1
|
Jiang KL, Zhong L, Yang XQ, Ma PP, Wang H, Zhu XY, Liu BZ. NLS-RARα is a novel transcriptional factor. Oncol Lett 2018; 14:7091-7098. [PMID: 29344139 PMCID: PMC5754919 DOI: 10.3892/ol.2017.7132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/09/2017] [Indexed: 11/15/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by the presence of the promyelocytic leukemia (PML)-retinoic acid receptor-α (RAR-α) fusion protein. PML-RARα can be cleaved by neutrophil elastase (NE) in several positions in cells in the promyelocytic stage, nuclear location signal (NLS)-negative PML and NLS-RARα may be the products of PML-RARα by NE. The function of NLS-RARα may be affected by the addition of NLS, which would alter its localization in cells, as the role of NLS is to identify proteins for transport to the nucleus. Preliminary experiments demonstrated that the overexpression of NLS-RARα in HL-60 cells could promote cellular proliferation and inhibit cellular differentiation. Following treatment with all-trans retinoic acid (ATRA), the degree of cellular differentiation was enhanced. In the present study, the localization of NLS-RARα was identified and its activity as a novel transcriptional factor was assessed, which may be critical in the development of APL. The location of NLS-RARα was detected in the nucleus and cytoplasm by indirect immunofluorescence and western blot analysis, with expression in the nucleus revealed to be increased compared with that in the cytoplasm. Next, native-PAGE was performed and NLS-RARα and RXRα were revealed to form heterodimers in the nucleus. In addition, co-immunoprecipitation revealed an interaction between NLS-RARα and retinoid X receptor-α (RXRα). An electrophoresis mobility shift assay (EMSA) indicated that NLS-RARα could bind retinoic acid response elements (RAREs) in the presence of ATRA. Indeed, NLS-RARα could bind RAREs just as WTRARα could, including the RAREs direct repeat-2 (DR-2) and DR-5. In addition, results from a luciferase reporter gene assay demonstrated that NLS-RARα could mediate the activity of RAREs that it bound. Together, these results indicated that NLS-RARα may be a novel transcription factor that contributes to leukemogenesis by competitively binding RAREs as heterodimers with RXRα, just as PML-RARα does, thus repressing the gene transcription essential for myeloid differentiation. These findings indicate the potential role of NLS-RARα targeted therapy in APL.
Collapse
Affiliation(s)
- Kai-Ling Jiang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China.,Clinical Laboratory of Liangping District People's Hospital, Chongqing 405200, P.R. China
| | - Liang Zhong
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Xiao-Qun Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Peng-Peng Ma
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hui Wang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xin-Yu Zhu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bei-Zhong Liu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
2
|
Vitamin A, cancer treatment and prevention: the new role of cellular retinol binding proteins. BIOMED RESEARCH INTERNATIONAL 2015; 2015:624627. [PMID: 25879031 PMCID: PMC4387950 DOI: 10.1155/2015/624627] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/07/2014] [Accepted: 08/09/2014] [Indexed: 11/18/2022]
Abstract
Retinol and vitamin A derivatives influence cell differentiation, proliferation, and apoptosis and play an important physiologic role in a wide range of biological processes. Retinol is obtained from foods of animal origin. Retinol derivatives are fundamental for vision, while retinoic acid is essential for skin and bone growth. Intracellular retinoid bioavailability is regulated by the presence of specific cytoplasmic retinol and retinoic acid binding proteins (CRBPs and CRABPs). CRBP-1, the most diffuse CRBP isoform, is a small 15 KDa cytosolic protein widely expressed and evolutionarily conserved in many tissues. CRBP-1 acts as chaperone and regulates the uptake, subsequent esterification, and bioavailability of retinol. CRBP-1 plays a major role in wound healing and arterial tissue remodelling processes. In the last years, the role of CRBP-1-related retinoid signalling during cancer progression became object of several studies. CRBP-1 downregulation associates with a more malignant phenotype in breast, ovarian, and nasopharyngeal cancers. Reexpression of CRBP-1 increased retinol sensitivity and reduced viability of ovarian cancer cells in vitro. Further studies are needed to explore new therapeutic strategies aimed at restoring CRBP-1-mediated intracellular retinol trafficking and the meaning of CRBP-1 expression in cancer patients' screening for a more personalized and efficacy retinoid therapy.
Collapse
|
3
|
Batty EC, Jensen K, Freemont PS. PML nuclear bodies and other TRIM-defined subcellular compartments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 770:39-58. [PMID: 23630999 DOI: 10.1007/978-1-4614-5398-7_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Tripartite motif (TRIM) proteins are defined by their possession of a RING, B-box and predicted coiled coil (RBCC) domain. The coiled-coil region facilitates the oligomerisation of TRIMs and contributes to the formation of high molecular weight complexes that show interesting subcellular compartmentalisations and structures. TRIM protein compartments include both nuclear and cytoplasmic filaments and aggregates (bodies), as well as diffuse subcellular distributions. TRIM 19, otherwise known as promyelocytic leukaemia (PML) protein forms nuclear aggregates termed PML nuclear bodies (PML NBs), at which a number of functionally diverse proteins transiently or covalently associate. PML NBs are therefore implicated in a wide variety of cellular functions such as transcriptional regulation, viral response, apoptosis and nuclear protein storage.
Collapse
Affiliation(s)
- Elizabeth C Batty
- Macromolecular Structure and Function Group, Division of Molecular Biosciences, Imperial College London, South Kensington, London, UK
| | | | | |
Collapse
|
4
|
Abstract
PAX5 encodes a master regulator of B-cell development. It fuses to other genes associated with acute lymphoblastoid leukemia (ALL). These fusion products are potent dominant-negative (DN) inhibitors of wild-type PAX5 resulting in a blockade of B-cell differentiation. Here, we show that multimerization of PAX5 DNA-binding domain (DBD) is necessary and sufficient to cause extremely stable chromatin binding and DN-activity. ALL-associated PAX5-C20S results from fusion of the N-terminal region of PAX5 including its paired DBD, to the C-terminus of C20orf112, a protein of unknown function. We report that PAX5-C20S is a tetramer which interacts extraordinarily stably with chromatin as determined by fluorescence recovery after photobleaching (FRAP) in living cells. Tetramerization, stable chromatin-binding and DN-activity all require a putative five-turn amphipathic α-helix at the C-terminus of C20orf112, and does not require potential co-repressor binding peptides elsewhere in the sequence. In vitro, the monomeric PAX5 DBD and PAX5-C20S binds a PAX5-binding site with equal affinity when it is at the center of an oligonucleotide too short to bind to more than one PAX5 DBD. But PAX5-C20S binds the same sequence with tenfold higher affinity than the monomeric PAX5 DBD when it is in a long DNA molecule. We suggest that the increased affinity results from interactions of one or more of the additional DBDs with neighboring non-specific sites in a long DNA molecule, and that this can account for the increased stability of PAX5-C20S chromatin binding compared to wt PAX5, resulting in DN-activity by competition for binding to PAX5-target sites. Consistent with this model, the ALL-associated PAX5 fused to ETV6 or the multimerization domain of ETV6 SAM results in stable chromatin binding and DN-activity. In addition, PAX5 DBD fused to artificial dimerization, trimerization, and tetramerization domains result in parallel increases in the stability of chromatin binding and DN-activity. Our studies suggest that oncogenic fusion proteins that retain the DBD of the transcription factor and the multimerization sequence of the partner protein can act in a DN fashion by multimerizing and binding avidly to gene targets preventing the normal transcription factor from binding and inducing expression of its target genes. Inhibition of this multimeriztion may provide a novel therapeutic approach for cancers with this or similar fusion proteins.
Collapse
|
5
|
Gocek E, Marcinkowska E. Differentiation therapy of acute myeloid leukemia. Cancers (Basel) 2011; 3:2402-20. [PMID: 24212816 PMCID: PMC3757424 DOI: 10.3390/cancers3022402] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 04/29/2011] [Accepted: 05/05/2011] [Indexed: 12/31/2022] Open
Abstract
Acute Myeloid Leukemia (AML) is a predominant acute leukemia among adults, characterized by accumulation of malignantly transformed immature myeloid precursors. A very attractive way to treat myeloid leukemia, which is now called 'differentiation therapy', was proposed as in vitro studies have shown that a variety of agents stimulate differentiation of the cell lines isolated from leukemic patients. One of the differentiation-inducing agents, all-trans retinoic acid (ATRA), which can induce granulocytic differentiation in myeloid leukemic cell lines, has been introduced into clinics to treat patients with acute promyelocytic leukemia (APL) in which a PML-RARA fusion protein is generated by a t(15;17)(q22;q12) chromosomal translocation. Because differentiation therapy using ATRA has significantly improved prognosis for patients with APL, many efforts have been made to find alternative differentiating agents. Since 1,25-dihydroxyvitamin D3 (1,25D) is capable of inducing in vitro monocyte/macrophage differentiation of myeloid leukemic cells, clinical trials have been performed to estimate its potential to treat patients with AML or myelodysplastic syndrome (MDS). Unfortunately therapeutic concentrations of 1,25D can induce potentially fatal systemic hypercalcemia, thus limiting clinical utility of that compound. Attempts to overcome this problem have focused on the synthesis of 1,25D analogs (VDAs) which retain differentiation inducing potential, but lack its hypercalcemic effects. This review aims to discuss current problems and potential solutions in differentiation therapy of AML.
Collapse
Affiliation(s)
- Elzbieta Gocek
- Department of Biotechnology, University of Wroclaw, ul Tamka 2, Wroclaw 50-137, Poland; E-Mail: (E.G.)
| | - Ewa Marcinkowska
- Department of Biotechnology, University of Wroclaw, ul Tamka 2, Wroclaw 50-137, Poland; E-Mail: (E.G.)
| |
Collapse
|
6
|
Qiu JJ, Chu H, Lu X, Jiang X, Dong S. The reduced and altered activities of PAX5 are linked to the protein-protein interaction motif (coiled-coil domain) of the PAX5-PML fusion protein in t(9;15)-associated acute lymphocytic leukemia. Oncogene 2010; 30:967-77. [PMID: 20972455 DOI: 10.1038/onc.2010.473] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The paired box domain of PAX5 was reported to fuse with the sequence of promyelocytic leukemia (PML) to produce PAX5-PML chimeric protein in two patients with B-cell acute lymphoblastic leukemia. In the present studies, we found, by gel shift assays, that PAX5-PML bound to a panel of PAX5-consensus sequence acts as a homodimer with reduction of its DNA-binding affinities in comparison with wild-type PAX5. In transient transfection assays using 293T and HeLa cells, and retrovirus transduction of murine hematopoietic stem/progenitor cells together with quantitative real-time polymerase chain reaction analysis, PAX5-PML inhibited wild-type PAX5 target gene transcriptional activity. Studies comparing PAX5-PML with PAX5-PML(ΔCC) demonstrated that the coiled-coil (CC) protein interaction domain located within the PML moiety was required for PAX5-PML homodimer complex formation and partial transcriptional repression of genes controlled by PAX5. Fluorescent microscopic examination of transiently expressed YFP-tagged proteins in HeLa and 293T cells demonstrated that YFP-PAX5-PML and YFP-PAX5-PML(ΔCC) exhibited a diffuse granular pattern within the nucleus, similar to PAX5 but not PML. By fluorescent recovery after photobleach (FRAP), we have shown that PAX5-PML fusion protein has reduced intranuclear mobility compared with wild-type PAX5. Furthermore, the dimerization domain (CC) of PML was responsible for the reduced intranuclear mobility of PAX5-PML. These results indicate that the CC domain of PAX5-PML is important for each of the known activities of PAX5-PML fusion proteins.
Collapse
Affiliation(s)
- J J Qiu
- Department of Medicine and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | |
Collapse
|
7
|
Francone VP, Ifrim MF, Rajagopal C, Leddy CJ, Wang Y, Carson JH, Mains RE, Eipper BA. Signaling from the secretory granule to the nucleus: Uhmk1 and PAM. Mol Endocrinol 2010; 24:1543-58. [PMID: 20573687 DOI: 10.1210/me.2009-0381] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neurons and endocrine cells package peptides in secretory granules (large dense-core vesicles) for storage and stimulated release. Studies of peptidylglycine alpha-amidating monooxygenase (PAM), an essential secretory granule membrane enzyme, revealed a pathway that can relay information from secretory granules to the nucleus, resulting in alterations in gene expression. The cytosolic domain (CD) of PAM, a type 1 membrane enzyme essential for the production of amidated peptides, is basally phosphorylated by U2AF homology motif kinase 1 (Uhmk1) and other Ser/Thr kinases. Proopiomelanocortin processing in AtT-20 corticotrope tumor cells was increased when Uhmk1 expression was reduced. Uhmk1 was concentrated in the nucleus, but cycled rapidly between nucleus and cytosol. Endoproteolytic cleavage of PAM releases a soluble CD fragment that localizes to the nucleus. Localization of PAM-CD to the nucleus was decreased when PAM-CD with phosphomimetic mutations was examined and when active Uhmk1 was simultaneously overexpressed. Membrane-tethering Uhmk1 did not eliminate its ability to exclude PAM-CD from the nucleus, suggesting that cytosolic Uhmk1 could cause this response. Microarray analysis demonstrated the ability of PAM to increase expression of a small subset of genes, including aquaporin 1 (Aqp1) in AtT-20 cells. Aqp1 mRNA levels were higher in wild-type mice than in mice heterozygous for PAM, indicating that a similar relationship occurs in vivo. Expression of PAM-CD also increased Aqp1 levels whereas expression of Uhmk1 diminished Aqp1 expression. The outlines of a pathway that ties secretory granule metabolism to the transcriptome are thus apparent.
Collapse
Affiliation(s)
- Victor P Francone
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Leukemic transformation by the APL fusion protein PRKAR1A-RARα critically depends on recruitment of RXRα. Blood 2010; 115:643-52. [PMID: 19965660 DOI: 10.1182/blood-2009-07-232652] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
PRKAR1A (R1A)–retinoic acid receptor-α (R1A-RARα) is the sixth RARα–containing fusion protein in acute promyelocytic leukemia (APL). Using the murine bone-marrow retroviral transduction/transformation assay, we showed that R1A-RARα fusion protein could transform bone-marrow progenitor/stem cells. In gel-shift assays, R1A-RARα was able to bind to a panel of retinoic acid response elements both as a homodimer and as a heterodimer with RXRα, and demonstrated distinct DNA-binding characteristics compared with wild-type RARα/RXRα or other X-RARα chimeric proteins. The ratio of R1A-RARα to RXRα proteins affected the retinoic acid response element interaction pattern of R1A-RARα/RXRα complexes. Studies comparing R1A-RARα with R1A-RARα(ΔRIIa) demonstrated that the RIIa protein interaction domain located within R1A was responsible for R1A-RARα homodimeric DNA binding and interaction with wild-type R1A protein. However, the RIIa domain was not required for R1A-RARα–mediated transformation because its deletion in R1A-RARα(ΔRIIa) did not compromise its transformation capability. In contrast, introduction of point mutations within the RARα portion of either R1A-RARα or R1A-RARα(ΔRIIa), previously demonstrated to eliminate RXRα interaction or treatment of transduced cells with RXRα shRNA or a RXRα agonist, reduced transformation capability. Thus, leukemic transformation by APL fusion protein PRKAR1A-RARα is critically dependent on RXRα, which suggests RXRα is a promising target for APL.
Collapse
|