1
|
Fernández LR, Mild J, Edreira MM. Screening of Protein-Protein Interaction Modulators Using BRET-Based Technology. Methods Mol Biol 2022; 2525:173-183. [PMID: 35836067 DOI: 10.1007/978-1-0716-2473-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein-protein interactions (PPIs) play central roles in most molecular mechanisms underlying cellular and biological processes. Within the methods developed to study PPIs is bioluminescence resonance energy transfer (BRET). Taking advantage of this technique, we have set a BRET-based assay that enables the screening of modulators of essential PPIs for Trypanosoma cruzi survival. Considering the complexity of the evaluated mixture, pure chemical compounds or natural extracts, two approaches are described, BRET in living cells or from lysates.
Collapse
Affiliation(s)
- Lucia R Fernández
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR), Buenos Aires, Argentina
| | - Jesica Mild
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Martin M Edreira
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina.
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Srivastava A, Ambrósio DL, Tasak M, Gosavi U, Günzl A. A distinct complex of PRP19-related and trypanosomatid-specific proteins is required for pre-mRNA splicing in trypanosomes. Nucleic Acids Res 2021; 49:12929-12942. [PMID: 34850936 PMCID: PMC8682746 DOI: 10.1093/nar/gkab1152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
The pre-mRNA splicing factor PRP19 is recruited into the spliceosome after forming the PRP19/CDC5L complex in humans and the Nineteen complex in yeast. Additionally, ‘PRP19-related’ proteins enter the spliceosome individually or in pre-assemblies that differ in these systems. The protistan family Trypanosomatidae, which harbors parasites such as Trypanosoma brucei, diverged early during evolution from opisthokonts. While introns are rare in these organisms, spliced leader trans splicing is an obligatory step in mRNA maturation. So far, ∼70 proteins have been identified as homologs of human and yeast splicing factors. Moreover, few proteins of unknown function have recurrently co-purified with splicing proteins. Here we silenced the gene of one of these proteins, termed PRC5, and found it to be essential for cell viability and pre-mRNA splicing. Purification of PRC5 combined with sucrose gradient sedimentation revealed a complex of PRC5 with a second trypanosomatid-specific protein, PRC3, and PRP19-related proteins SYF1, SYF3 and ISY1, which we named PRP19-related complex (PRC). Importantly, PRC and the previously described PRP19 complex are distinct from each other because PRC, unlike PRP19, co-precipitates U4 snRNA, which indicates that PRC enters the spliceosome prior to PRP19 and uncovers a unique pre-organization of these proteins in trypanosomes.
Collapse
Affiliation(s)
- Ankita Srivastava
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Daniela L Ambrósio
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030-6403, USA.,Departamento de Ciências da Biointeração, Universidade Federal da Bahia, Canela, Salvador, 40231-300, Brazil
| | - Monika Tasak
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Ujwala Gosavi
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Arthur Günzl
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| |
Collapse
|
3
|
Optimization of a Bioluminescence Resonance Energy Transfer-Based Assay for Screening of Trypanosoma cruzi Protein/Protein Interaction Inhibitors. Mol Biotechnol 2018; 60:369-379. [PMID: 29600316 DOI: 10.1007/s12033-018-0078-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chagas disease, a parasitic disease caused by Trypanosoma cruzi, is a major public health burden in poor rural populations of Central and South America and a serious emerging threat outside the endemic region, since the number of infections in non-endemic countries continues to rise. In order to develop more efficient anti-trypanosomal treatments to replace the outdated therapies, new molecular targets need to be explored and new drugs discovered. Trypanosoma cruzi has distinctive structural and functional characteristics with respect to the human host. These exclusive features could emerge as interesting drug targets. In this work, essential and differential protein-protein interactions for the parasite, including the ribosomal P proteins and proteins involved in mRNA processing, were evaluated in a bioluminescence resonance energy transfer-based assay as a starting point for drug screening. Suitable conditions to consider using this simple and robust methodology to screening compounds and natural extracts able to inhibit protein-protein interactions were set in living cells and lysates.
Collapse
|
4
|
Perea W, Schroeder KT, Bryant AN, Greenbaum NL. Interaction between the Spliceosomal Pre-mRNA Branch Site and U2 snRNP Protein p14. Biochemistry 2016; 55:629-32. [PMID: 26784522 DOI: 10.1021/acs.biochem.5b01036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have probed the molecular basis of recognition between human spliceosomal U2 snRNP protein p14 and RNA targets representing the intron branch site region. Interaction of an RNA duplex representing the branch site helix perturbed at least 10 nuclear magnetic resonance cross-peaks of (15)N-labeled p14. However, similar chemical shift changes were observed upon interaction with a duplex without the bulged branch site residue, suggesting that binding of p14 to RNA is nonspecific and does not recognize the branch site. We propose that the p14-RNA interaction screens charges on the backbone of the branch site during spliceosome assembly.
Collapse
Affiliation(s)
- William Perea
- Department of Chemistry & Biochemistry, Hunter College of the City University of New York , New York, New York 10065, United States.,The Graduate Group in Chemistry, The Graduate Center, City University of New York , New York, New York 10016, United States
| | - Kersten T Schroeder
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306, United States
| | - Amy N Bryant
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306, United States
| | - Nancy L Greenbaum
- Department of Chemistry & Biochemistry, Hunter College of the City University of New York , New York, New York 10065, United States.,The Graduate Group in Chemistry, The Graduate Center, City University of New York , New York, New York 10016, United States
| |
Collapse
|
5
|
Názer E, Verdún RE, Sánchez DO. Nucleolar localization of RNA binding proteins induced by actinomycin D and heat shock in Trypanosoma cruzi. PLoS One 2011; 6:e19920. [PMID: 21629693 PMCID: PMC3101214 DOI: 10.1371/journal.pone.0019920] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/14/2011] [Indexed: 11/18/2022] Open
Abstract
In this work we show that under Actinomycin D (ActD) treatment, several RNA Binding Proteins (RBPs) involved in mRNA metabolism are relocalized into the nucleolus in Trypanosoma cruzi as a specific stress response. ATP depletion as well as kinase inhibition markedly reduced the nucleolar localization response, suggesting that an energy-dependent transport modulated by the phosphorylation status of the parasite might be required. Deletion analyses in one of such proteins, TcSR62, showed that a domain bearing basic amino acids located in the COOH terminal region was sufficient to promote its nucleolar relocalization. Interestingly, we showed that in addition to RBPs, poly(A)+ RNA is also accumulated into the nucleolus in response to ActD treatment. Finally, we found out that nucleolar relocalization of RBPs is also triggered by severe heat shock in a reversible way. Together, these results suggest that the nucleolus of an early divergent eukaryote is either able to sequester key factors related to mRNA metabolism in response to transcriptional stress or behaves as a RBP processing center, arguing in favour to the hypothesis that the non-traditional features of the nucleolus could be acquired early during evolution.
Collapse
Affiliation(s)
- Ezequiel Názer
- Instituto de Investigaciones Biotecnólogicas-Instituto Tecnológico Chascomús, UNSAM-CONICET, San Martín, Provincia de Buenos Aires, Argentina
| | - Ramiro E. Verdún
- Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Daniel O. Sánchez
- Instituto de Investigaciones Biotecnólogicas-Instituto Tecnológico Chascomús, UNSAM-CONICET, San Martín, Provincia de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
6
|
The pre-mRNA splicing machinery of trypanosomes: complex or simplified? EUKARYOTIC CELL 2010; 9:1159-70. [PMID: 20581293 DOI: 10.1128/ec.00113-10] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Trypanosomatids are early-diverged, protistan parasites of which Trypanosoma brucei, Trypanosoma cruzi, and several species of Leishmania cause severe, often lethal diseases in humans. To better combat these parasites, their molecular biology has been a research focus for more than 3 decades, and the discovery of spliced leader (SL) trans splicing in T. brucei established a key difference between parasites and hosts. In SL trans splicing, the capped 5'-terminal region of the small nuclear SL RNA is fused onto the 5' end of each mRNA. This process, in conjunction with polyadenylation, generates individual mRNAs from polycistronic precursors and creates functional mRNA by providing the cap structure. The reaction is a two-step transesterification process analogous to intron removal by cis splicing which, in trypanosomatids, is confined to very few pre-mRNAs. Both types of pre-mRNA splicing are carried out by the spliceosome, consisting of five U-rich small nuclear RNAs (U snRNAs) and, in humans, up to approximately 170 different proteins. While trypanosomatids possess a full set of spliceosomal U snRNAs, only a few splicing factors were identified by standard genome annotation because trypanosomatid amino acid sequences are among the most divergent in the eukaryotic kingdom. This review focuses on recent progress made in the characterization of the splicing factor repertoire in T. brucei, achieved by tandem affinity purification of splicing complexes, by systematic analysis of proteins containing RNA recognition motifs, and by mining the genome database. In addition, recent findings about functional differences between trypanosome and human pre-mRNA splicing factors are discussed.
Collapse
|
7
|
Vazquez MP, Mualem D, Bercovich N, Stern MZ, Nyambega B, Barda O, Nasiga D, Gupta SK, Michaeli S, Levin MJ. Functional characterization and protein-protein interactions of trypanosome splicing factors U2AF35, U2AF65 and SF1. Mol Biochem Parasitol 2009; 164:137-46. [PMID: 19320097 DOI: 10.1016/j.molbiopara.2008.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Early in the assembly of eukaryotes the branch-point binding protein (BBP, also called SF1) recognizes the branch point sequence, whereas the heterodimer U2AF, consisting of a 65 and a 35 kDa subunit, contacts the polypyrimidine tract and the AG splice site, respectively. Herein, we identified, cloned and expressed the Trypanosoma cruzi and Trypanosoma brucei U2AF35, U2AF65 and SF1. Trypanosomatid U2AF65 strongly diverged from yeast and human homologues. On the contrary, trypanosomatid SF1 was conserved but lacked the C-terminal sequence present in the mammalian protein. Yeast two hybrid approaches were used to assess their interactions. The interaction between U2AF35 and U2AF65 was very weak or not detectable. However, as in other eukaryotes, the interaction between U2AF65 and SF1 was strong. At the cellular level, these results were confirmed by fractionation and affinity-selection experiments in which SF1 and U2AF65 were affinity-selected with TAP tagged SF1, but not with TAP tagged U2AF35. Silencing one of the three factors affected growth and trans-splicing in the first step of this reaction. Trypanosomes are the first described example of eukaryotic cells in which the interaction of two expressed U2AF factors seemed to be very weak, or not detectable.
Collapse
Affiliation(s)
- Martin P Vazquez
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, INGEBI-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Identification of core components of the exon junction complex in trypanosomes. Mol Biochem Parasitol 2009; 166:190-3. [PMID: 19450736 DOI: 10.1016/j.molbiopara.2009.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 03/20/2009] [Accepted: 03/24/2009] [Indexed: 11/22/2022]
Abstract
In animal cells, the exon junction complex (EJC) is deposited onto mRNAs during the second step of splicing, 20-24 nt upstream of the exon-exon junction. The EJC core contains four proteins: Mago, Y14, eIF4AIII and Btz. In trypanosomes, cis-splicing is very rare but all mRNAs are subject to 5'trans-splicing of a 39-nt RNA sequence. Here we show that trypanosomes have a conserved Mago and a divergent Y14 protein, but we were unable to identify a Btz orthologue. We demonstrate that Mago and Y14 form a stable heterodimer using yeast two hybrid analyses. We also show that this complex co-purifies in vivo in trypanosomes with a protein containing an NTF2 domain, typically involved in mRNA transport.
Collapse
|
9
|
Manful T, Cristodero M, Clayton C. DRBD1 is the Trypanosoma brucei homologue of the spliceosome-associated protein 49. Mol Biochem Parasitol 2009; 166:186-9. [PMID: 19450735 DOI: 10.1016/j.molbiopara.2009.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/19/2008] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
Abstract
The 5'-ends of all Kinetoplastid mRNAs consist of a short sequence added by trans splicing. In contrast to cis splicing in mammals, trans splicing in trypanosomes does not involve sequence-specific recognition of the branch point by the U2 snRNP. In mammalian cells and yeast, U2 snRNP is associated with the multimeric factor SF3b, which contains p14, SF3b10, SF3b14b, SAP49, SAP130, SAP145 and SAP155. The interaction between Trypanosoma cruzi p14 and SAP155 has already been characterised using the yeast 2-hybrid system. We here identify the Trypanosoma brucei RRM-protein DRBD1 as a homologue of SAP49. TAP-tagged DRBD1 co-purified with homologues of p14, SAP130, SAP145 and SAP155. Tagged DRBD1 was found in the nucleus; RNAi targeting DRBD1 inhibited trypanosome growth and caused a very mild splicing defect.
Collapse
Affiliation(s)
- Theresa Manful
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), ZMBH-DKFZ Alliance, Im Neuenheimer Feld 282, D69120 Heidelberg, Germany
| | | | | |
Collapse
|
10
|
Bercovich N, Levin MJ, Vazquez MP. The FIP-1 like polyadenylation factor in trypanosomes and the structural basis for its interaction with CPSF30. Biochem Biophys Res Commun 2009; 380:850-5. [PMID: 19338765 DOI: 10.1016/j.bbrc.2009.01.182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 01/30/2009] [Indexed: 10/21/2022]
Abstract
In trypanosomes transcription is polycistronic and individual mRNAs are generated by a trans-splicing/polyadenylation coupled reaction. We identified a divergent trypanosome FIP1-like, a factor required for mRNA 3' end formation from yeasts to human. Here we showed that it is a nuclear protein with a speckled distribution essential for trypanosome viability. A strong interaction was found between TcFIP1-like and TcCPSF30, a component of the polyadenylation complex. We determined the specific amino acids in each protein involved in the interaction. Significant differences were found between the trypanosome interaction surface and its human counterpart. Although CPSF30/FIP1 interaction is known in other organisms, this is the first report mapping the interaction surface at the amino acid level.
Collapse
Affiliation(s)
- Natalia Bercovich
- INGEBI-CONICET, Vta. de Obligado 2490, 2P, CP 1428, 1428 Buenos Aires, Argentina
| | | | | |
Collapse
|