1
|
Lin C, Xu L, Tang X, Li X, Lu C, Cheng Q, Jiang J, Shen Y, Yan D, Qian R, Fu W, Guo D. Clock Gene Bmal1 Disruption in Vascular Smooth Muscle Cells Worsens Carotid Atherosclerotic Lesions. Arterioscler Thromb Vasc Biol 2022; 42:565-579. [PMID: 35236106 DOI: 10.1161/atvbaha.121.316480] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Clock system disruptions are associated with cardiovascular diseases. We previously demonstrated Bmal1 (brain muscle aryl nuclear translocase like-1) expression is significantly attenuated in plaque-derived vascular smooth muscle cells (VSMCs). However, the influence of Bmal1 disruption in VSMCs and its molecular targets are still unclear. Here, we aim to define how Bmal1 disruption in VSMCs influences the atherosclerosis lesions. METHODS The relationship among Bmal1, neurological symptoms, and plaque stability was investigated. VSMC Bmal1-/- and VSMC Bmal1+/+mice were generated and injected with adeno associated virus encoding mutant proprotein convertase subtilisin/kexin type 9 to induce atherosclerosis. Carotid artery ligation and cuff placement were performed in these mice to confirm the role of Bmal1 in atherosclerosis progression. The relevant molecular mechanisms were then explored. RESULTS Bmal1 expression in the carotid plague was significantly lower in symptomatic patients as well as in unstable plaques. Moreover, Bmal1 reduction is an independent risk factor for neurological symptoms and plaque instability. Besides, VSMC Bmal1-/- mice exhibit aggravated atherosclerotic lesions. Further study demonstrated that Bmal1 downregulation in VSMCs increased VSMC migration, monocyte transmigration, reactive oxygen species levels, and VSMCs apoptosis. As for the mechanism, we revealed that Bmal1 suppresses VSMCs migration by inhibiting RAC1 activity in 2 ways: by activating the transcription of RhoGDIα and by interacting with RAC1. Besides, Bmal1 was shown to preserve antioxidant function in VSMCs by activating Nrf2 (nuclear factor erythroid 2-related factor 2) and Bcl-2 transcription. CONCLUSIONS Bmal1 disruption in VSMCs worsens atherosclerosis by promoting VSMC migration and monocyte transmigration and impairing antioxidant function. Therefore, Bmal1 may be a potential therapeutic target and biomarker of atherosclerosis in the future.
Collapse
Affiliation(s)
- Changpo Lin
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Lirong Xu
- National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Xiao Tang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Xiaobo Li
- Department of Pathology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, China (L.X.).,Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, China (X.L., C.L., Q.C., R.Q.)
| | - Chao Lu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, China (X.L., C.L., Q.C., R.Q.)
| | - Qianyun Cheng
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, China (X.L., C.L., Q.C., R.Q.)
| | - Junhao Jiang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Yang Shen
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Dong Yan
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, China (X.L., C.L., Q.C., R.Q.)
| | - Weiguo Fu
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Daqiao Guo
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| |
Collapse
|
2
|
Ge F, Pan Q, Qin Y, Jia M, Ruan C, Wei X, Jing Q, Zhi X, Wang X, Jiang L, Osto E, Guo J, Meng D. Single-Cell Analysis Identify Transcription Factor BACH1 as a Master Regulator Gene in Vascular Cells During Aging. Front Cell Dev Biol 2022; 9:786496. [PMID: 35004685 PMCID: PMC8740196 DOI: 10.3389/fcell.2021.786496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
Vascular aging is a potent driver of cardiovascular and cerebrovascular diseases. Vascular aging features cellular and functional changes, while its molecular mechanisms and the cell heterogeneity are poorly understood. This study aims to 1) explore the cellular and molecular properties of aged cardiac vasculature in monkey and mouse and 2) demonstrate the role of transcription factor BACH1 in the regulation of endothelial cell (EC) senescence and its mechanisms. Here we analyzed published single-cell RNA sequencing (scRNA-seq) data from monkey coronary arteries and aortic arches and mouse hearts. We revealed that the gene expression of YAP1, insulin receptor, and VEGF receptor 2 was downregulated in both aged ECs of coronary arteries’ of monkey and aged cardiac capillary ECs of mouse, and proliferation-related cardiac capillary ECs were significantly decreased in aged mouse. Increased interaction of ECs and immunocytes was observed in aged vasculature of both monkey and mouse. Gene regulatory network analysis identified BACH1 as a master regulator of aging-related genes in both coronary and aorta ECs of monkey and cardiac ECs of mouse. The expression of BACH1 was upregulated in aged cardiac ECs and aortas of mouse. BACH1 aggravated endothelial cell senescence under oxidative stress. Mechanistically, BACH1 occupied at regions of open chromatin and bound to CDKN1A (encoding for P21) gene enhancers, activating its transcription in senescent human umbilical vein endothelial cells (HUVECs). Thus, these findings demonstrate that BACH1 plays an important role in endothelial cell senescence and vascular aging.
Collapse
Affiliation(s)
- Fei Ge
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Qin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengping Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chengchao Ruan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinhong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lindi Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Elena Osto
- Institute of Clinical Chemistry and Department of Cardiology, University Heart Center, University and University Hospital Zurich, Zurich, Switzerland
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Jiang L, Jia M, Wei X, Guo J, Hao S, Mei A, Zhi X, Wang X, Li Q, Jin J, Zhang J, Li S, Meng D. Bach1-induced suppression of angiogenesis is dependent on the BTB domain. EBioMedicine 2020; 51:102617. [PMID: 31911270 PMCID: PMC6948167 DOI: 10.1016/j.ebiom.2019.102617] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 11/04/2022] Open
Abstract
The transcription factor Bach1 impairs angiogenesis after ischemic injury by suppressing Wnt/β-catenin signaling; however, the specific domains responsible for the anti-angiogenic effects of Bach1 remain unclear. This study determined the role of the BTB domain of Bach1 in ischemic angiogenesis. Bach1 is highly expressed in circulating endothelial cells from acute myocardial infarction patients and is the early induction gene after ischemia. Mice were treated with adenoviruses coding for GFP (AdGFP), Bach1 (AdBach1), or a Bach1 mutant lacking the BTB domain (AdBach1-ΔBTB) after surgically induced hind-limb ischemia. Measures of blood-flow recovery, capillary density, and the expression of vascular endothelial growth factor (VEGF) and heme oxygenase-1 (HO-1) were significantly lower and ROS levels were higher in the AdBach1 group, but not in AdBach1-ΔBTB animals. Furthermore, transfection with AdBach1, but not AdBach1-ΔBTB, in human endothelial cells was associated with significant declines in 1) capillary density and hemoglobin content in the Matrigel-plug assay, 2) proliferation, migration, tube formation, and VEGF and HO-1 expression in endothelial cells. Bach1 binds directly with TCF4, and this interaction is mediated by residues 81–89 of the Bach1 BTB domain and the N-terminal domain of TCF4. Bach1, but not Bach1-ΔBTB, also co-precipitated with histone deacetylase 1 (HDAC1), while the full-length HDAC1 proteins, but not HDAC1 mutants lacking the protein-interaction domain, co-precipitated with Bach1. Collectively, these results demonstrate that the anti-angiogenic activity of Bach1 is crucially dependent on molecular interactions that are mediated by the protein's BTB domain, and this domain could be a drug target for angiogenic therapy.
Collapse
Affiliation(s)
- Li Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Mengping Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shengyu Hao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Aihong Mei
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xinhong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qinhan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jiayu Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham 35294, USA
| | - Shanqun Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
The role of neurotrophins in psychopathology and cardiovascular diseases: psychosomatic connections. J Neural Transm (Vienna) 2019; 126:265-278. [PMID: 30767081 PMCID: PMC6449302 DOI: 10.1007/s00702-019-01973-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/16/2019] [Indexed: 12/18/2022]
Abstract
Cardiovascular (CV) diseases and mood disorders are common public health problems worldwide. Their connections are widely studied, and the role of neurotrophins (NTs) is already supposed in both conditions. However, data in the literature of clinical aspects are sometimes controversial and no reviews are available describing possible associations between CV risk and mood disorders based on NTs. The mostly studied NT is brain-derived neurotrophic factor (BDNF). Decreased level of BDNF is observed in depression and its connection to hypertension has also been demonstrated with affecting the arterial baroreceptors, renin–angiotensin system and endothelial nitric oxide synthase. BDNF was also found to be the predictor of CV outcome in different patient populations. Other types of human NT-s, such as nerve growth factor, neurotrophin 3 and neurotrophin 4 also seem to have both psychopathological and CV connections. Our aim was to overview the present knowledge in this area, demonstrating a new aspect of the associations between mood disorders and CV diseases through the mediation of NTs. These findings might enlighten new psychosomatic connections and suggest new therapeutic targets that are beneficial both in respect of mood disorders and CV pathology.
Collapse
|
5
|
Asanome A, Kawabe JI, Matsuki M, Kabara M, Hira Y, Bochimoto H, Yamauchi A, Aonuma T, Takehara N, Watanabe T, Hasebe N. Nerve growth factor stimulates regeneration of perivascular nerve, and induces the maturation of microvessels around the injured artery. Biochem Biophys Res Commun 2013; 443:150-5. [PMID: 24296254 DOI: 10.1016/j.bbrc.2013.11.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/15/2013] [Indexed: 11/28/2022]
Abstract
An immature vasa vasorum in the adventitia of arteries has been implicated in induction of the formation of unstable atherosclerotic plaques. Normalization/maturation of the vasa vasorum may be an attractive therapeutic approach for arteriosclerotic diseases. Nerve growth factor (NGF) is a pleotropic molecule with angiogenic activity in addition to neural growth effects. However, whether NGF affects the formation of microvessels in addition to innervation during pathological angiogenesis is unclear. In the present study, we show a new role for NGF in neovessels around injured arterial walls using a novel in vivo angiogenesis assay. The vasa vasorum around arterial walls was induced to grow using wire-mediated mouse femoral arterial injury. When collagen-coated tube (CCT) was placed beside the injured artery for 7-14 days, microvessels grew two-dimensionally in a thin layer on the CCT (CCT-membrane) in accordance with the development of the vasa vasorum. The perivascular nerve was found at not only arterioles but also capillaries in the CCT-membrane. Biodegradable hydrogels containing VEGF and NGF were applied around the injured artery/CCT. VEGF significantly increased the total length and instability of microvessels within the CCT-membrane. In contrast, NGF induced regeneration of the peripheral nerve around the microvessels and induced the maturation and stabilization of microvessels. In an ex vivo nerve-free angiogenesis assay, although NGF potentially stimulated vascular sprouting from aorta tissues, no effects of NGF on vascular maturation were observed. These data demonstrated that NGF had potent angiogenic effects on the microvessels around the injured artery, and especially induced the maturation/stabilization of microvessels in accordance with the regeneration of perivascular nerves.
Collapse
Affiliation(s)
- Akira Asanome
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Jun-ichi Kawabe
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan.
| | - Motoki Matsuki
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Maki Kabara
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Yoshiki Hira
- Department of Anatomy, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroki Bochimoto
- Department of Anatomy, Asahikawa Medical University, Asahikawa, Japan
| | - Atsushi Yamauchi
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Tatsuya Aonuma
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Naofumi Takehara
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan
| | - Tsuyoshi Watanabe
- Department of Anatomy, Asahikawa Medical University, Asahikawa, Japan
| | - Naoyuki Hasebe
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, Japan; Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
6
|
Li Y, Xu Y, Li X, Qin Y, Hu R. Effects of PPAR-α agonist and IGF-1 on estrogen sulfotransferase in human vascular endothelial and smooth muscle cells. Mol Med Rep 2013; 8:133-9. [PMID: 23685729 DOI: 10.3892/mmr.2013.1483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/25/2013] [Indexed: 11/05/2022] Open
Abstract
Estrogen has a protective role in vascular functions and estrogen levels are modulated by estrogen sulfotransferase (SULT1E1). In this study, we investigated the effects of the peroxisome proliferator-activated receptor-α (PPAR-α) agonist WY14643 and insulin-like growth factor-1 (IGF-1) on the expression and activity of SULT1E1 in vascular cells. Human umbilical vein endothelial cells (HUVECs) and human umbilical artery smooth muscle cells (HUASMCs) were primarily cultured from fresh umbilical cord. SULT1E1 was highly expressed in HUVECs and HUASMCs according to immunofluorescence microscopy detection. WY14643 decreased, while IGF-1 increased, SULT1E1 mRNA and SULT1E1 protein levels, as demonstrated by RT-qPCR and western blot analysis, respectively, in the HUVECs and HUASMCs. SULT1E1 activity was indicated by counting the transformed 3H-estradiol sulfate from 3H-labeled 17β-estradiol added into the cell culture medium. The activity of SULT1E1 reduced following treatment with WY14643, whereas SULT1E1 activity was enhanced in the presence of IGF-1. The human SULT1E1 promoter-reporter plasmid was constructed. The activity of the SULT1E1 promoter increased 30-fold compared with the pGL3-basic vector. The PPAR-α agonist WY14643 downregulated, while IGF-1 upregulated, the luciferase activity of the SULT1E1 promoter. In conclusion, the PPAR-α agonist WY14643 and IGF-1 may regulate SULT1E1 expression at the transcriptional level and modulate the levels of active estrogens in endothelial cells and smooth muscle cells, thereby affecting the physiology and pathophysiology of vascular walls.
Collapse
Affiliation(s)
- Yintao Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology and Diabetology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China
| | | | | | | | | |
Collapse
|
7
|
Xu Y, Yang X, Wang Z, Li M, Ning Y, Chen S, Yin L, Li X. Estrogen sulfotransferase (SULT1E1) regulates inflammatory response and lipid metabolism of human endothelial cells via PPARγ. Mol Cell Endocrinol 2013; 369:140-9. [PMID: 23384540 DOI: 10.1016/j.mce.2013.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 01/15/2013] [Accepted: 01/22/2013] [Indexed: 12/22/2022]
Abstract
Estrogen sulfotransferase (SULT1E1) is a phase II drug-metabolizing enzyme known to catalyze sulfoconjugation of estrogens. 17β-estradiol (E2) plays a pivotal role in attenuating endothelial dysfunction. E2 can be further sulfated to estradiol sulfate (E2S) using SULT1E1. To date, there are no reports of expression and function of SULT1E1 in the endothelium. We identified that SULT1E1 is highly expressed in human umbilical vein endothelial cells (HUVECs) using immunofluorescence microscopy and Western immunoblot analyses. A synthesized siRNA targeting SULT1E1 was used to successfully suppress SULT1E1 expression and inhibit estrogen sulfation in HUVECs. This led to functional depletion, as confirmed by a SULT1E1 enzyme activity assay in vitro and by an in vivo estrogen sulfation assay. Knock-down of SULT1E1 in HUVECs resulted in regulation of genes involved in inflammation and lipid metabolism. Interestingly, this regulation was attenuated by PPARγ siRNA and by exposure to the PPARγ antagonist GW9662. Compared with cell response in the absence of estrogen, the effects of SULT1E1 interference on the inflammatory response and lipid metabolism related genes in the presence of 80nM estrogen were completely opposite. When exogenous estrogen was applied, cell responses depended on the ratio of E2 to E2S, due to the activity of SULT1E1, and the different regulation of these processes. It is suggested that E2 sulfation catalyzed by SULT1E1 plays an important role in modulating endothelial cell function.
Collapse
Affiliation(s)
- Yali Xu
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Nerve growth factor induces cord formation of mesenchymal stem cell by promoting proliferation and activating the PI3K/Akt signaling pathway. Acta Pharmacol Sin 2011; 32:1483-90. [PMID: 22139028 DOI: 10.1038/aps.2011.141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
AIM To investigate whether nerve growth factor (NGF) induced angiogenesis of bone marrow mesenchymal stem cells (MSCs) and the underlying mechanisms. METHODS Bone marrow MSCs were isolated from femors or tibias of Sprague-Dawley rat, and cultured. The cells were purified after 3 to 5 passages, seeded on Matrigel-coated 24-well plates and treated with NGF. Tube formation was observed 24 h later. Tropomyosin-related kinase A (TrkA) and p75NTR gene expression was examined using PCR analysis and flow cytometry. Growth curves were determined via cell counting. Expression of VEGF and pAkt/Akt were analyzed with Western blot. RESULTS NGF (25, 50, 100 and 200 μg/L) promoted tube formation of MSCs. The tubular length reached the maximum of a 2.24-fold increase, when the cells were treated with NGF (50 μg/L). NGF (50 μg/L) significantly enhanced Akt phosphorylation. Pretreatment with the specific PI3K inhibitor LY294002 (10 μmol/L) blocked NGF-stimulated Akt phosphorylation, tube formation and angiogenesis. NGF (25-200 μg/L) did not affect the expression of TrkA and vascular endothelial growth factor (VEGF), but significantly suppressed the expression of p75NTR. NGF (50 μg/L) markedly increased the proliferation of MSCs. CONCLUSION NGF promoted proliferation of MSCs and activated the PI3K/Akt signaling pathway, which may be responsible for NGF induction of MSC angiogenesis.
Collapse
|
9
|
Han Y, Li N, Tian X, Kang J, Yan C, Qi Y. Endogenous transforming growth factor (TGF) beta1 promotes differentiation of smooth muscle cells from embryonic stem cells: stable plasmid-based siRNA silencing of TGF beta1 gene expression. J Physiol Sci 2010; 60:35-41. [PMID: 19784879 PMCID: PMC10717952 DOI: 10.1007/s12576-009-0063-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 09/09/2009] [Indexed: 02/06/2023]
Abstract
Transforming growth factor (TGF) beta1 has been shown to promote differentiation of smooth muscle cells (SMC) from some precursor cells. Whether endogenous TGF beta1 also contributes to SMC differentiation during embryogenesis, however, remains unclear. In this study, a plasmid-based TGF beta1 RNA interference embryonic stem (ES) cell line was constructed. Morphological observation showed that TGF beta1 knockdown significantly prevented differentiated cells from outgrowing from ES cells-derived embryoid bodies (EBs). Immunofluorescence staining indicated that SM alpha-actin-positive cells were confluent and dense in the control group but dispersed in the TGF beta1 knockdown group. RT-PCR and western blot suggested that TGF beta1 knockdown resulted in a decrease in the expression of early SMC markers SM alpha-actin and myocardin in EBs. Both the retarded extension of cell outgrowth and the decrease in SM alpha-actin and myocardin expression could not be rescued by addition of exogenous TGF beta1. These data suggest that endogenous TGF beta1 promotes differentiation of SMC from ES cells.
Collapse
Affiliation(s)
- Yaling Han
- Department of Cardiology, Cardiovascular Research Institute, Shenyang Northern Hospital, 110016 Shenyang, Liaoning, China.
| | | | | | | | | | | |
Collapse
|