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Luís Pinto
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Hugo M Santos
- BIOSCOPE group, REQUIMTE-CQFB, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Monte de Caparica, Portugal.
| | - María de Toro
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC (UC-SODERCAN-CSIC), Santander 39011, Spain.
| | - Yolanda Sáenz
- Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, C/Piqueras 98, 26006 Logroño, La Rioja, Spain.
| | - Carmen Torres
- Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, C/Piqueras 98, 26006 Logroño, La Rioja, Spain.
| | - José Luis Capelo
- BIOSCOPE group, REQUIMTE-CQFB, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Monte de Caparica, Portugal.
| | - Patrícia Poeta
- Centre of Studies of Animal and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Gilberto Igrejas
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| |
Collapse
|
5
|
Proteome studies of bacterial antibiotic resistance mechanisms. J Proteomics 2014; 97:88-99. [DOI: 10.1016/j.jprot.2013.10.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 10/12/2013] [Accepted: 10/19/2013] [Indexed: 01/10/2023]
|
6
|
Lee HY, Chen CL, Wang SB, Su LH, Chen SH, Liu SY, Wu TL, Lin TY, Chiu CH. Imipenem heteroresistance induced by imipenem in multidrug-resistant Acinetobacter baumannii: mechanism and clinical implications. Int J Antimicrob Agents 2011; 37:302-8. [PMID: 21353490 DOI: 10.1016/j.ijantimicag.2010.12.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 12/10/2010] [Accepted: 12/18/2010] [Indexed: 11/28/2022]
Abstract
Acinetobacter baumannii has emerged as a major pathogen causing nosocomial infections, particularly in critical patients admitted to the Intensive Care Unit. Increasing resistance to carbapenems in A. baumannii has been observed worldwide. Here we report the clinical impact and mechanism of imipenem heteroresistance (imipenem minimum inhibitory concentration of 6-32 μg/mL with the presence of resistant cells inside the inhibition zone of Etest strips or disks) in multidrug-resistant A. baumannii (MDR-AB). To identify risk factors associated with the emergence of imipenem heteroresistance, a retrospective case-control study was undertaken involving cases with subsequent clinical isolates of the same genotype showing loss of imipenem susceptibility and matched controls with isolates belonging to imipenem-susceptible MDR-AB. The molecular mechanism of heteroresistance was examined. From April 2006 to March 2007, 126 consecutive isolates of MDR-AB were identified from 29 patients. Switch from imipenem susceptibility to heteroresistance was more likely to occur in successive MDR-AB derived from patients who had been exposed to imipenem (length of use 10.9 ± 6.5 days for cases vs. 5.3 ± 4.8 days for controls; P=0.02). An insertion sequence (ISAba1) was found in the promoter region of a class C β-lactamase gene (bla(ADC-29)) in most imipenem-heteroresistant MDR-AB isolates. In vitro experiments indicated that imipenem heteroresistance, which was associated with overexpression of bla(ADC-29), could be induced by imipenem. Carbapenem use was the only risk factor identified for the emergence of carbapenem-heteroresistant MDR-AB. Physicians should weigh the benefits and risks of each carbapenem-based treatment in managing carbapenem-susceptible MDR-AB infection.
Collapse
Affiliation(s)
- Hao-Yuan Lee
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Outer membrane protein STM3031 (Ail/OmpX-like protein) plays a key role in the ceftriaxone resistance of Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 2009; 53:3248-55. [PMID: 19470505 DOI: 10.1128/aac.00079-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, the putative outer membrane protein STM3031 has been correlated with ceftriaxone resistance in Salmonella enterica serovar Typhimurium. In this study, this protein was almost undetectable in the ceftriaxone-susceptible strain 01-4, but its levels were increased in 01-4 isogenic strains for which MICs were higher. The stm3031 gene deletion mutant, R200(Deltastm3031), was generated and showed >64-fold lower ceftriaxone resistance than R200, supporting a key role for STM3031 in ceftriaxone resistance. To investigate which outer membrane protein(s) was associated with resistance, the outer membrane protein profiles of 01-4, R200, and R200(Deltastm3031) were compared proteomically. Nine proteins were identified as altered. The expression levels of AcrA, TolC, STM3031, STM1530, VacJ, and Psd in R200 were increased; those of OmpC, OmpD, and OmpW were decreased. The expression levels of OmpD, OmpW, STM1530, VacJ, and Psd, but not those of OmpC, AcrA, and TolC, in R200(Deltastm3031) were returned to the levels in strain 01-4. Furthermore, the genes' mRNA levels correlated with their protein levels when the three strains were compared. The detection of higher AcrB levels, linked to higher acrB, acrD, and acrF mRNA levels, in strain R200 than in strains 01-4 and R200(Deltastm3031) suggests that AcrB, AcrD, and AcrF participate in ceftriaxone resistance. Taken together with the location of STM3031 in the outer membrane, these results suggest that STM3031 plays a key role in ceftriaxone resistance, probably by reducing permeability via a decreased porin OmpD level and enhancing export via increased AcrD efflux pump activity.
Collapse
|