1
|
|
2
|
The Effect of Overexpressed DdRabS on Development, Cell Death, Vesicular Trafficking, and the Secretion of Lysosomal Glycosidase Enzymes. BIOLOGY 2018; 7:biology7020033. [PMID: 29843387 PMCID: PMC6023087 DOI: 10.3390/biology7020033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 11/21/2022]
Abstract
Rab GTPases are essential regulators of many cellular processes and play an important role in downstream signaling vital to proper cell function. We sought to elucidate the role of novel D. discoideum GTPase RabS. Cell lines over-expressing DdRabS and expressing DdRabS N137I (dominant negative (DN)) proteins were generated, and it was determined that DdRabS localized to endosomes, ER-Golgi membranes, and the contractile vacuole system. It appeared to function in vesicular trafficking, and the secretion of lysosomal enzymes. Interestingly, microscopic analysis of GFP-tagged DdRabS (DN) cells showed differential localization to lysosomes and endosomes compared to GFP-tagged DdRabS overexpressing cells. Both cell lines over-secreted lysosomal glycosidase enzymes, especially β-glucosidase. Furthermore, DdRabS overexpressing cells were defective in aggregation due to decreased cell–cell cohesion and sensitivity to cAMP, leading to abnormal chemotactic migration, the inability to complete development, and increased induced cell death. These data support a role for DdRabS in trafficking along the vesicular and biosynthetic pathways. We hypothesize that overexpression of DdRabS may interfere with GTP activation of related proteins essential for normal development resulting in a cascade of defects throughout these processes.
Collapse
|
3
|
Wang Z, Fan J, Wang J, Li Y, Xiao L, Duan D, Wang Q. Protective effect of lycopene on high-fat diet-induced cognitive impairment in rats. Neurosci Lett 2016; 627:185-91. [PMID: 27177726 DOI: 10.1016/j.neulet.2016.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 11/16/2022]
Abstract
A Western diet, high in saturated fats, has been linked to the development of cognitive impairment. Lycopene has recently received considerable attention for its potent protective properties demonstrated in several models of nervous system dysfunction. However, it remains unclear whether lycopene exerts protective effects on cognition. The present study aimed to investigate the protective effects of lycopene on learning and memory impairment and the potential underlying mechanism in rats fed a high-fat diet (HFD). One-month-old male rats were fed different diets for 16 weeks (n=12 per group), including a standard chow diet (CD), a HFD, or a HFD plus lycopene (4mg/kg, oral gavage in the last three weeks). Behavioral testing, including the Morris water maze (MWM), object recognition task (ORT), and anxiety-like behavior in an open field (OF), were assessed at week 16. The dendritic spine density and neuronal density in the hippocampal CA1 subfield were subsequently measured. The results indicate that HFD consumption for 16 weeks significantly impaired spatial memory (P<0.001), working memory (P<0.01), and object recognition memory (P<0.01), decreased the dendritic spine density (P<0.001), damaged pyramidal neurons in the CA1 subfield (P<0.001) compared with the CD group. However, lycopene significantly attenuated learning and memory impairments and prevented the reduction in dendritic spine density (P<0.001). Thus, this study indicated that lycopene helps to protect HFD induced cognitive dysfunction.
Collapse
Affiliation(s)
- Zhiqiang Wang
- The Graduate Management Team, The Third Military Medical University, Chongqing, 400038, China; Department of Neurology, Chengdu Military General Hospital, Chengdu, 610083, China
| | - Jin Fan
- Department of Neurology, Chengdu Military General Hospital, Chengdu, 610083, China
| | - Jian Wang
- Department of Neurology, Chengdu Military General Hospital, Chengdu, 610083, China
| | - Yuxia Li
- Department of Neurology, Chengdu Military General Hospital, Chengdu, 610083, China
| | - Li Xiao
- Department of Neurology, Chengdu Military General Hospital, Chengdu, 610083, China
| | - Dan Duan
- Department of Neurology, Chengdu Military General Hospital, Chengdu, 610083, China
| | - Qingsong Wang
- Department of Neurology, Chengdu Military General Hospital, Chengdu, 610083, China.
| |
Collapse
|
4
|
Forkhead box transcription factor 1: role in the pathogenesis of diabetic cardiomyopathy. Cardiovasc Diabetol 2016; 15:44. [PMID: 26956801 PMCID: PMC4784400 DOI: 10.1186/s12933-016-0361-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/02/2016] [Indexed: 12/17/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a disorder of the heart muscle in people with diabetes that can occur independent of hypertension or vascular disease. The underlying mechanism of DCM is incompletely understood. Some transcription factors have been suggested to regulate the gene program intricate in the pathogenesis of diabetes prompted cardiac injury. Forkhead box transcription factor 1 is a pleiotropic transcription factor that plays a pivotal role in a variety of physiological processes. Altered FOXO1 expression and function have been associated with cardiovascular diseases, and the important role of FOXO1 in DCM has begun to attract attention. In this review, we focus on the FOXO1 pathway and its role in various processes that have been related to DCM, such as metabolism, oxidative stress, endothelial dysfunction, inflammation and apoptosis.
Collapse
|
5
|
Caspase-like proteins: Acanthamoeba castellanii metacaspase and Dictyostelium discoideum paracaspase, what are their functions? J Biosci 2014; 39:909-16. [DOI: 10.1007/s12038-014-9486-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Abstract
Paraptosis is mediated by several proteins, poly(ADP-ribose) polymerase being one of them. D. discoideum lacks caspases thus providing a better system to dissect out the role of PARP in paraptosis. The cell death phenotype in unicellular eukaryote, D. discoideum is similar to the programmed cell death phenotype of multicellular animals. However, the events downstream to the death signal of PCD in D. discoideum are yet to be understood. Our results emphasize that oxidative stress in D. discoideum lacking caspases leads to PARP activation, mitochondrial membrane potential changes, followed by the release of apoptosis inducing factor from mitochondria. AIF causes large scale DNA fragmentation, a hallmark feature of paraptosis. The role of PARP in paraptosis is reiterated via PARP inhibition by benzamide, PARG inhibition by gallotannin and PARP down-regulation, which delays paraptosis. PARP, PARG and AIF interplay is quintessential in paraptosis of D. discoideum. This is the first report to establish the involvement of PARP in the absence of caspase activity in D. discoideum which could be of evolutionary significance and gives a lead to understand the caspase independent paraptotic mechanism in higher organisms.
Collapse
|
7
|
Maringer K, Saheb E, Bush J. Vesicular Trafficking Defects, Developmental Abnormalities, and Alterations in the Cellular Death Process Occur in Cell Lines that Over-Express Dictyostelium GTPase, Rab2, and Rab2 Mutants. BIOLOGY 2014; 3:514-35. [PMID: 25157910 PMCID: PMC4192625 DOI: 10.3390/biology3030514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/29/2014] [Accepted: 08/13/2014] [Indexed: 01/10/2023]
Abstract
Small molecular weight GTPase Rab2 has been shown to be a resident of pre-Golgi intermediates and required for protein transport from the ER to the Golgi complex, however, the function of Rab2 in Dictyostelium has yet to be fully characterized. Using cell lines that over-express DdRab2, as well as cell lines over-expressing constitutively active (CA), and dominant negative (DN) forms of the GTPase, we report a functional role in vesicular transport specifically phagocytosis, and endocytosis. Furthermore, Rab2 like other GTPases cycles between an active GTP-bound and an inactive GDP-bound state. We found that this GTP/GDP cycle for DdRab2 is crucial for normal Dictyostelium development and cell-cell adhesion. Similar to Rab5 and Rab7 in C. elegans, we found that DdRab2 plays a role in programmed cell death, possibly in the phagocytic removal of apoptotic corpses.
Collapse
Affiliation(s)
- Katherine Maringer
- Department of Biology, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72205, USA.
| | - Entsar Saheb
- Department of Biology, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72205, USA.
| | - John Bush
- Department of Biology, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72205, USA.
| |
Collapse
|
8
|
Saheb E, Biton I, Maringer K, Bush J. A functional connection of Dictyostelium paracaspase with the contractile vacuole and a possible partner of the vacuolar proton ATPase. J Biosci 2013; 38:509-21. [DOI: 10.1007/s12038-013-9338-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Saheb E, Trzyna W, Bush J. An Acanthamoeba castellanii metacaspase associates with the contractile vacuole and functions in osmoregulation. Exp Parasitol 2012; 133:314-26. [PMID: 23274641 DOI: 10.1016/j.exppara.2012.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/03/2012] [Accepted: 12/08/2012] [Indexed: 01/13/2023]
Abstract
Acanthamoeba castellanii is a free-living protozoan. Some strains are opportunistic pathogens. A type-I metacaspase was identified in A. castellanii (Acmcp) and was shown to be expressed through the encystation process. The model organism, Dictyostelium discoideum, has been used here as a model for studying these caspase-like proteins. Separate cell lines expressing a GFP-tagged version of the full length Acmcp protein, as well as a deletion proline region mutant of Acmcp protein (GFP-Acmcp-dpr), have been introduced into D. discoideum. Both mutants affect the cellular metabolism, characterized by an increase in the growth rate. Microscopic imaging revealed an association between Acmcp and the contractile vacuole system in D. discoideum. The treatment of cells with selected inhibitors in different environments added additional support to these findings. This evidence shows that Acmcp plays an important role in contractile vacuole regulation and mediated membrane trafficking in D. discoideum. Additionally, the severe defect in contractile vacuole function in GFP-Acmcp-dpr mutant cells suggests that the proline-rich region in Acmcp has an essential role in binding this protein with other partners to maintain this process. Furthermore, Yeast two-hybrid system identified there are weak interactions of the Dictyostelium contractile vacuolar proteins, including Calmodulin, RabD, Rab11 and vacuolar proton ATPase, with Acmcp protein. Taken together, our findings suggest that A. castellanii metacaspase associate with the contractile vacuole and have an essential role in cell osmoregulation, which contributes to its attractiveness as a possible target for treatment therapies against A. castellanii infection.
Collapse
Affiliation(s)
- Entsar Saheb
- Biology Department, University of Arkansas at Little Rock, 2801 South University Dr., Little Rock, AR 72204-1099, USA.
| | | | | |
Collapse
|
10
|
Puthanveetil P, Wan A, Rodrigues B. FoxO1 is crucial for sustaining cardiomyocyte metabolism and cell survival. Cardiovasc Res 2012; 97:393-403. [PMID: 23263330 DOI: 10.1093/cvr/cvs426] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Diabetic cardiomyopathy is a term used to describe cardiac muscle damage-induced heart failure. Multiple structural and biochemical reasons have been suggested to induce this disorder. The most prominent feature of the diabetic myocardium is attenuated insulin signalling that reduces survival kinases (Akt), potentially switching on protein targets like FoxOs, initiators of cell death. FoxO1, a prominent member of the forkhead box family and subfamily O of transcription factors and produced from the FKHR gene, is involved in regulating metabolism, cell proliferation, oxidative stress response, immune homeostasis, pluripotency in embryonic stem cells, and cell death. In this review we describe distinctive functions of FoxOs, specifically FoxO1 under conditions of nutrient excess, insulin resistance and diabetes, and its manipulation to restore metabolic equilibrium to limit cardiac damage due to cell death. Because FoxO1 helps cardiac tissue to combat a variety of stress stimuli, it could be a major determinant in regulating diabetic cardiomyopathy. In this regard, we highlight studies from our group and others who illustrate how cardiac tissue-specific FoxO1 deletion protects the heart against cardiomyopathy and how its down-regulation in endothelial tissue could prevent against atherosclerotic plaques. In addition, we also describe studies that show FoxO1's beneficial qualities by highlighting their role in inducing anti-oxidant, autophagic, and anti-apoptotic genes under stress conditions of ischaemia-reperfusion and myocardial infarction. Thus, the aforementioned FoxO1 traits could be useful in curbing cardiac tissue-specific impairment of function following diabetes.
Collapse
Affiliation(s)
- Prasanth Puthanveetil
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
11
|
Sirichanchuen B, Pengsuparp T, Chanvorachote P. Long-term cisplatin exposure impairs autophagy and causes cisplatin resistance in human lung cancer cells. Mol Cell Biochem 2012; 364:11-8. [PMID: 22278384 DOI: 10.1007/s11010-011-1199-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
Cisplatin-based chemotherapy frequently resulted in acquired resistance of cancer cells. The underlying mechanism of such resistance is not fully understood especially the involvement of autophagy and autophagic cell death. This study thus investigated whether an alteration in autophagy could be responsible for cisplatin resistance in the long-term exposure lung carcinoma cells. The cisplatin resistant clone (H460/cis) of H460 cells was established by exposing the cells with gradually increasing concentrations of cisplatin until chemoresistance acquisition was elucidated by MTT, Hoechst 33342 staining and comet assays. Degree of autophagosome formation and level of LC3 marker were evaluated by acridine orange and western blot analysis, respectively. H460/cis cells exhibited irregular shape with ~3-fold resistant to cisplatin-induced apoptosis compared with H460 cells. Proteins analysis for LC3 indicated that the levels of LC3 in resistant cells were significantly lower than those in H460 cells. Moreover, autophagosome formation detected by acridine orange staining was dramatically reduced in the resistant cells, suggesting the role of autophagy in attenuating of cisplatin-induced cell death. Further, co-treatment of cisplatin with autophagy inducer, trifluorperazine, could resensitize H460/cis cells to cisplatin-induced cell death. Our findings reveal the novel mechanisms causing cisplatin resistance in lung carcinoma cells after long-term drug exposure regarding autophagy.
Collapse
Affiliation(s)
- Buntitabhon Sirichanchuen
- Biopharmaceutical Sciences Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|
12
|
Evidence for an instructive role of apoptosis during the metamorphosis of Hydractinia echinata (Hydrozoa). ZOOLOGY 2011; 114:11-22. [DOI: 10.1016/j.zool.2010.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/09/2010] [Accepted: 09/19/2010] [Indexed: 12/30/2022]
|
13
|
Giusti C, Tresse E, Luciani MF, Golstein P. Autophagic cell death: analysis in Dictyostelium. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:1422-31. [PMID: 19133302 DOI: 10.1016/j.bbamcr.2008.12.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 12/04/2008] [Accepted: 12/04/2008] [Indexed: 11/24/2022]
Abstract
Autophagic cell death (ACD) can be operationally described as cell death with an autophagic component. While most molecular bases of this autophagic component are known, in ACD the mechanism of cell death proper is not well defined, in particular because in animal cells there is poor experimental distinction between what triggers autophagy and what triggers ACD. Perhaps as a consequence, it is often thought that in animal cells a little autophagy is protective while a lot is destructive and leads to ACD, thus that the shift from autophagy to ACD is quantitative. The aim of this article is to review current knowledge on ACD in Dictyostelium, a very favorable model, with emphasis on (1) the qualitative, not quantitative nature of the shift from autophagy to ACD, in contrast to the above, and (2) random or targeted mutations of in particular the following genes: iplA (IP3R), TalB (talinB), DcsA (cellulose synthase), GbfA, ugpB, glcS (glycogen synthase) and atg1. These mutations allowed the genetic dissection of ACD features, dissociating in particular vacuolisation from cell death.
Collapse
Affiliation(s)
- Corinne Giusti
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, INSERM U631, CNRS UMR6102, Case 906, Faculté des Sciences de Luminy, Marseille F-13288, France
| | | | | | | |
Collapse
|
14
|
Autophagic or necrotic cell death triggered by distinct motifs of the differentiation factor DIF-1. Cell Death Differ 2008; 16:564-70. [PMID: 19079140 DOI: 10.1038/cdd.2008.177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Autophagic or necrotic cell death (ACD and NCD, respectively), studied in the model organism Dictyostelium which offers unique advantages, require triggering by the same differentiation-inducing factor DIF-1. To initiate these two types of cell death, does DIF-1 act through only one or through two distinct recognition structures? Such distinct structures may recognize distinct motifs of DIF-1. To test this albeit indirectly, DIF-1 was modified at one or two of several positions, and the corresponding derivatives were tested for their abilities to induce ACD or NCD. The results strongly indicated that distinct biochemical motifs of DIF-1 were required to trigger ACD or NCD, and that these motifs were separately recognized at the onset of ACD or NCD. In addition, both ACD and NCD were induced more efficiently by DIF-1 than by either its precursors or its immediate catabolite. These results showed an unexpected relation between a differentiation factor, the cellular structures that recognize it, the cell death types it can trigger and the metabolic state of the cell. The latter seems to guide the choice of the signaling pathway to cell death, which in turn imposes the cell death type and the recognition pattern of the differentiation factor.
Collapse
|
15
|
Giusti C, Luciani MF, Klein G, Aubry L, Tresse E, Kosta A, Golstein P. Necrotic cell death: From reversible mitochondrial uncoupling to irreversible lysosomal permeabilization. Exp Cell Res 2008; 315:26-38. [PMID: 18951891 DOI: 10.1016/j.yexcr.2008.09.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/24/2008] [Accepted: 09/24/2008] [Indexed: 11/19/2022]
Abstract
Dictyostelium atg1- mutant cells provide an experimentally and genetically favorable model to study necrotic cell death (NCD) with no interference from apoptosis or autophagy. In such cells subjected to starvation and cAMP, induction by the differentiation-inducing factor DIF or by classical uncouplers led within minutes to mitochondrial uncoupling, which causally initiated NCD. We now report that (1) in this model, NCD included a mitochondrial-lysosomal cascade of events, (2) mitochondrial uncoupling and therefore initial stages of death showed reversibility for a surprisingly long time, (3) subsequent lysosomal permeabilization could be demonstrated using Lysosensor blue, acridin orange, Texas red-dextran and cathepsin B substrate, (4) this lysosomal permeabilization was irreversible, and (5) the presence of the uncoupler was required to maintain mitochondrial lesions but also to induce lysosomal lesions, suggesting that signaling from mitochondria to lysosomes must be sustained by the continuous presence of the uncoupler. These results further characterized the NCD pathway in this priviledged model, contributed to a definition of NCD at the lysosomal level, and suggested that in mammalian NCD even late reversibility attempts by removal of the inducer may be of therapeutic interest.
Collapse
Affiliation(s)
- Corinne Giusti
- Centre d'Immunologie de Marseille-Luminy (CIML), Faculté des Sciences de Luminy, Aix Marseille Université, Marseille F-13288, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Kosta A, Luciani MF, Geerts WJ, Golstein P. Marked mitochondrial alterations upon starvation without cell death, caspases or Bcl-2 family members. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2013-9. [DOI: 10.1016/j.bbamcr.2008.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/03/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
|
17
|
Kourtis N, Tavernarakis N. Autophagy and cell death in model organisms. Cell Death Differ 2008; 16:21-30. [DOI: 10.1038/cdd.2008.120] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
18
|
Giusti C, Kosta A, Lam D, Tresse E, Luciani MF, Golstein P. Analysis of autophagic and necrotic cell death in Dictyostelium. Methods Enzymol 2008; 446:1-15. [PMID: 18603113 DOI: 10.1016/s0076-6879(08)01601-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Non-apoptotic cell death types can be conveniently studied in Dictyostelium discoideum, an exceptionally favorable model not only because of its well-known genetic and experimental advantages, but also because in Dictyostelium there is no apoptosis machinery that could interfere with non-apoptotic cell death. We show here how to conveniently demonstrate, assess, and study these non-apoptotic cell death types. These can be generated by use of modifications of the monolayer technique of Rob Kay et al., and either wild-type HMX44A Dictyostelium cells, leading to autophagic cell death, or the corresponding atg1- autophagy gene mutant cells, leading to necrotic cell death. Methods to follow these non-apoptotic cell death types qualitatively and quantitatively will be reported.
Collapse
Affiliation(s)
- Corinne Giusti
- Centre d'Immunologie INSERM-CNRS-Univ.Medit. de Marseille-Luminy, Marseille, France
| | | | | | | | | | | |
Collapse
|
19
|
Tresse E, Giusti C, Kosta A, Luciani M, Golstein P. Chapter 23 Autophagy and Autophagic Cell Death in Dictyostelium. Methods Enzymol 2008; 451:343-58. [DOI: 10.1016/s0076-6879(08)03223-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Lam D, Kosta A, Luciani MF, Golstein P. The inositol 1,4,5-trisphosphate receptor is required to signal autophagic cell death. Mol Biol Cell 2007; 19:691-700. [PMID: 18077554 DOI: 10.1091/mbc.e07-08-0823] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The signaling pathways governing pathophysiologically important autophagic (ACD) and necrotic (NCD) cell death are not entirely known. In the Dictyostelium eukaryote model, which benefits from both unique analytical and genetic advantages and absence of potentially interfering apoptotic machinery, the differentiation factor DIF leads from starvation-induced autophagy to ACD, or, if atg1 is inactivated, to NCD. Here, through random insertional mutagenesis, we found that inactivation of the iplA gene, the only gene encoding an inositol 1,4,5-trisphosphate receptor (IP3R) in this organism, prevented ACD. The IP3R is a ligand-gated channel governing Ca(2+) efflux from endoplasmic reticulum stores to the cytosol. Accordingly, Ca(2+)-related drugs also affected DIF signaling leading to ACD. Thus, in this system, a main pathway signaling ACD requires IP3R and further Ca(2+)-dependent steps. This is one of the first insights in the molecular understanding of a signaling pathway leading to autophagic cell death.
Collapse
Affiliation(s)
- David Lam
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale U631, and Centre National de la Recherche Scientifique Unité Mixte de Recherche 6102, Aix Marseille Université, Marseille, France
| | | | | | | |
Collapse
|