1
|
Zhang Q, Li Z, Liu X, Zhao M. Recombinant Humanized IgG1 Antibody Protects against oxLDL-Induced Oxidative Stress and Apoptosis in Human Monocyte/Macrophage THP-1 Cells by Upregulation of MSRA via Sirt1-FOXO1 Axis. Int J Mol Sci 2022; 23:ijms231911718. [PMID: 36233020 PMCID: PMC9569918 DOI: 10.3390/ijms231911718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Oxidized low-density lipoprotein (oxLDL)-induced oxidative stress and apoptosis are considered as critical contributors to cardiovascular diseases. Methionine sulfoxide reductase A (MSRA) is a potent intracellular oxidoreductase and serves as an essential factor that protects cells against oxidative damage. Here, we firstly provide evidence that recombinant humanized IgG1 antibody treatment upregulated the expression of MSRA in THP-1 cells to defend against oxLDL-induced oxidative stress and apoptosis. It was also observed that the upregulation of MSRA is regulated by the forkhead box O transcription factor (FOXO1), and the acetylation of FOXO1 increased when exposed to oxLDL but declined when treated with recombinant humanized IgG1 antibody. In addition, we identified that silent information regulator 1 (SIRT1) suppresses FOXO1 acetylation. Importantly, SIRT1 or FOXO1 deficiency impaired the anti-oxidative stress and anti-apoptotic effect of recombinant humanized IgG1 antibody. Together, our results suggest that recombinant humanized IgG1 antibody exerts its anti-oxidative stress and anti-apoptotic function by upregulation of MSRA via the Sirt1-FOXO1 axis.
Collapse
Affiliation(s)
- Qi Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhonghao Li
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xianyan Liu
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ming Zhao
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence:
| |
Collapse
|
2
|
Reiterer M, Bruce L, Milton S. Differential Responses of Methionine Sulfoxide Reductases A and B to Anoxia and Oxidative Stress in the Freshwater Turtle Trachemys scripta. Metabolites 2021; 11:metabo11070458. [PMID: 34357352 PMCID: PMC8304764 DOI: 10.3390/metabo11070458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 01/23/2023] Open
Abstract
Oxidative stress has been acknowledged as a major factor in aging, senescence and neurodegenerative conditions. Mammalian models are susceptible to these stresses following the restoration of oxygen after anoxia; however, some organisms including the freshwater turtle Trachemys scripta can withstand repeated anoxia and reoxygenation without apparent pathology. T. scripta thus provides us with an alternate vertebrate model to investigate physiological mechanisms of neuroprotection. The objective of this study was to investigate the antioxidant methionine sulfoxide reductase system (Msr) in turtle neuronal tissue. We examined brain transcript and protein levels of MsrA and MsrB and examined the potential for the transcription factor FOXO3a to regulate the oxygen-responsive changes in Msr in vitro. We found that Msr mRNA and protein levels are differentially upregulated during anoxia and reoxygenation, and when cells were exposed to chemical oxidative stress. However, while MsrA and MsrB3 levels increased when cell cultures were exposed to chemical oxidative stress, this induction was not enhanced by treatment with epigallocatechin gallate (EGCG), which has previously been shown to enhance FOXO3a levels in the turtle. These results suggest that FOXO3a and Msr protect the cells from oxidative stress through different molecular pathways, and that both the Msr pathway and EGCG may be therapeutic targets to treat diseases related to oxidative damage.
Collapse
|
3
|
Reiterer M, Schmidt-Kastner R, Milton SL. Methionine sulfoxide reductase (Msr) dysfunction in human brain disease. Free Radic Res 2019; 53:1144-1154. [PMID: 31775527 DOI: 10.1080/10715762.2019.1662899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Extensive research has shown that oxidative stress is strongly associated with aging, senescence and several diseases, including neurodegenerative and psychiatric disorders. Oxidative stress is caused by the overproduction of reactive oxygen species (ROS) that can be counteracted by both enzymatic and nonenzymatic antioxidants. One of these antioxidant mechanisms is the widely studied methionine sulfoxide reductase system (Msr). Methionine is one of the most easily oxidized amino acids and Msr can reverse this oxidation and restore protein function, with MsrA and MsrB reducing different stereoisomers. This article focuses on experimental and genetic research performed on Msr and its link to brain diseases. Studies on several model systems as well as genome-wide association studies are compiled to highlight the role of MSRA in schizophrenia, Alzheimer's disease, and Parkinson's disease. Genetic variation of MSRA may also contribute to the risk of psychosis, personality traits, and metabolic factors.
Collapse
Affiliation(s)
- Melissa Reiterer
- Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Sarah L Milton
- Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
4
|
Zhao H, Meng L, Xu C, Lin B, Zheng X, Wang J, Feng D. Retracted Article: Long noncoding RNA ANRIL protects cardiomyocytes against hypoxia/reoxygenation injury by sponging miR-195-5p and upregulating Bcl-2. RSC Adv 2019; 9:35624-35635. [PMID: 35702641 PMCID: PMC9097494 DOI: 10.1039/c9ra04898g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/26/2019] [Indexed: 01/04/2023] Open
Abstract
Long noncoding RNAs have been widely accepted to play important roles in acute myocardial infarction (AMI). The dysregulation of cyclin-dependent kinase inhibitor 2B antisense RNA 1 (ANRIL) was discovered in AMI patients. Nevertheless, the detailed role and molecular mechanisms of ANRIL in AMI remain indistinct. The levels of ANRIL, miR-195-5p and Bcl-2 mRNA were determined by qRT-PCR. western blot was performed to assess the expression of Bcl-2, Bax, Cyclin D1 and p21. Cell proliferation was detected by CCK-8 assay, and cell apoptosis was measured by flow cytometry. The targeted correlation between ANRIL and miR-195-5p was confirmed by the dual-luciferase reporter and RNA pull-down assays. Our data revealed that ANRIL was downregulated and miR-195-5p was upregulated in the serum of AMI patients and hypoxia/reoxygenation (H/R)-induced myocardial cells. ANRIL upregulation or miR-195-5p knockdown alleviated H/R-induced myocardial cell injury. Moreover, ANRIL sequestered miR-195-5p by acting as a sponge of miR-195-5p. ANRIL upregulated Bcl-2 expression by sponging miR-195-5p. Additionally, ANRIL overexpression alleviated H/R-induced myocardial cell injury by upregulating Bcl-2. In conclusion, our study indicated that ANRIL upregulation alleviated H/R-induced myocardial cell injury partially through sponging miR-195-5p and upregulating Bcl-2, highlighting its role as a promising mediator for new therapies for AMI treatment.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University No. 1 Longhu Central Road, Jinshui District450052 Zhengzhou China +86-0371-66271808
| | - Li Meng
- Department of Intensive Care Unit, The Henan Provincial Chest Hospital Zhengzhou China
| | - Chengyang Xu
- Department of International Medical Center, The Henan Provincial PeopleS Hospital Zhengzhou China
| | - Bin Lin
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University No. 1 Longhu Central Road, Jinshui District450052 Zhengzhou China +86-0371-66271808
| | - Xiangming Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Jiaxiang Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University No. 1 Longhu Central Road, Jinshui District450052 Zhengzhou China +86-0371-66271808
| | - Deguang Feng
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University No. 1 Longhu Central Road, Jinshui District450052 Zhengzhou China +86-0371-66271808
| |
Collapse
|
5
|
Kulkarni H, Mukhopadhyay I, Ghosh S. Transmission-based association mapping of triglyceride levels in a longitudinal framework using quasi-likelihood. BMC Proc 2018; 12:39. [PMID: 30275889 PMCID: PMC6157161 DOI: 10.1186/s12919-018-0147-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Complex genetic traits are often characterized by multiple quantitative phenotypes. Because values of such phenotypes vary over time, it is thought that analyses of longitudinal data on the phenotypes may lead to increased power in detecting genetic association. In this paper, we extend a transmission-based association test applying quasi-likelihood that has been developed by us to the longitudinal framework and to carry out a genome-wide association analysis of triglyceride levels based on the data provided in GAW20. We consider different phenotype definitions based on administration of fenofibrate and obtain significant association findings within genes involved in heart diseases.
Collapse
|
6
|
Oxidation Resistance of the Sulfur Amino Acids: Methionine and Cysteine. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9584932. [PMID: 29445748 PMCID: PMC5763110 DOI: 10.1155/2017/9584932] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/20/2017] [Indexed: 02/08/2023]
Abstract
Sulfur amino acids are a kind of amino acids which contain sulfhydryl, and they play a crucial role in protein structure, metabolism, immunity, and oxidation. Our review demonstrates the oxidation resistance effect of methionine and cysteine, two of the most representative sulfur amino acids, and their metabolites. Methionine and cysteine are extremely sensitive to almost all forms of reactive oxygen species, which makes them antioxidative. Moreover, methionine and cysteine are precursors of S-adenosylmethionine, hydrogen sulfide, taurine, and glutathione. These products are reported to alleviate oxidant stress induced by various oxidants and protect the tissue from the damage. However, the deficiency and excess of methionine and cysteine in diet affect the normal growth of animals; thereby a new study about defining adequate levels of methionine and cysteine intake is important.
Collapse
|
7
|
Guan XL, Wu PF, Wang S, Zhang JJ, Shen ZC, Luo H, Chen H, Long LH, Chen JG, Wang F. Dimethyl sulfide protects against oxidative stress and extends lifespan via a methionine sulfoxide reductase A-dependent catalytic mechanism. Aging Cell 2017; 16:226-236. [PMID: 27790859 PMCID: PMC5334523 DOI: 10.1111/acel.12546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2016] [Indexed: 02/06/2023] Open
Abstract
Methionine (Met) sulfoxide reductase A (MsrA) is a key endogenous antioxidative enzyme with longevity benefits in animals. Only very few approaches have been reported to enhance MsrA function. Recent reports have indicated that the antioxidant capability of MsrA may involve a Met oxidase activity that facilities the reaction of Met with reactive oxygen species (ROS). Herein, we used a homology modeling approach to search the substrates for the oxidase activity of MsrA. We found that dimethyl sulfide (DMS), a main metabolite that produced by marine algae, emerged as a good substrate for MsrA‐catalytic antioxidation. MsrA bounds to DMS and promoted its antioxidant capacity via facilitating the reaction of DMS with ROS through a sulfonium intermediate at residues Cys72, Tyr103, and Glu115, followed by the release of dimethyl sulfoxide (DMSO). DMS reduced the antimycin A‐induced ROS generation in cultured PC12 cells and alleviated oxidative stress. Supplement of DMS exhibited cytoprotection and extended longevity in both Caenorhabditis elegans and Drosophila. MsrA knockdown abolished the cytoprotective effect and the longevity benefits of DMS. Furthermore, we found that the level of physiologic DMS was at the low micromolar range in different tissues of mammals and its level decreased after aging. This study opened a new window to elucidate the biological role of DMS and other low‐molecular sulfides in the cytoprotection and aging.
Collapse
Affiliation(s)
- Xin-Lei Guan
- Department of Pharmacology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
- Department of Pharmacy; Wuhan Puai Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430033 China
| | - Peng-Fei Wu
- Department of Pharmacology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
- Key Laboratory of Neurological Diseases (HUST); Ministry of Education of China; Wuhan 430030 China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province; Wuhan 430030 China
- Laboratory of Neuropsychiatric Diseases; The Institute of Brain Research; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Sheng Wang
- School of Life Science and Technology; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Juan-Juan Zhang
- Department of Pharmacology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Zu-Cheng Shen
- Department of Pharmacology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Han Luo
- Department of Pharmacology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Hao Chen
- Department of Pharmacology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Li-Hong Long
- Department of Pharmacology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
- Key Laboratory of Neurological Diseases (HUST); Ministry of Education of China; Wuhan 430030 China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province; Wuhan 430030 China
- Laboratory of Neuropsychiatric Diseases; The Institute of Brain Research; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Jian-Guo Chen
- Department of Pharmacology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
- Key Laboratory of Neurological Diseases (HUST); Ministry of Education of China; Wuhan 430030 China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province; Wuhan 430030 China
- Laboratory of Neuropsychiatric Diseases; The Institute of Brain Research; Huazhong University of Science and Technology; Wuhan 430030 China
- The Collaborative Innovation Center for Brain Science; Wuhan 430030 China
| | - Fang Wang
- Department of Pharmacology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
- Key Laboratory of Neurological Diseases (HUST); Ministry of Education of China; Wuhan 430030 China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province; Wuhan 430030 China
- Laboratory of Neuropsychiatric Diseases; The Institute of Brain Research; Huazhong University of Science and Technology; Wuhan 430030 China
- The Collaborative Innovation Center for Brain Science; Wuhan 430030 China
| |
Collapse
|
8
|
Nayak G, Prentice HM, Milton SL. Lessons from nature: signalling cascades associated with vertebrate brain anoxic survival. Exp Physiol 2016; 101:1185-1190. [PMID: 26990582 DOI: 10.1113/ep085673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/14/2016] [Indexed: 01/25/2023]
Abstract
NEW FINDINGS What is the topic of this review? Although the mammalian brain is exquisitely sensitive to hypoxia, some turtles survive complete anoxia by decreasing metabolic demand to match reduced energy supply. These animal models may help to elucidate neuroprotective mechanisms and reveal novel therapeutic targets for diseases of oxygen deprivation. What advances does it highlight? The mitogen-activated protein kinases (MAPKs) are part of the suite of adaptive responses to anoxia that are modulated by adenosine, a 'retaliatory metabolite' released in early anoxia. In anoxic turtle neurons, upregulation of pro-survival Akt and extracellular signal-regulated kinase 1/2 and suppression of the p38MAPK and JNK pathways promote cell survival, as does the anoxic- and post-anoxic upregulation of the antioxidant methionine sulfoxide reductase. Mammalian neurons undergo rapid degeneration when oxygen supply is curtailed. Neuroprotective pathways are induced during hypoxia/ischaemia, but their analysis is complicated by concurrent pathological events. Survival mechanisms can be investigated in anoxia-tolerant freshwater turtle species, which survive oxygen deprivation and post-anoxic reoxygenation by entrance into a state of reversible hypometabolism. Many energy-demanding processes are suppressed, including ion flux and neurotransmitter release, whereas cellular protective mechanisms, including certain mitogen-activated protein kinases (MAPKs), are upregulated. This superfamily of serine/threonine kinases plays a significant role in vital cellular processes, including cell proliferation, differentiation, stress adaptation and apoptosis in response to external stimuli. Here, we report that neuronal survival relies on robust co-ordination between the major signalling cascades, with upregulation of the pro-survival Akt and extracellular signal-regulated kinase 1/2 and suppression of the p38MAPK and JNK pathways. Other protective responses, including the upregulation of heat shock proteins and antioxidants, allow the turtle brain to abrogate potential oxidative stress upon reoxygenation.
Collapse
Affiliation(s)
- Gauri Nayak
- College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Howard M Prentice
- College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Sarah L Milton
- Department of Biological Sciences, College of Science, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
9
|
Cudic P, Joshi N, Sagher D, Williams BT, Stawikowski MJ, Weissbach H. Identification of activators of methionine sulfoxide reductases A and B. Biochem Biophys Res Commun 2015; 469:863-7. [PMID: 26718410 DOI: 10.1016/j.bbrc.2015.12.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/18/2015] [Indexed: 11/25/2022]
Abstract
The methionine sulfoxide reductase (Msr) family of enzymes has been shown to protect cells against oxidative damage. The two major Msr enzymes, MsrA and MsrB, can repair oxidative damage to proteins due to reactive oxygen species, by reducing the methionine sulfoxide in proteins back to methionine. A role of MsrA in animal aging was first demonstrated in Drosophila melanogaster where transgenic flies over-expressing recombinant bovine MsrA had a markedly extended life span. Subsequently, MsrA was also shown to be involved in the life span extension in Caenorhabditis elegans. These results supported other studies that indicated up-regulation, or activation, of the normal cellular protective mechanisms that cells use to defend against oxidative damage could be an approach to treat age related diseases and slow the aging process. In this study we have identified, for the first time, compounds structurally related to the natural products fusaricidins that markedly activate recombinant bovine and human MsrA and human MsrB.
Collapse
Affiliation(s)
- Predrag Cudic
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida, USA
| | - Neelambari Joshi
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, FL, USA
| | - Daphna Sagher
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, FL, USA
| | - Brandon T Williams
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida, USA
| | - Maciej J Stawikowski
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, FL, USA; Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA
| | - Herbert Weissbach
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, FL, USA.
| |
Collapse
|
10
|
Klutho PJ, Pennington SM, Scott JA, Wilson KM, Gu SX, Doddapattar P, Xie L, Venema AN, Zhu LJ, Chauhan AK, Lentz SR, Grumbach IM. Deletion of Methionine Sulfoxide Reductase A Does Not Affect Atherothrombosis but Promotes Neointimal Hyperplasia and Extracellular Signal-Regulated Kinase 1/2 Signaling. Arterioscler Thromb Vasc Biol 2015; 35:2594-604. [PMID: 26449752 DOI: 10.1161/atvbaha.115.305857] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/28/2015] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Emerging evidence suggests that methionine oxidation can directly affect protein function and may be linked to cardiovascular disease. The objective of this study was to define the role of the methionine sulfoxide reductase A (MsrA) in models of vascular disease and identify its signaling pathways. APPROACH AND RESULTS MsrA was readily identified in all layers of the vascular wall in human and murine arteries. Deletion of the MsrA gene did not affect atherosclerotic lesion area in apolipoprotein E-deficient mice and had no significant effect on susceptibility to experimental thrombosis after photochemical injury. In contrast, the neointimal area after vascular injury caused by complete ligation of the common carotid artery was significantly greater in MsrA-deficient than in control mice. In aortic vascular smooth muscle cells lacking MsrA, cell proliferation was significantly increased because of accelerated G1/S transition. In parallel, cyclin D1 protein and cdk4/cyclin D1 complex formation and activity were increased in MsrA-deficient vascular smooth muscle cell, leading to enhanced retinoblastoma protein phosphorylation and transcription of E2F. Finally, MsrA-deficient vascular smooth muscle cell exhibited greater activation of extracellular signal-regulated kinase 1/2 that was caused by increased activity of the Ras/Raf/mitogen-activated protein kinase signaling pathway. CONCLUSIONS Our findings implicate MsrA as a negative regulator of vascular smooth muscle cell proliferation and neointimal hyperplasia after vascular injury through control of the Ras/Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 signaling pathway.
Collapse
Affiliation(s)
- Paula J Klutho
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Steven M Pennington
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Jason A Scott
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Katina M Wilson
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Sean X Gu
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Prakash Doddapattar
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Litao Xie
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Ashlee N Venema
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Linda J Zhu
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Anil K Chauhan
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Steven R Lentz
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Isabella M Grumbach
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa.
| |
Collapse
|
11
|
Wu Y, Xie G, Xu Y, Ma L, Tong C, Fan D, Du F, Yu H. PEP-1-MsrA ameliorates inflammation and reduces atherosclerosis in apolipoprotein E deficient mice. J Transl Med 2015; 13:316. [PMID: 26410585 PMCID: PMC4584131 DOI: 10.1186/s12967-015-0677-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/18/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Methionine sulfoxide reductase A (MsrA) is a potent intracellular oxidoreductase and serves as an essential factor that protects cells against oxidative damage. However, therapeutic use of exogenous MsrA in oxidative stress-induced diseases is limited, because it cannot enter the cells. The aim of this study is to investigate whether MsrA with PEP-1, a cell penetrating peptide, fused to its N-terminus can protect against oxidative stress in macrophages and can attenuate atherosclerosis in apolipoprotein E deficient (apoE(-/-)) mice. METHODS MsrA and the fusion protein PEP-1-MsrA were expressed and purified using a pET28a expression system. Transduction of the fusion protein into macrophages was confirmed by Western blot and immunofluorescence staining. Intracellular reactive oxygen species (ROS) and apoptosis levels were measured by flow cytometry. In in vivo study, MsrA or PEP-1-MsrA proteins were intraperitoneally injected into apoE(-/-) mice fed a Western diet for 12 weeks. Plasma lipids levels, inflammatory gene expression, and paraoxonase-1 (PON1) and superoxide dismutase (SOD) activities were assessed. Atherosclerotic lesions were analyzed by Oil Red O staining and immunohistochemistry. RESULTS PEP-1-MsrA could penetrate the cells and significantly reduced intracellular ROS levels and apoptosis in H2O2-treated macrophages. It also decreased TNFα and IL-1β mRNA levels and increased the IL-10 mRNA level in lipopolysaccharide-treated macrophages. In in vivo study, PEP-1-MsrA injection significantly increased plasma PON1 and SOD activities and decreased plasma monocyte chemoattractant protein 1 (MCP-1) level compared to the injection of vehicle control or MsrA. In PEP-1-MsrA injected mice, hepatic PON1 levels were increased, while the expression of TNFα and IL-6 mRNA in the liver was suppressed. Although plasma total cholesterol and triglyceride levels did not change, the aortic atherosclerosis in PEP-1-MsrA treated mice was significantly reduced. This was accompanied by a reduction of total and apoptotic macrophages in the lesions. CONCLUSION Our study provides evidence that PEP-1-MsrA may be a potential therapeutic agent for atherosclerosis-related cardiovascular diseases.
Collapse
Affiliation(s)
- Yao Wu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-209, Wuhan, 430071, Hubei, China.
| | - Guanghui Xie
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-209, Wuhan, 430071, Hubei, China.
| | - Yanyong Xu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-209, Wuhan, 430071, Hubei, China.
| | - Li Ma
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-209, Wuhan, 430071, Hubei, China.
| | - Chuanfeng Tong
- Cardiology Division of Wuhan University Zhongnan Hospital, Wuhan, China.
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, USA.
| | - Fen Du
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-209, Wuhan, 430071, Hubei, China.
| | - Hong Yu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-209, Wuhan, 430071, Hubei, China.
| |
Collapse
|
12
|
Xu YY, Du F, Meng B, Xie GH, Cao J, Fan D, Yu H. Hepatic overexpression of methionine sulfoxide reductase A reduces atherosclerosis in apolipoprotein E-deficient mice. J Lipid Res 2015; 56:1891-900. [PMID: 26318157 PMCID: PMC4583078 DOI: 10.1194/jlr.m058776] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 12/21/2022] Open
Abstract
Methionine sulfoxide reductase A (MsrA), a specific enzyme that converts methionine-S-sulfoxide to methionine, plays an important role in the regulation of protein function and the maintenance of redox homeostasis. In this study, we examined the impact of hepatic MsrA overexpression on lipid metabolism and atherosclerosis in apoE-deficient (apoE−/−) mice. In vitro study showed that in HepG2 cells, lentivirus-mediated human MsrA (hMsrA) overexpression upregulated the expression levels of several key lipoprotein-metabolism-related genes such as liver X receptor α, scavenger receptor class B type I, and ABCA1. ApoE−/− mice were intravenously injected with lentivirus to achieve high-level hMsrA expression predominantly in the liver. We found that hepatic hMsrA expression significantly reduced plasma VLDL/LDL levels, improved plasma superoxide dismutase, and paraoxonase-1 activities, and decreased plasma serum amyloid A level in apoE−/− mice fed a Western diet, by significantly altering the expression of several genes in the liver involving cholesterol selective uptake, conversion and excretion into bile, TG biosynthesis, and inflammation. Moreover, overexpression of hMsrA resulted in reduced hepatic steatosis and aortic atherosclerosis. These results suggest that hepatic MsrA may be an effective therapeutic target for ameliorating dyslipidemia and reducing atherosclerosis-related cardiovascular diseases.
Collapse
Affiliation(s)
- Yan-Yong Xu
- Department of Biochemistry and Molecular Biology Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Fen Du
- Department of Biochemistry and Molecular Biology Wuhan University School of Basic Medical Sciences, Wuhan, China Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC
| | - Bing Meng
- Department of Biochemistry and Molecular Biology Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Guang-Hui Xie
- Department of Biochemistry and Molecular Biology Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Jia Cao
- Department of Biochemistry and Molecular Biology Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC
| | - Hong Yu
- Department of Biochemistry and Molecular Biology Wuhan University School of Basic Medical Sciences, Wuhan, China Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China
| |
Collapse
|
13
|
Regulation of thrombosis and vascular function by protein methionine oxidation. Blood 2015; 125:3851-9. [PMID: 25900980 DOI: 10.1182/blood-2015-01-544676] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/14/2015] [Indexed: 02/07/2023] Open
Abstract
Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis.
Collapse
|
14
|
Sticozzi C, Cervellati F, Muresan XM, Cervellati C, Valacchi G. Resveratrol prevents cigarette smoke-induced keratinocytes damage. Food Funct 2015; 5:2348-56. [PMID: 25088477 DOI: 10.1039/c4fo00407h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The plant polyphenol, resveratrol (Resv, 3,4,5-trihydroxystilbene), naturally occurring in a number of fruits and other food products, has been extensively studied over the last two decades for its beneficial properties. Recently, its possible topical use in ameliorating skin conditions has also been proposed; however, its role in preventing cigarette smoke (CS)-induced keratinocyte damage has not been investigated yet. Because of its peculiar location, cutaneous tissue is constantly exposed to several environmental stressors, such as CS. Many compounds presented in CS, have been shown to induce, directly or indirectly, cellular oxidative stress (OS) and inflammation via the production of ROS and lipid peroxidation compounds, among which 4HNE has been shown to be one of the most reactive. In this study, we have shown that resveratrol (at a dose of 10 μM) can decrease CS-induced ROS and carbonyl formation in human keratinocytes. In addition, pre-treatment with resveratrol prevented the induction of TRPA1 expression (mRNA and protein levels), a known receptor involved in cellular differentiation and inflammation, which has been recently shown to be activated by 4HNE. Finally, in keratinocytes, resveratrol could increase the expression of MsrA, enzyme involved in cell defence against oxidative protein damage. The present study further confirms the idea that the topical use of resveratrol can provide a good defence against CS-induced skin damage.
Collapse
Affiliation(s)
- Claudia Sticozzi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | | | | | | | | |
Collapse
|
15
|
Involvement of miR-1 in the protective effect of hydrogen sulfide against cardiomyocyte apoptosis induced by ischemia/reperfusion. Mol Biol Rep 2014; 41:6845-53. [DOI: 10.1007/s11033-014-3570-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
|
16
|
Edrey YH, Salmon AB. Revisiting an age-old question regarding oxidative stress. Free Radic Biol Med 2014; 71:368-378. [PMID: 24704971 PMCID: PMC4049226 DOI: 10.1016/j.freeradbiomed.2014.03.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 02/06/2023]
Abstract
Significant advances in maintaining health throughout life can be made through a clear understanding of the fundamental mechanisms that regulate aging. The Oxidative Stress Theory of Aging (OSTA) is probably the most well studied mechanistic theory of aging and suggests that the rate of aging is controlled by accumulation of oxidative damage. To directly test the OSTA, aging has been measured in several lines of mice with genetic alterations in the expression of enzymatic antioxidants. Under its strictest interpretation, these studies do not support the OSTA, as modulation of antioxidant expression does not generally affect mouse life span. However, the incidence of many age-related diseases and pathologies is altered in these models, suggesting that oxidative stress does significantly influence some aspects of the aging process. Further, oxidative stress may affect aging in disparate patterns among tissues or under various environmental conditions. In this review, we summarize the current literature regarding aging in antioxidant mutant mice and offer several interpretations of their support of the OSTA.
Collapse
Affiliation(s)
- Yael H Edrey
- The Sam and Ann Barshop Institute for Longevity and Aging Studies and San Antonio, TX 78229, USA
| | - Adam B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies and San Antonio, TX 78229, USA; The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA; Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
17
|
Gu H, Chen W, Yin J, Chen S, Zhang J, Gong J. Methionine sulfoxide reductase A rs10903323 G/A polymorphism is associated with increased risk of coronary artery disease in a Chinese population. Clin Biochem 2013; 46:1668-72. [PMID: 23880405 DOI: 10.1016/j.clinbiochem.2013.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 07/02/2013] [Accepted: 07/12/2013] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Coronary artery disease (CAD) is a complex disease resulting from a combination of environmental and genetic factors. We hypothesized that polymorphisms in methionine sulfoxide reductase A (MSRA: rs10903323 G/A) and vascular endothelial growth factor A (VEGFA: rs699947 C/A, rs2010963 G/C, and rs3025039 C/T) contribute to CAD susceptibility. DESIGNS AND METHODS We examined the association between the four polymorphisms and the risk of CAD in a Chinese population of 435 CAD patients and 480 controls. Genotyping was performed using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOF-MS). RESULTS When the MSRA rs10903323 GG homozygous genotype was used as the reference group, the GA and GA/AA genotypes were associated with a significantly increased risk of CAD (GA vs GG: adjusted OR=1.36, 95% CI=1.02-1.82, p=0.038; GA/AA vs GG: adjusted OR=1.33, 95% CI=1.01-1.76, p=0.042). The AA homozygous genotype was not associated with a risk of CAD. In the recessive model, when the MSRA rs10903323 GG/GA genotypes were used as the reference group, the AA homozygous genotype was not associated with a risk of CAD. Logistic regression analyses revealed that the VEGFA rs699947 C/A, VEGFA rs2010963 G/C, and VEGFA rs3025039 C/T polymorphisms were not associated with a risk of CAD. CONCLUSIONS These findings suggest that the functional MSRA rs10903323 G/A polymorphism is associated with CAD development. However, our results allow only a preliminary conclusion, which must be validated with a larger study of a more diverse ethnic population.
Collapse
Affiliation(s)
- Haiyong Gu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, China
| | | | | | | | | | | |
Collapse
|
18
|
Kim JI, Choi SH, Jung KJ, Lee E, Kim HY, Park KM. Protective role of methionine sulfoxide reductase A against ischemia/reperfusion injury in mouse kidney and its involvement in the regulation of trans-sulfuration pathway. Antioxid Redox Signal 2013; 18:2241-50. [PMID: 22657153 PMCID: PMC3638512 DOI: 10.1089/ars.2012.4598] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Methionine sulfoxide reductase A (MsrA) and methionine metabolism are associated with oxidative stress, a principal cause of ischemia/reperfusion (I/R) injury. Herein, we investigated the protective role of MsrA against kidney I/R injury and the involvement of MsrA in methionine metabolism and the trans-sulfuration pathway during I/R. RESULTS We found that MsrA gene-deleted mice (MsrA(-/-)) were more susceptible to kidney I/R injury than wild-type mice (MsrA(+/+)). Deletion of MsrA enhanced renal functional and morphological impairments, congestion, inflammatory responses, and oxidative stress under I/R conditions. Concentrations of homocysteine and H(2)S in the plasma of control MsrA(-/-) mice were significantly lower than those in control MsrA(+/+) mice. I/R reduced the levels of homocysteine and H(2)S in both MsrA(+/+) and MsrA(-/-) mice, and these reductions were significantly more profound in MsrA(-/-) than in MsrA(+/+) mice. I/R reduced the expression and activities of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE), both of which are H(2)S-producing enzymes, in the kidneys. These reductions were more profound in the MsrA(-/-) mice than in the MsrA(+/+)mice. INNOVATION The data provided herein constitute the first in vivo evidence for the involvement of MsrA in regulating methionine metabolism and the trans-sulfuration pathway under normal and I/R conditions. CONCLUSION Our data demonstrate that MsrA protects the kidney against I/R injury, and that this protection is associated with reduced oxidative stress and inflammatory responses. The data indicate that MsrA regulates H(2)S production during I/R by modulating the expression and activity of the CBS and CSE enzymes.
Collapse
Affiliation(s)
- Jee In Kim
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | | | | | | | | | | |
Collapse
|
19
|
Hu B, El Haj AJ. Methionine sulfoxide reductase A as a marker for isolating subpopulations of stem and progenitor cells used in regenerative medicine. Med Hypotheses 2013; 80:663-5. [DOI: 10.1016/j.mehy.2013.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/19/2013] [Indexed: 10/27/2022]
|
20
|
Chen G, Nan C, Tian J, Jean-Charles P, Li Y, Weissbach H, Huang XP. Protective effects of taurine against oxidative stress in the heart of MsrA knockout mice. J Cell Biochem 2013; 113:3559-66. [PMID: 22740506 DOI: 10.1002/jcb.24233] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Taurine has been shown to have potent anti-oxidant properties under various pathophysiological conditions. We reported previously a cellular dysfunction and mitochondrial damage in cardiac myocytes of methionine sulfoxide reductase A (MsrA) gene knockout mice (MsrA(-/-)). In the present study, we have explored the protective effects of taurine against oxidative stress in the heart of MsrA(-/-) mice with or without taurine treatment. Cardiac cell contractility and Ca(2+) dynamics were measured using cell-based assays and in vivo cardiac function was monitored using high-resolution echocardiography in the tested animals. Our data have shown that MsrA(-/-) mice exhibited a progressive cardiac dysfunction with a significant decrease of ejection fraction (EF) and fraction shortening (FS) at age of 8 months compared to the wild type controls at the same age. However, the dysfunction was corrected in MsrA(-/-) mice treated with taurine supplement in the diet for 5 months. We further investigated the cellular mechanism underlying the protective effect of taurine in the heart. Our data indicated that cardiac myocytes from MsrA(-/-) mice treated with taurine exhibited an improved cell contraction and could tolerate oxidative stress better. Furthermore, taurine treatment reduced significantly the protein oxidation levels in mitochondria of MsrA(-/-) hearts, suggesting an anti-oxidant effect of taurine in cardiac mitochondria. Our study demonstrates that long-term treatment of taurine as a diet supplement is beneficial to a heart that is vulnerable to environmental oxidative stresses.
Collapse
Affiliation(s)
- G Chen
- Division of Cardiology, Children's Hospital, Chongqing Medical University, Chongqing 400014, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Reactive oxygen species (ROS) have been associated with various human diseases, and considerable attention has been paid to investigate their physiological effects. Various ROS are synthesized in the mitochondria and accumulate in the cytoplasm if the cellular antioxidant defense mechanism fails. The critical balance of this ROS synthesis and antioxidant defense systems is termed the redox system of the cell. Various cardiovascular diseases have also been affected by redox to different degrees. ROS have been indicated as both detrimental and protective, via different cellular pathways, for cardiac myocyte functions, electrophysiology, and pharmacology. Mostly, the ROS functions depend on the type and amount of ROS synthesized. While the literature clearly indicates ROS effects on cardiac contractility, their effects on cardiac excitability are relatively under appreciated. Cardiac excitability depends on the functions of various cardiac sarcolemal or mitochondrial ion channels carrying various depolarizing or repolarizing currents that also maintain cellular ionic homeostasis. ROS alter the functions of these ion channels to various degrees to determine excitability by affecting the cellular resting potential and the morphology of the cardiac action potential. Thus, redox balance regulates cardiac excitability, and under pathological regulation, may alter action potential propagation to cause arrhythmia. Understanding how redox affects cellular excitability may lead to potential prophylaxis or treatment for various arrhythmias. This review will focus on the studies of redox and cardiac excitation.
Collapse
Affiliation(s)
- Nitin T Aggarwal
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI 53792, USA
| | | |
Collapse
|
22
|
Liang X, Kaya A, Zhang Y, Le DT, Hua D, Gladyshev VN. Characterization of methionine oxidation and methionine sulfoxide reduction using methionine-rich cysteine-free proteins. BMC BIOCHEMISTRY 2012; 13:21. [PMID: 23088625 PMCID: PMC3514235 DOI: 10.1186/1471-2091-13-21] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/17/2012] [Indexed: 01/05/2023]
Abstract
Background Methionine (Met) residues in proteins can be readily oxidized by reactive oxygen species to Met sulfoxide (MetO). MetO is a promising physiological marker of oxidative stress and its inefficient repair by MetO reductases (Msrs) has been linked to neurodegeneration and aging. Conventional methods of assaying MetO formation and reduction rely on chromatographic or mass spectrometry procedures, but the use of Met-rich proteins (MRPs) may offer a more streamlined alternative. Results We carried out a computational search of completely sequenced genomes for MRPs deficient in cysteine (Cys) residues and identified several proteins containing 20% or more Met residues. We used these MRPs to examine Met oxidation and MetO reduction by in-gel shift assays and immunoblot assays with antibodies generated against various oxidized MRPs. The oxidation of Cys-free MRPs by hydrogen peroxide could be conveniently monitored by SDS-PAGE and was specific for Met, as evidenced by quantitative reduction of these proteins with Msrs in DTT- and thioredoxin-dependent assays. We found that hypochlorite was especially efficient in oxidizing MRPs. Finally, we further developed a procedure wherein antibodies made against oxidized MRPs were isolated on affinity resins containing same or other oxidized or reduced MRPs. This procedure yielded reagents specific for MetO in these proteins, but proved to be ineffective in developing antibodies with broad MetO specificity. Conclusion Our data show that MRPs provide a convenient tool for characterization of Met oxidation, MetO reduction and Msr activities, and could be used for various aspects of redox biology involving reversible Met oxidation.
Collapse
Affiliation(s)
- Xinwen Liang
- Department of Biochemistry, University of Nebraska, Lincoln, 68588, USA
| | | | | | | | | | | |
Collapse
|
23
|
Wu PF, Xie N, Zhang JJ, Guan XL, Zhou J, Long LH, Li YL, Xiong QJ, Zeng JH, Wang F, Chen JG. Resveratrol preconditioning increases methionine sulfoxide reductases A expression and enhances resistance of human neuroblastoma cells to neurotoxins. J Nutr Biochem 2012; 24:1070-7. [PMID: 23022493 DOI: 10.1016/j.jnutbio.2012.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 08/09/2012] [Accepted: 08/13/2012] [Indexed: 01/25/2023]
Abstract
Methionine sulfoxide reductases A (MsrA) has been postulated to act as a catalytic antioxidant system involved in the protection of oxidative stress-induced cell injury. Recently, attention has turned to MsrA in coupling with the pathology of Parkinson's disease, which is closely related to neurotoxins that cause dopaminergic neuron degeneration. Here, we firstly provided evidence that pretreatment with a natural polyphenol resveratrol (RSV) up-regulated the expression of MsrA in human neuroblastoma SH-SY5Y cells. It was also observed that the expression and nuclear translocation of forkhead box group O 3a (FOXO3a), a transcription factor that activates the human MsrA promoter, increased after RSV pretreatment. Nicotinamide , an inhibitor of silent information regulator 1 (SIRT1), prevented RSV-induced elevation of FOXO3a and MsrA expression, indicating that the effect of RSV was mediated by a SIRT1-dependent pathway. RSV preconditioning increased methionine sulfoxide(MetO)-reducing activity in SH-SY5Y cells and enhanced their resistance to neurotoxins, including chloramine-T and 1-methyl-4-phenyl-pyridinium. In addition, the enhancement of cell resistance to neurotoxins caused by RSV preconditioning can be largely prevented by MsrA inhibitor dimethyl sulfoxide. Our findings suggest that treatment with polyphenols such as RSV can be used as a potential regulatory strategy for MsrA expression and function.
Collapse
Affiliation(s)
- Peng-Fei Wu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
García-Bermúdez M, López-Mejías R, González-Juanatey C, Castañeda S, Miranda-Filloy JA, Blanco R, Fernández-Gutiérrez B, Balsa A, González-Álvaro I, Gómez-Vaquero C, Llorca J, Martín J, González-Gay MA. Association of the methionine sulfoxide reductase A rs10903323 gene polymorphism with cardiovascular disease in patients with rheumatoid arthritis. Scand J Rheumatol 2012; 41:350-3. [DOI: 10.3109/03009742.2012.677063] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
de las Fuentes L, Yang W, Dávila-Román VG, Gu CC. Pathway-based genome-wide association analysis of coronary heart disease identifies biologically important gene sets. Eur J Hum Genet 2012; 20:1168-73. [PMID: 22510845 DOI: 10.1038/ejhg.2012.66] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genome-wide association (GWA) studies of complex diseases including coronary heart disease (CHD) challenge investigators attempting to identify relevant genetic variants among hundreds of thousands of markers being tested. A selection strategy based purely on statistical significance will result in many false negative findings after adjustment for multiple testing. Thus, an integrated analysis using information from the learned genetic pathways, molecular functions, and biological processes is desirable. In this study, we applied a customized method, variable set enrichment analysis (VSEA), to the Framingham Heart Study data (404,467 variants, n=6421) to evaluate enrichment of genetic association in 1395 gene sets for their contribution to CHD. We identified 25 gene sets with nominal P<0.01; at least four sets are previously known for their roles in CHD: vascular genesis (GO:0001570), fatty-acid biosynthetic process (GO:0006633), fatty-acid metabolic process (GO:0006631), and glycerolipid metabolic process (GO:0046486). Although the four gene sets include 170 genes, only three of the genes contain a variant ranked among the top 100 in single-variant association tests of the 404,467 variants tested. Significant enrichment for novel gene sets less known for their importance to CHD were also identified: Rac 1 cell-motility signaling pathway (h_rac1 Pathway, P<0.001) and sulfur amino-acid metabolic process (GO:0000096, P<0.001). In summary, we showed that the pathway-based VSEA can help prioritize association signals in GWA studies by identifying biologically plausible targets for downstream searches of genetic variants associated with CHD.
Collapse
Affiliation(s)
- Lisa de las Fuentes
- Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
26
|
Klein JC, Moen RJ, Smith EA, Titus MA, Thomas DD. Structural and functional impact of site-directed methionine oxidation in myosin. Biochemistry 2011; 50:10318-27. [PMID: 21988699 DOI: 10.1021/bi201279u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have examined the structural and functional effects of site-directed methionine oxidation in Dictyostelium (Dicty) myosin II using mutagenesis, in vitro oxidation, and site-directed spin-labeling for electron paramagnetic resonance (EPR). Protein oxidation by reactive oxygen and nitrogen species is critical for normal cellular function, but oxidative stress has been implicated in disease progression and biological aging. Our goal is to bridge understanding of protein oxidation and muscle dysfunction with molecular-level insights into actomyosin interaction. In order to focus on methionine oxidation and to facilitate site-directed spectroscopy, we started with a Cys-lite version of Dicty myosin II. For Dicty myosin containing native methionines, peroxide treatment decreased actin-activated myosin ATPase activity, consistent with the decline in actomyosin function previously observed in biologically aged or peroxide-treated muscle. Methionine-to-leucine mutations, used to protect specific sites from oxidation, identified a single methionine that is functionally sensitive to oxidation: M394, near the myosin cardiomyopathy loop in the actin-binding interface. Previously characterized myosin labeling sites for spectroscopy in the force-producing region and actin-binding cleft were examined; spin-label mobility and distance measurements in the actin-binding cleft were sensitive to oxidation, but particularly in the presence of actin. Overall secondary structure and thermal stability were unaffected by oxidation. We conclude that the oxidation-induced structural change in myosin includes a redistribution of existing structural states of the actin-binding cleft. These results will be applicable to the many biological and therapeutic contexts in which a detailed understanding of protein oxidation as well as function and structure relationships is sought.
Collapse
Affiliation(s)
- Jennifer C Klein
- Department of Chemistry, Saint Olaf College, Northfield, Minnesota 55057, United States
| | | | | | | | | |
Collapse
|
27
|
Erickson JR, He BJ, Grumbach IM, Anderson ME. CaMKII in the cardiovascular system: sensing redox states. Physiol Rev 2011; 91:889-915. [PMID: 21742790 DOI: 10.1152/physrev.00018.2010] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The multifunctional Ca(2+)- and calmodulin-dependent protein kinase II (CaMKII) is now recognized to play a central role in pathological events in the cardiovascular system. CaMKII has diverse downstream targets that promote vascular disease, heart failure, and arrhythmias, so improved understanding of CaMKII signaling has the potential to lead to new therapies for cardiovascular disease. CaMKII is a multimeric serine-threonine kinase that is initially activated by binding calcified calmodulin (Ca(2+)/CaM). Under conditions of sustained exposure to elevated Ca(2+)/CaM, CaMKII transitions into a Ca(2+)/CaM-autonomous enzyme by two distinct but parallel processes. Autophosphorylation of threonine-287 in the CaMKII regulatory domain "traps" CaMKII into an open configuration even after Ca(2+)/CaM unbinding. More recently, our group identified a pair of methionines (281/282) in the CaMKII regulatory domain that undergo a partially reversible oxidation which, like autophosphorylation, prevents CaMKII from inactivating after Ca(2+)/CaM unbinding. Here we review roles of CaMKII in cardiovascular disease with an eye to understanding how CaMKII may act as a transduction signal to connect pro-oxidant conditions into specific downstream pathological effects that are relevant to rare and common forms of cardiovascular disease.
Collapse
Affiliation(s)
- Jeffrey R Erickson
- Department of Pharmacology, University of California at Davis, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
28
|
Sreekumar PG, Hinton DR, Kannan R. Methionine sulfoxide reductase A: Structure, function and role in ocular pathology. World J Biol Chem 2011; 2:184-92. [PMID: 21909460 PMCID: PMC3163237 DOI: 10.4331/wjbc.v2.i8.184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/27/2011] [Accepted: 08/03/2011] [Indexed: 02/05/2023] Open
Abstract
Methionine is a highly susceptible amino acid that can be oxidized to S and R diastereomeric forms of methionine sulfoxide by many of the reactive oxygen species generated in biological systems. Methionine sulfoxide reductases (Msrs) are thioredoxin-linked enzymes involved in the enzymatic conversion of methionine sulfoxide to methionine. Although MsrA and MsrB have the same function of methionine reduction, they differ in substrate specificity, active site composition, subcellular localization, and evolution. MsrA has been localized in different ocular regions and is abundantly expressed in the retina and in retinal pigment epithelial (RPE) cells. MsrA protects cells from oxidative stress. Overexpression of MsrA increases resistance to cell death, while silencing or knocking down MsrA decreases cell survival; events that are mediated by mitochondria. MsrA participates in protein-protein interaction with several other cellular proteins. The interaction of MsrA with α-crystallins is of utmost importance given the known functions of the latter in protein folding, neuroprotection, and cell survival. Oxidation of methionine residues in α-crystallins results in loss of chaperone function and possibly its antiapoptotic properties. Recent work from our laboratory has shown that MsrA is co-localized with αA and αB crystallins in the retinal samples of patients with age-related macular degeneration. We have also found that chemically induced hypoxia regulates the expression of MsrA and MsrB2 in human RPE cells. Thus, MsrA is a critical enzyme that participates in cell and tissue protection, and its interaction with other proteins/growth factors may provide a target for therapeutic strategies to prevent degenerative diseases.
Collapse
Affiliation(s)
- Parameswaran G Sreekumar
- Parameswaran G Sreekumar, David R Hinton, Ram Kannan, Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA 90033, United States
| | | | | |
Collapse
|
29
|
Zhao H, Sun J, Deschamps AM, Kim G, Liu C, Murphy E, Levine RL. Myristoylated methionine sulfoxide reductase A protects the heart from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2011; 301:H1513-8. [PMID: 21841012 DOI: 10.1152/ajpheart.00441.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Methionine sulfoxide reductase A (MsrA) catalytically scavenges reactive oxygen species and also repairs oxidized methionines in proteins. Increasing MsrA protects cells and organs from a variety of oxidative stresses while decreasing MsrA enhances damage, but the mechanisms of action have not been elucidated. A single gene encodes MsrA of which ∼25% is targeted to the mitochondria, a major site of reactive oxygen species production. The other ∼75% is targeted to the cytosol and is posttranslationally modified by myristoylation. To determine the relative importance of MsrA in each compartment in protecting against ischemia-reperfusion damage, we created a series of transgenic mice overexpressing MsrA targeted to the mitochondria or the cytosol. We used a Langendorff model of ischemia-reperfusion and assayed both the rate pressure product and infarct size following ischemia and reperfusion as measures of injury. While the mitochondrially targeted MsrA was expected to be protective, it was not. Notably, the cytosolic form was protective but only if myristoylated. The nonmyristoylated, cytosolic form offered no protection against injury. We conclude that cytosolic MsrA protects the heart from ischemia-reperfusion damage. The requirement for myristoylation suggests that MsrA must interact with a hydrophobic domain to provide protection.
Collapse
Affiliation(s)
- Hang Zhao
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-8012, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Hoffmann FW, Hashimoto AS, Lee BC, Rose AH, Shohet RV, Hoffmann PR. Specific antioxidant selenoproteins are induced in the heart during hypertrophy. Arch Biochem Biophys 2011; 512:38-44. [PMID: 21621505 DOI: 10.1016/j.abb.2011.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/06/2011] [Accepted: 05/15/2011] [Indexed: 12/21/2022]
Abstract
Selenium (Se) is thought to confer cardioprotective effects through the actions of antioxidant selenoprotein enzymes that directly limit levels of ROS such as hydrogen peroxide (H(2)O(2)) or that reverse oxidative damage to lipids and proteins. To determine how the selenoproteome responds to myocardial hypertrophy, two mouse models were employed: triidothyronine (T3)- or isoproterenol (ISO)-treatment. After 7days of T3- and ISO-treatment, cardiac stress was demonstrated by increased H(2)O(2) and caspase-3 activity. Neither treatment produced significant increases in phospholipid peroxidation or TUNEL-positive cells, suggesting that antioxidant systems were protecting the cardiomyocytes from damage. Many selenoprotein mRNAs were induced by T3- and ISO-treatment, with levels of methionine sulfoxide reductase 1 (MsrB1, also called SelR) mRNA showing the largest increases. MsrB enzymatic activity was also elevated in both models of cardiac stress, while glutathione peroxidase (GPx) activity and thioredoxin reductase (Trxrd) activity were moderately and nonsignificantly increased, respectively. Western blot assays revealed a marked increase in MsrB1 and moderate increases in GPx3, GPx4, and Trxrd1, particularly in T3-treated hearts. Thus, the main response of the selenoproteome during hypertrophy does not involve increased GPx1, but increased GPx3 for reducing extracellular H(2)O(2) and increased GPx4, Trxrd1, and MsrB1 for minimizing intracellular oxidative damage.
Collapse
Affiliation(s)
- FuKun W Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | | | | | | | | | | |
Collapse
|
31
|
Nan C, Li Y, Jean-Charles PY, Chen G, Kreymerman A, Prentice H, Weissbach H, Huang X. Deficiency of methionine sulfoxide reductase A causes cellular dysfunction and mitochondrial damage in cardiac myocytes under physical and oxidative stresses. Biochem Biophys Res Commun 2010; 402:608-13. [DOI: 10.1016/j.bbrc.2010.10.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 10/17/2010] [Indexed: 01/18/2023]
|
32
|
Lan D, Tang C, Li M, Yue H. Screening and identification of differentially expressed genes from chickens infected with Newcastle disease virus by suppression subtractive hybridization. Avian Pathol 2010; 39:151-9. [PMID: 20544419 DOI: 10.1080/03079451003716383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Newcastle disease is an important viral infectious disease caused by Newcastle disease virus (NDV), which leads to severe economic losses in the poultry industry worldwide. The molecular mechanisms involved in the pathogenesis of NDV and the host-directed antiviral responses remain poorly understood. In this study, we screened and identified the differentially expressed transcripts from chicken spleen 36 h post NDV infection using suppression subtractive hybridization (SSH). From the SSH library, we obtained 140 significant differentially expressed sequence tags (ESTs), which could be divided into three categories: high homology genes (58), high homology ESTs (62) and novel ESTs (20). The 58 high homology genes could be grouped into nine clusters based on the best known function of their protein products, which involved signalling transduction (HSPC166, PDE7B, GRIA4, GARNL1), transcriptional regulation (ANP32A, LOC423724, SATB1, QKI, ETV6), cellular molecular dynamics (MYLK, MYO7A, DCTN6), cytoskeleton (LAMA4, LAMC1, COL4A1), stress response (DNAJC15, CIRBP), immune response (TIA1, TOX, CMIP), metabolism (RPS15A, RPL32, GLUT8, CYPR21, DPYD, LOC417295), oxidation-reduction (TXN, MSRB3, GCLC), and others. In addition, we found that the 20 novel ESTs provide a clue for the discovery of some new genes associated with infection. In summary, our findings demonstrate previously unrecognized changes in gene transcription that are associated with NDV infection in vivo, and many differentially expressed genes identified in the study clearly merit further investigation. Our data provide new insights into better understanding the molecular mechanism of host-NDV interaction.
Collapse
Affiliation(s)
- Daoliang Lan
- College of Life Science and Technology, Southwest University for Nationality, Chengdu, People's Republic of China
| | | | | | | |
Collapse
|
33
|
Zhao H, Kim G, Liu C, Levine RL. Transgenic mice overexpressing methionine sulfoxide reductase A: characterization of embryonic fibroblasts. Free Radic Biol Med 2010; 49:641-8. [PMID: 20510353 PMCID: PMC3391185 DOI: 10.1016/j.freeradbiomed.2010.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 01/09/2023]
Abstract
Methionine residues in protein can be oxidized by reactive oxygen species to generate methionine sulfoxide. Aerobic organisms have methionine sulfoxide reductases capable of reducing methionine sulfoxide back to methionine. Methionine sulfoxide reductase A acts on the S-epimer of methionine sulfoxide, and it is known that altering its cellular level by genetic ablation or overexpression has notable effects on resistance to oxidative stress and on life span in species from microorganisms to animals. In mammals, the enzyme is present in both the cytosol and the mitochondria, and this study was undertaken to assess the contribution of each subcellular compartment's reductase activity to resistance against oxidative stresses. Nontransgenic mouse embryonic fibroblasts lack methionine sulfoxide reductase A activity, providing a convenient cell type to determine the effects of expression of the enzyme in each compartment. We created transgenic mice with methionine sulfoxide reductase A targeted to the cytosol, mitochondria, or both and studied embryonic fibroblasts derived from each line. Unexpectedly, none of the transgenic cells gained resistance to a variety of oxidative stresses even though the expressed enzymes were catalytically active when assayed in vitro. Noting that activity in vivo requires thioredoxin and thioredoxin reductase, we determined the levels of these proteins in the fibroblasts and found that they were very low in both the nontransgenic and the transgenic cells. We conclude that overexpression of methionine sulfoxide reductase A did not confer resistance to oxidative stress because the cells lacked other proteins required to constitute a functional methionine sulfoxide reduction system.
Collapse
Affiliation(s)
- Hang Zhao
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Geumsoo Kim
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chengyu Liu
- Transgenic Mouse Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Rodney L. Levine
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
34
|
Chung H, Kim AK, Jung SA, Kim SW, Yu K, Lee JH. The Drosophila homolog of methionine sulfoxide reductase A extends lifespan and increases nuclear localization of FOXO. FEBS Lett 2010; 584:3609-14. [PMID: 20655917 DOI: 10.1016/j.febslet.2010.07.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/28/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
Abstract
Methionine sulfoxide reductase A (msrA) was previously found to increase resistance to oxidative stress and longevity in animals. We identified Drosophila msrA (dmsrA), a Drosophila homolog of human msrA, as a downstream effector of forkhead box O (FOXO) signaling in Drosophila, which enhances resistance to oxidative stress and increases survival under stressed conditions. Additionally, overexpression of dmsrA in neurons extended the lifespan of flies. Moreover, overexpression of dmsrA in fat body cells caused FOXO to translocate to the nucleus, implying that this possible positive feedback loop between dmsrA and FOXO could potentiate the antioxidant activity of dmsrA and increase the lifespan in Drosophila.
Collapse
Affiliation(s)
- Hyewon Chung
- Department of Ophthalmology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
35
|
Liang X, Fomenko DE, Hua D, Kaya A, Gladyshev VN. Diversity of protein and mRNA forms of mammalian methionine sulfoxide reductase B1 due to intronization and protein processing. PLoS One 2010; 5:e11497. [PMID: 20634897 PMCID: PMC2901347 DOI: 10.1371/journal.pone.0011497] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/02/2010] [Indexed: 01/01/2023] Open
Abstract
Background Methionine sulfoxide reductases (Msrs) are repair enzymes that protect proteins from oxidative stress by catalyzing stereospecific reduction of oxidized methionine residues. MsrB1 is a selenocysteine-containing cytosolic/nuclear Msr with high expression in liver and kidney. Principal Findings Here, we identified differences in MsrB1 gene structure among mammals. Human MsrB1 gene consists of four, whereas the corresponding mouse gene of five exons, due to occurrence of an additional intron that flanks the stop signal and covers a large part of the 3′-UTR. This intron evolved in a subset of rodents through intronization of exonic sequences, whereas the human gene structure represents the ancestral form. In mice, both splice forms were detected in liver, kidney, brain and heart with the five-exon form being the major form. We found that both mRNA forms were translated and supported efficient selenocysteine insertion into MsrB1. In addition, MsrB1 occurs in two protein forms that migrate as 14 and 5 kDa proteins. We found that each mRNA splice form generated both protein forms. The abundance of the 5 kDa form was not influenced by protease inhibitors, replacement of selenocysteine in the active site or mutation of amino acids in the cleavage site. However, mutation of cysteines that coordinate a structural zinc decreased the levels of 5 and 14 kDa forms, suggesting importance of protein structure for biosynthesis and/stability of these forms. Conclusions This study characterized unexpected diversity of protein and mRNA forms of mammalian selenoprotein MsrB1.
Collapse
Affiliation(s)
- Xinwen Liang
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Dmitri E. Fomenko
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Deame Hua
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Alaattin Kaya
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Vadim N. Gladyshev
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
36
|
Brunell D, Weissbach H, Hodder P, Brot N. A high-throughput screening compatible assay for activators and inhibitors of methionine sulfoxide reductase A. Assay Drug Dev Technol 2010; 8:615-20. [PMID: 20515413 DOI: 10.1089/adt.2009.0263] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The methionine sulfoxide reductase (Msr) system has been shown to play an important role in protecting cells against oxidative damage. This family of enzymes can repair damage to proteins resulting from the oxidation of methionine residues to methionine sulfoxide, caused by reactive oxygen species. Previous genetic studies in animals have shown that increased levels of methionine sulfoxide reductase enzyme A (MsrA), an important member of the Msr family, can protect cells against oxidative damage and increase life span. A high-throughput screening (HTS) compatible assay has been developed to search for both activators and inhibitors of MsrA. The assay involves a coupled reaction in which the oxidation of NADPH is measured by either spectrophotometric or fluorometric analysis. Previous studies had shown that MsrA has a broad substrate specificity and can reduce a variety of methyl sulfoxide compounds, including dimethylsulfoxide (DMSO). Since the chemicals in the screening library are dissolved in DMSO, which would compete with any of the standard substrates used for the determination of MsrA activity, an assay has been developed that uses the DMSO that is the solvent for the compounds in the library as the substrate for the MsrA enzyme. A specific activator of MsrA could have important therapeutic value for diseases that involve oxidative damage, especially age-related diseases, whereas a specific inhibitor of MsrA would have value for a variety of research studies.
Collapse
Affiliation(s)
- David Brunell
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Boca Raton, Florida, USA.
| | | | | | | |
Collapse
|
37
|
Salmon AB, Richardson A, Pérez VI. Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 2010; 48:642-55. [PMID: 20036736 PMCID: PMC2819595 DOI: 10.1016/j.freeradbiomed.2009.12.015] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/14/2009] [Accepted: 12/18/2009] [Indexed: 12/22/2022]
Abstract
The oxidative stress theory of aging predicts that manipulations that alter oxidative stress/damage will alter aging. The gold standard for determining whether aging is altered is life span, i.e., does altering oxidative stress/damage change life span? Mice with genetic manipulations in their antioxidant defense system designed to directly address this prediction have, with few exceptions, shown no change in life span. However, when these transgenic/knockout mice are tested using models that develop various types of age-related pathology, they show alterations in progression and/or severity of pathology as predicted by the oxidative stress theory: increased oxidative stress accelerates pathology and reduced oxidative stress retards pathology. These contradictory observations might mean that (a) oxidative stress plays a very limited, if any, role in aging but a major role in health span and/or (b) the role that oxidative stress plays in aging depends on environment. In environments with minimal stress, as expected under optimal husbandry, oxidative damage plays little role in aging. However, under chronic stress, including pathological phenotypes that diminish optimal health, oxidative stress/damage plays a major role in aging. Under these conditions, enhanced antioxidant defenses exert an "antiaging" action, leading to changes in life span, age-related pathology, and physiological function as predicted by the oxidative stress theory of aging.
Collapse
Affiliation(s)
- Adam B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | | | |
Collapse
|
38
|
Ogawa F, Shimizu K, Hara T, Muroi E, Komura K, Takenaka M, Hasegawa M, Fujimoto M, Takehara K, Sato S. Autoantibody against one of the antioxidant repair enzymes, methionine sulfoxide reductase A, in systemic sclerosis: association with pulmonary fibrosis and vascular damage. Arch Dermatol Res 2009; 302:27-35. [PMID: 19844733 DOI: 10.1007/s00403-009-0996-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 08/14/2009] [Accepted: 10/05/2009] [Indexed: 11/28/2022]
Abstract
Systemic sclerosis (SSc) is a connective tissue disease characterized by fibrosis and vascular changes in the skin and internal organs with autoimmune background. It has been suggested that oxidative stress plays an important role in the development of SSc. To determine the prevalence and clinical correlation of autoantibody to methionine sulfoxide reductase A (MSRA), one of the antioxidant repair enzymes, in SSc, serum anti-MSRA autoantibody levels were examined in patients with SSc by enzyme-linked immunosorbent assay using recombinant MSRA. The presence of anti-MSRA antibody was evaluated by immunoblotting. To determine the functional relevance of anti-MSRA antibody in vivo, we assessed whether anti-MSRA antibody was able to inhibit MSRA enzymatic activity. Serum anti-MSRA antibody levels in SSc patients were significantly higher compared to controls and this autoantibody was detected in 33% of SSc patients. Serum anti-MSRA levels were significantly elevated in SSc patients with pulmonary fibrosis, cardiac involvement, or decreased total antioxidant power compared with those without them. Anti-MSRA antibodies also correlated positively with renal vascular damage determined as pulsatility index by color-flow Doppler ultrasonography of the renal interlobar arteries and negatively with pulmonary function tests. Furthermore, anti-MSRA antibody levels correlated positively with serum levels of 8-isoprostane and heat shock protein 70 that are markers of oxidative and cellular stresses. Remarkably, MSRA activity was inhibited by IgG isolated from SSc sera containing IgG anti-MSRA antibody. These results suggest that elevated anti-MSRA autoantibody is associated with the disease severity of SSc and may enhance the oxidative stress by inhibiting MSRA enzymatic activity.
Collapse
Affiliation(s)
- Fumihide Ogawa
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Salmon AB, Pérez VI, Bokov A, Jernigan A, Kim G, Zhao H, Levine RL, Richardson A. Lack of methionine sulfoxide reductase A in mice increases sensitivity to oxidative stress but does not diminish life span. FASEB J 2009; 23:3601-8. [PMID: 19487311 DOI: 10.1096/fj.08-127415] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Methionine sulfoxide reductase A (MsrA) repairs oxidized methionine residues within proteins and may also function as a general antioxidant. Previous reports have suggested that modulation of MsrA in mice and mammalian cell culture can affect the accumulation of oxidized proteins and may regulate resistance to oxidative stress. Thus, under the oxidative stress theory of aging, these results would predict that MsrA regulates the aging process in mammals. We show here that MsrA(-/-) mice are more susceptible to oxidative stress induced by paraquat. Skin-derived fibroblasts do not express MsrA, but fibroblasts cultured from MsrA(-/-) mice were, nevertheless, also more susceptible to killing by various oxidative stresses. In contrast to previous reports, we find no evidence for neuromuscular dysfunction in MsrA(-/-) mice in either young adult or in older animals. Most important, we found no difference between MsrA(-/-) and control mice in either their median or maximum life span. Thus, our results show that MsrA regulates sensitivity to oxidative stress in mice but has no effect on aging, as determined by life span.
Collapse
Affiliation(s)
- Adam B Salmon
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr., San Antonio, TX 78245-3207, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhou Z, Li CY, Li K, Wang T, Zhang B, Gao TW. Decreased methionine sulphoxide reductase A expression renders melanocytes more sensitive to oxidative stress: a possible cause for melanocyte loss in vitiligo. Br J Dermatol 2009; 161:504-9. [PMID: 19558554 DOI: 10.1111/j.1365-2133.2009.09288.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Methionine is one of the major targets of reactive oxygen species (ROS). It is readily oxidized to methionine-S-sulphoxide and methionine-R-sulphoxide, which can be reduced by methionine sulphoxide reductase (MSR) A and B, respectively. MSR represents a unique repair mechanism in the skin antioxidant network. It functions both as a protein repairer and as a ROS scavenger. However, the expression and activity of MSR are significantly reduced in vitiligo. OBJECTIVES To investigate whether the decreased expression of MSRA is one of the reasons why melanocytes are especially vulnerable to oxidative stress in vitiligo. Methods We downregulated MSRA expression in immortalized human epidermal melanocyte cell line PIG1 by using the short interfering RNA (siRNA)-targeted gene silencing method. We checked the changes in MSRA transcript and protein level by using reverse transcriptase-polymerase chain reaction and Western blot, respectively. Then we monitored the viability of MSRA-silenced melanocytes under oxidative stress. All statistical analysis was performed by unpaired two-tailed Student's t-test. RESULTS The siRNA specific for MSRA successfully suppressed MSRA expression in melanocytes. The lower MSRA expression in melanocytes led to an increased sensitivity to oxidative stress, resulting in more cell death. Furthermore, a remarkable loss of viable cells was found in MSRA-silenced melanocytes even in the absence of exogenously added oxidative stress. CONCLUSIONS MSRA is crucial for melanocytes to fight against oxidative stress in vitiligo. In addition, it is also important for normal cell survival. Any means to enhance MSRA appears to have therapeutic potential for the treatment of vitiligo.
Collapse
Affiliation(s)
- Z Zhou
- Department of Dermatology, Xijing Hospital, Xi'an, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
41
|
Kwak GH, Kim JR, Kim HY. Expression, subcellular localization, and antioxidant role of mammalian methionine sulfoxide reductases in Saccharomyces cerevisiae. BMB Rep 2009; 42:113-8. [PMID: 19250613 DOI: 10.5483/bmbrep.2009.42.2.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the growing body of evidence suggesting a role for MsrA in antioxidant defense, little is currently known regarding the function of MsrB in cellular protection against oxidative stress. In this study, we overexpressed the mammalian MsrB and MsrA genes in Saccharomyces cerevisiae and assessed their subcellular localization and antioxidant functions. We found that the mitochondrial MsrB3 protein (MsrB3B) was localized to the cytosol, but not to the mitochondria, of the yeast cells. The mitochondrial MsrB2 protein was detected in the mitochondria and, to a lesser extent, the cytosol of the yeast cells. In this study, we report the first evidence that MsrB3 overexpression in yeast cells protected them against H(2)O(2)-mediated cell death. Additionally, MsrB2 overexpression also provided yeast cells with resistance to oxidative stress, as did MsrA overexpression. Our results show that mammalian MsrB and MsrA proteins perform crucial functions in protection against oxidative stress in lower eukaryotic yeast cells.
Collapse
Affiliation(s)
- Geun-Hee Kwak
- Department of Biochemistry and Molecular Biology, Aging-associated Vascular Disease Research Center, Yeungnam University College of Medicine, Daegu 705-717, Korea
| | | | | |
Collapse
|
42
|
Haenold R, Wassef R, Brot N, Neugebauer S, Leipold E, Heinemann SH, Hoshi T. Protection of vascular smooth muscle cells by over-expressed methionine sulphoxide reductase A: role of intracellular localization and substrate availability. Free Radic Res 2009; 42:978-88. [PMID: 19085252 DOI: 10.1080/10715760802566541] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Methionine sulphoxide reductase A (MSRA) that reduces methionine-S-sulphoxide back to methionine constitutes a catalytic antioxidant mechanism to prevent oxidative damage at multiple sub-cellular loci. This study examined the relative importance of protection of the cytoplasm and mitochondria by MSRA using A-10 vascular smooth muscle cells, a cell type that requires a low level of reactive oxygen species (ROS) for normal function but is readily damaged by higher concentrations of ROS. Adenoviral over-expression of human MSRA variants, targeted to either mitochondria or the cytoplasm, did not change basal viability of non-stressed cells. Oxidative stress caused by treatment with the methionine-preferring oxidizing reagent chloramine-T decreased cell viability in a concentration-dependent manner. Cytoplasmic MSRA preserved cell viability more effectively than mitochondrial MSRA and co-application of S-methyl-L-cysteine, an amino acid that acts as a substrate for MSRA when oxidized, further increased the extent of protection. This suggests an important role for an MSRA catalytic antioxidant cycle for protection of the cytoplasmic compartment against oxidative damage.
Collapse
Affiliation(s)
- Ronny Haenold
- Department of Physiology, University of Pennsylvania, Philadelphia, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Starr JM, Shiels PG, Harris SE, Pattie A, Pearce MS, Relton CL, Deary IJ. Oxidative stress, telomere length and biomarkers of physical aging in a cohort aged 79 years from the 1932 Scottish Mental Survey. Mech Ageing Dev 2008; 129:745-51. [PMID: 18977241 DOI: 10.1016/j.mad.2008.09.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 08/05/2008] [Accepted: 09/26/2008] [Indexed: 01/08/2023]
Abstract
Telomere shortening is a biomarker of cellular senescence and is associated with a wide range of age-related disease. Oxidative stress is also associated with physiological aging and several age-related diseases. Non-human studies suggest that variants in oxidative stress genes may contribute to both telomere shortening and biological aging. We sought to test whether oxidative stress-related gene polymorphisms contribute to variance in both telomere length and physical biomarkers of aging in humans. Telomere lengths were calculated for 190 (82 men, 108 women) participants aged 79 years and associations with 384 SNPs, from 141 oxidative stress genes, identified 9 significant SNPS, of which those from 5 genes (GSTZ1, MSRA, NDUFA3, NDUFA8, VIM) had robust associations with physical aging biomarkers, respiratory function or grip strength. Replication of associations in a sample of 318 (120 males, 198 females) participants aged 50 years confirmed significant associations for two of the five SNPs (MSRA rs4841322, p=0.008; NDUFA8 rs6822, p=0.048) on telomere length. These data indicate that oxidative stress genes may be involved in pathways that lead to both telomere shortening and physiological aging in humans. Oxidative stress may explain, at least in part, associations between telomere shortening and physiological aging.
Collapse
Affiliation(s)
- John M Starr
- MRC Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Royal Victoria Hospital, Edinburgh EH4 2DN, UK.
| | | | | | | | | | | | | |
Collapse
|
44
|
Brennan LA, Kantorow M. Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations. Exp Eye Res 2008; 88:195-203. [PMID: 18588875 DOI: 10.1016/j.exer.2008.05.018] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 05/27/2008] [Accepted: 05/30/2008] [Indexed: 10/22/2022]
Abstract
Oxidative stress occurs when the level of prooxidants exceeds the level of antioxidants in cells resulting in oxidation of cellular components and consequent loss of cellular function. Oxidative stress is implicated in wide range of age-related disorders including Alzheimer's disease, Parkinson's disease amyotrophic lateral sclerosis (ALS), Huntington's disease and the aging process itself. In the anterior segment of the eye, oxidative stress has been linked to lens cataract and glaucoma while in the posterior segment of the eye oxidative stress has been associated with macular degeneration. Key to many oxidative stress conditions are alterations in the efficiency of mitochondrial respiration resulting in superoxide (O(2)(-)) production. Superoxide production precedes subsequent reactions that form potentially more dangerous reactive oxygen species (ROS) species such as the hydroxyl radical (OH), hydrogen peroxide (H(2)O(2)) and peroxynitrite (OONO(-)). The major source of ROS in the mitochondria, and in the cell overall, is leakage of electrons from complexes I and III of the electron transport chain. It is estimated that 0.2-2% of oxygen taken up by cells is converted to ROS, through mitochondrial superoxide generation, by the mitochondria. Generation of superoxide at complexes I and III has been shown to occur at both the matrix side of the inner mitochondrial membrane and the cytosolic side of the membrane. While exogenous sources of ROS such as UV light, visible light, ionizing radiation, chemotherapeutics, and environmental toxins may contribute to the oxidative milieu, mitochondria are perhaps the most significant contribution to ROS production affecting the aging process. In addition to producing ROS, mitochondria are also a target for ROS which in turn reduces mitochondrial efficiency and leads to the generation of more ROS in a vicious self-destructive cycle. Consequently, the mitochondria have evolved a number of antioxidant and key repair systems to limit the damaging potential of free oxygen radicals and to repair damaged proteins (Fig. 1). The aging eye appears to be at considerable risk from oxidative stress. This review will outline the potential role of mitochondrial function and redox balance in age-related eye diseases, and detail how the methionine sulfoxide reductase (Msr) protein repair system and other redox systems play key roles in the function and maintenance of the aging eye.
Collapse
Affiliation(s)
- Lisa A Brennan
- Biomedical Sciences Department, Charles E. Schmidt College of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | |
Collapse
|