1
|
Dasgupta Y, Koptyra M, Hoser G, Kantekure K, Roy D, Gornicka B, Nieborowska-Skorska M, Bolton-Gillespie E, Cerny-Reiterer S, Müschen M, Valent P, Wasik MA, Richardson C, Hantschel O, van der Kuip H, Stoklosa T, Skorski T. Normal ABL1 is a tumor suppressor and therapeutic target in human and mouse leukemias expressing oncogenic ABL1 kinases. Blood 2016; 127:2131-43. [PMID: 26864341 PMCID: PMC4850868 DOI: 10.1182/blood-2015-11-681171] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/07/2016] [Indexed: 11/20/2022] Open
Abstract
Leukemias expressing constitutively activated mutants of ABL1 tyrosine kinase (BCR-ABL1, TEL-ABL1, NUP214-ABL1) usually contain at least 1 normal ABL1 allele. Because oncogenic and normal ABL1 kinases may exert opposite effects on cell behavior, we examined the role of normal ABL1 in leukemias induced by oncogenic ABL1 kinases. BCR-ABL1-Abl1(-/-) cells generated highly aggressive chronic myeloid leukemia (CML)-blast phase-like disease in mice compared with less malignant CML-chronic phase-like disease from BCR-ABL1-Abl1(+/+) cells. Additionally, loss of ABL1 stimulated proliferation and expansion of BCR-ABL1 murine leukemia stem cells, arrested myeloid differentiation, inhibited genotoxic stress-induced apoptosis, and facilitated accumulation of chromosomal aberrations. Conversely, allosteric stimulation of ABL1 kinase activity enhanced the antileukemia effect of ABL1 tyrosine kinase inhibitors (imatinib and ponatinib) in human and murine leukemias expressing BCR-ABL1, TEL-ABL1, and NUP214-ABL1. Therefore, we postulate that normal ABL1 kinase behaves like a tumor suppressor and therapeutic target in leukemias expressing oncogenic forms of the kinase.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Blast Crisis/drug therapy
- Blast Crisis/enzymology
- Blast Crisis/genetics
- Blast Crisis/pathology
- Cell Division/drug effects
- Cell Line, Tumor
- Cytostatic Agents/pharmacology
- Gene Expression Regulation, Leukemic/drug effects
- Genes, Tumor Suppressor
- Genes, abl
- Genomic Instability
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Imidazoles/pharmacology
- Imidazoles/therapeutic use
- Leukemia, Experimental/drug therapy
- Leukemia, Experimental/enzymology
- Leukemia, Experimental/genetics
- Leukemia, Experimental/pathology
- Leukemia, Myeloid, Chronic-Phase/drug therapy
- Leukemia, Myeloid, Chronic-Phase/enzymology
- Leukemia, Myeloid, Chronic-Phase/genetics
- Leukemia, Myeloid, Chronic-Phase/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/enzymology
- Oncogene Proteins v-abl/antagonists & inhibitors
- Oncogene Proteins v-abl/genetics
- Oncogene Proteins v-abl/physiology
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Oxidative Stress
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Proto-Oncogene Proteins c-abl/genetics
- Proto-Oncogene Proteins c-abl/physiology
- Pyridazines/pharmacology
- Pyridazines/therapeutic use
- Tumor Suppressor Proteins/antagonists & inhibitors
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/physiology
Collapse
Affiliation(s)
- Yashodhara Dasgupta
- Department of Microbiology & Immunology, Temple University School of Medicine, Philadelphia, PA
| | - Mateusz Koptyra
- Department of Microbiology & Immunology, Temple University School of Medicine, Philadelphia, PA
| | - Grazyna Hoser
- Department of Clinical Cytology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Kanchan Kantekure
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Darshan Roy
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Barbara Gornicka
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Sabine Cerny-Reiterer
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna and Ludwig-Boltzmann Cluster Oncology, Vienna, Austria
| | - Markus Müschen
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna and Ludwig-Boltzmann Cluster Oncology, Vienna, Austria
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Christine Richardson
- Department of Biological Sciences and Center of Bioinformatics, University of North Carolina at Charlotte, Charlotte, NC
| | - Oliver Hantschel
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Heiko van der Kuip
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany; and
| | - Tomasz Stoklosa
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Skorski
- Department of Microbiology & Immunology, Temple University School of Medicine, Philadelphia, PA
| |
Collapse
|
2
|
Constance JE, Woessner DW, Matissek KJ, Mossalam M, Lim CS. Enhanced and selective killing of chronic myelogenous leukemia cells with an engineered BCR-ABL binding protein and imatinib. Mol Pharm 2012; 9:3318-29. [PMID: 22957899 DOI: 10.1021/mp3003539] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The oncoprotein Bcr-Abl stimulates prosurvival pathways and suppresses apoptosis from its exclusively cytoplasmic locale, but when targeted to the mitochondrial compartment of leukemia cells, Bcr-Abl was potently cytotoxic. Therefore, we designed a protein construct to act as a mitochondrial chaperone to move Bcr-Abl to the mitochondria. The chaperone (i.e., the 43.6 kDa intracellular cryptic escort (iCE)) contains an EGFP tag and two previously characterized motifs: (1) an optimized Bcr-Abl binding motif that interacts with the coiled-coil domain of Bcr (ccmut3; 72 residues), and (2) a cryptic mitochondrial targeting signal (cMTS; 51 residues) that selectively targets the mitochondria in oxidatively stressed cells (i.e., Bcr-Abl positive leukemic cells) via phosphorylation at a key residue (T193) by protein kinase C. While the iCE colocalized with Bcr-Abl, it did not relocalize to the mitochondria. However, the iCE was selectively toxic to Bcr-Abl positive K562 cells as compared to Bcr-Abl negative Cos-7 fibroblasts and 1471.1 murine breast cancer cells. The toxicity of the iCE to leukemic cells was equivalent to 10 μM imatinib at 48 h and the iCE combined with imatinib potentiated cell death beyond imatinib or the iCE alone. Substitution of either the ccmut3 or the cMTS with another Bcr-Abl binding domain (derived from Ras/Rab interaction protein 1 (RIN1; 295 residues)) or MTS (i.e., the canonical IMS derived from Smac/Diablo; 49 residues) did not match the cytotoxicity of the iCE. Additionally, a phosphorylation null mutant of the iCE also abolished the killing effect. The mitochondrial toxicity of Bcr-Abl and the iCE in Bcr-Abl positive K562 leukemia cells was confirmed by flow cytometric analysis of 7-AAD, TUNEL, and annexin-V staining. DNA segmentation and cell viability were assessed by microscopy. Subcellular localization of constructs was determined using confocal microscopy (including statistical colocalization analysis). Overall, the iCE was highly active against K562 leukemia cells and the killing effect was dependent upon both the ccmut3 and functional cMTS domains.
Collapse
Affiliation(s)
- Jonathan E Constance
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108, United States
| | | | | | | | | |
Collapse
|
3
|
Constance JE, Despres SD, Nishida A, Lim CS. Selective targeting of c-Abl via a cryptic mitochondrial targeting signal activated by cellular redox status in leukemic and breast cancer cells. Pharm Res 2012; 29:2317-28. [PMID: 22549737 DOI: 10.1007/s11095-012-0758-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/11/2012] [Indexed: 01/03/2023]
Abstract
PURPOSE The tyrosine kinase c-Abl localizes to the mitochondria under cell stress conditions and promotes apoptosis. However, c-Abl has not been directly targeted to the mitochondria. Fusing c-Abl to a mitochondrial translocation signal (MTS) that is activated by reactive oxygen species (ROS) will selectively target the mitochondria of cancer cells exhibiting an elevated ROS phenotype. Mitochondrially targeted c-Abl will thereby induce malignant cell death. METHODS Confocal microscopy was used to determine mitochondrial colocalization of ectopically expressed c-Abl-EGFP/cMTS fusion across three cell lines (K562, Cos-7, and 1471.1) with varying levels of basal (and pharmacologically modulated) ROS. ROS were quantified by indicator dye assay. The functional consequences of mitochondrial c-Abl were assessed by DNA accessibility to 7-AAD using flow cytometry. RESULTS The cMTS and cMTS/c-Abl fusions colocalized to the mitochondria in leukemic (K562) and breast (1471.1) cancer phenotypes (but not Cos-7 fibroblasts) in a ROS and PKC dependent manner. CONCLUSIONS We confirm and extend oxidative stress activated translocation of the cMTS by demonstrating that the cMTS and Abl/cMTS fusion selectively target the mitochondria of K562 leukemia and mammary adenocarcinoma 1471.1 cells. c-Abl induced K562 leukemia cell death when targeted to the matrix but not the outer membrane of the mitochondria.
Collapse
Affiliation(s)
- Jonathan E Constance
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108, USA.
| | | | | | | |
Collapse
|
4
|
Olsson-Strömberg U, Hermansson M, Lundán T, Ohm AC, Engdahl I, Höglund M, Simonsson B, Porkka K, Barbany G. Molecular monitoring and mutation analysis of patients with advanced phase CML and Ph+ ALL receiving dasatinib. Eur J Haematol 2010; 85:399-404. [PMID: 20659155 DOI: 10.1111/j.1600-0609.2010.01506.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As a result of the excellent responses achieved in chronic phase chronic myeloid leukemia since the introduction of imatinib, sensitive techniques such as reverse transcriptase real-time PCR are warranted to monitor patients receiving tyrosine kinase inhibitors (TKI). Our objective was to determine the value of molecular monitoring Ph-positive leukemias under dasatinib treatment. We used real-time PCR and ABL1 kinase domain sequencing on sequential samples from 11 patients with Philadelphia-positive leukemias who received dasatinib. We were able to detect pre-existing mutations in the kinase domain of BCR-ABL1 in four patients, particularly in patients with high BCR-ABL1 transcript levels. Most mutations disappeared with dasatinib, however, in five patients a clone with T315I appeared during dasatinib treatment. We conclude that sensitive molecular monitoring with real-time PCR for BCR-ABL1 transcripts and mutation screening of the ABL1 kinase domain of patients with Philadelphia-positive leukemias are valuable for patient management, however, mutation findings should be interpreted with caution, as mutant clones not always behave in vivo as predicted by in vitro assays.
Collapse
|