1
|
S F, Umashankar MS, Narayanasamy D. A Comprehensive Review of Nanogel-Based Drug Delivery Systems. Cureus 2024; 16:e68633. [PMID: 39371842 PMCID: PMC11451309 DOI: 10.7759/cureus.68633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Polymers can be crosslinked chemically or physically to create three-dimensional hydrogel particles with sub-micron dimensions, known as nanogels. Their customizable size, ease of manufacture, expansion potential, bio-integration, water affinity, and reactivity to various stimuli, including temperature, pH, light, and biological agents, provide them with considerable advantages over conventional drug delivery techniques. Nanogels possess properties of both hydrogels and nanoparticles and can be categorized into nanohydrogels and nano-organogels. These systems exhibit exceptional drug-loading capability, stability, biological consistency, and environmental responsiveness. Their hallmark lies in their swelling behavior, enabling substantial water absorption while maintaining structural integrity. Preparation methods involve polymer precursors or heterogeneous polymerization of monomers. Nanogels are promising for various drug administration techniques, including local anesthetics, vaccines, and transdermal drug delivery, due to their ability to encapsulate multiple bioactive ingredients, enhancing therapeutic efficacy and stability.
Collapse
Affiliation(s)
- Ferozekhan S
- Department of Pharmaceutics, SRM College of Pharmacy, Faculty of Medicine and Health Science, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Marakanam S Umashankar
- Department of Pharmaceutics, SRM College of Pharmacy, Faculty of Medicine and Health Science, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, Faculty of Medicine and Health Science, SRM Institute of Science and Technology, Chengalpattu, IND
| |
Collapse
|
2
|
Gupta J, Sharma G. Nanogel: A versatile drug delivery system for the treatment of various diseases and their future perspective. Drug Deliv Transl Res 2024:10.1007/s13346-024-01684-w. [PMID: 39103593 DOI: 10.1007/s13346-024-01684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Nanogel (NG) drug delivery systems have emerged as promising tools for targeted and controlled drug release, revolutionizing treatment approaches across various diseases. Their unique physicochemical properties, such as nano size, high surface area, biocompatibility, stability, and tunable drug release, make them ideal carriers for a wide range of therapeutic agents. Nanogels (NGs), characterized by their 3D network of crosslinked polymers, offer unique edges like high drug loading capacity, controlled release, and targeted delivery. Additionally, the diverse applications of NGs in medical therapeutics highlight their versatility and potential impact on improving patient outcomes. Their application spans cancer treatment, infectious diseases, and chronic conditions, allowing for precise drug delivery to specific tissues or cells, minimizing side effects, and enhancing therapeutic efficacy. Despite their potential, challenges such as scalability, manufacturing reproducibility, and regulatory hurdles must be addressed. Achieving clinical translation requires overcoming these obstacles to ensure therapeutic payloads' safe and efficient delivery. Strategies such as surface modification and incorporating stimuli-responsive elements enhanced NG performance and addressed specific therapeutic challenges. Advances in nanotechnology, biomaterials, and targeted drug design offer opportunities to improve the performance of NGs and address current limitations. Tailoring NGs for exploring combination therapies and integrating diagnostics for real-time monitoring represent promising avenues for future research. In conclusion, NG drug delivery systems have demonstrated tremendous potential in diverse disease applications. Overcoming challenges and leveraging emerging technologies will pave the way for their widespread clinical implementation, ushering in a new era of precision medicine and improved patient care.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India.
| | - Gaurang Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
3
|
Ahmad I, Altameemi KKA, Hani MM, Ali AM, Shareef HK, Hassan ZF, Alubiady MHS, Al-Abdeen SHZ, Shakier HG, Redhee AH. Shifting cold to hot tumors by nanoparticle-loaded drugs and products. Clin Transl Oncol 2024:10.1007/s12094-024-03577-3. [PMID: 38922537 DOI: 10.1007/s12094-024-03577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Cold tumors lack antitumor immunity and are resistant to therapy, representing a major challenge in cancer medicine. Because of the immunosuppressive spirit of the tumor microenvironment (TME), this form of tumor has a low response to immunotherapy, radiotherapy, and also chemotherapy. Cold tumors have low infiltration of immune cells and a high expression of co-inhibitory molecules, such as immune checkpoints and immunosuppressive molecules. Therefore, targeting TME and remodeling immunity in cold tumors can improve the chance of tumor repression after therapy. However, tumor stroma prevents the infiltration of inflammatory cells and hinders the penetration of diverse molecules and drugs. Nanoparticles are an intriguing tool for the delivery of immune modulatory agents and shifting cold to hot tumors. In this review article, we discuss the mechanisms underlying the ability of nanoparticles loaded with different drugs and products to modulate TME and enhance immune cell infiltration. We also focus on newest progresses in the design and development of nanoparticle-based strategies for changing cold to hot tumors. These include the use of nanoparticles for targeted delivery of immunomodulatory agents, such as cytokines, small molecules, and checkpoint inhibitors, and for co-delivery of chemotherapy drugs and immunomodulatory agents. Furthermore, we discuss the potential of nanoparticles for enhancing the efficacy of cancer vaccines and cell therapy for overcoming resistance to treatment.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | | | - Mohaned Mohammed Hani
- Department of Medical Instrumentation Engineering Techniques, Imam Ja'afar Al-Sadiq University, Al Muthanna, Iraq
| | - Afaq Mahdi Ali
- Department of Pharmaceutics, Al-Turath University College, Baghdad, Iraq
| | - Hasanain Khaleel Shareef
- Department of Medical Biotechnology, College of Science, Al-Mustaqbal University, Hilla, Iraq
- Biology Department, College of Science for Women, University of Babylon, Hilla, Iraq
| | | | | | | | | | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
4
|
Rana P, Singh C, Kaushik A, Saleem S, Kumar A. Recent advances in stimuli-responsive tailored nanogels for cancer therapy; from bench to personalized treatment. J Mater Chem B 2024; 12:382-412. [PMID: 38095136 DOI: 10.1039/d3tb02650g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
To improve the quality of health in a personalized manner, better control over pharmacologically relevant cargo formulation, organ-specific targeted delivery, and on-demand release of therapeutic agents is crucial. Significant work has been put into designing and developing revolutionary nanotherapeutics approaches for the effective monitoring and personalized treatment of disease. Nanogel (NG) has attracted significant interest because of its tremendous potential in cancer therapy and its environmental stimuli responsiveness. NG is considered a next-generation delivery technology due to its benefits like as size tunability, high loading, stimuli responsiveness, prolonged drug release via in situ gelling mechanisms, stability, and its potential to provide personalized therapy from the investigation of human genes and the genes in various types of cancers and its association with a selective anticancer drug. Stimuli-responsive NGs can be used as smart nanomedicines to detect and treat cancer and can be tuned as personalized medicine as well. This comprehensive review article's major objectives include the challenges of NGs' clinical translation for cancer treatment as well as its early preclinical successes and prospects.
Collapse
Affiliation(s)
- Prinsy Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala-133207, Haryana, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand-246174, India
| | - Ajeet Kaushik
- NanoBiotech Lab, Department of Environmental Engineering, Florida Polytechnic University (FPU), Lakeland, FL, 33805-8531, USA
- School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, P. O. Box 93499, Riyadh 11673, Saudi Arabia
| | - Arun Kumar
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya-824209, India.
| |
Collapse
|
5
|
Davis MA, Cho E, Teplensky MH. Harnessing biomaterial architecture to drive anticancer innate immunity. J Mater Chem B 2023; 11:10982-11005. [PMID: 37955201 DOI: 10.1039/d3tb01677c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Immunomodulation is a powerful therapeutic approach that harnesses the body's own immune system and reprograms it to treat diseases, such as cancer. Innate immunity is key in mobilizing the rest of the immune system to respond to disease and is thus an attractive target for immunomodulation. Biomaterials have widely been employed as vehicles to deliver immunomodulatory therapeutic cargo to immune cells and raise robust antitumor immunity. However, it is key to consider the design of biomaterial chemical and physical structure, as it has direct impacts on innate immune activation and antigen presentation to stimulate downstream adaptive immunity. Herein, we highlight the widespread importance of structure-driven biomaterial design for the delivery of immunomodulatory cargo to innate immune cells. The incorporation of precise structural elements can be harnessed to improve delivery kinetics, uptake, and the targeting of biomaterials into innate immune cells, and enhance immune activation against cancer through temporal and spatial processing of cargo to overcome the immunosuppressive tumor microenvironment. Structural design of immunomodulatory biomaterials will profoundly improve the efficacy of current cancer immunotherapies by maximizing the impact of the innate immune system and thus has far-reaching translational potential against other diseases.
Collapse
Affiliation(s)
- Meredith A Davis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Ezra Cho
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Michelle H Teplensky
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
- Department of Materials Science and Engineering, Boston University, Boston, Massachusetts, 02215, USA
| |
Collapse
|
6
|
Bohmer M, Xue Y, Jankovic K, Dong Y. Advances in engineering and delivery strategies for cytokine immunotherapy. Expert Opin Drug Deliv 2023; 20:579-595. [PMID: 37104673 PMCID: PMC10330431 DOI: 10.1080/17425247.2023.2208344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/25/2023] [Indexed: 04/29/2023]
Abstract
INTRODUCTION Cytokine immunotherapy is a growing field for the treatment of cancer, infectious disease, autoimmunity, and other ailments. Therapeutic cytokines are a class of secreted, small proteins that play a pivotal role in regulating the innate and adaptive immune system by provoking or mitigating immune responses. In the clinic, cytokines are frequently combined with other treatments, such as small molecules and monoclonal antibodies. However, the clinical translation of cytokine therapies is hindered by their short half-life, pleiotropic nature, and off-target effects, which cause diminished efficacy and severe systemic toxicity. Such toxicity limits dosage, thus resulting in suboptimal doses. Accordingly, numerous efforts have been devoted to exploring strategies to promote cytokine therapies by improving their tissue specificity and pharmacokinetics. AREAS COVERED Preclinical and clinical research into bioengineering and delivery strategies for cytokines, consisting of bioconjugation, fusion proteins, nanoparticles, and scaffold-based systems. EXPERT OPINION These approaches pave the way for the development of next-generation cytokine treatments with greater clinical benefit and reduced toxicity, circumventing such issues currently associated with cytokine therapy.
Collapse
Affiliation(s)
- Margaret Bohmer
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yonger Xue
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Katarina Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immune-Oncology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Cancer Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Center for Cancer Metabolism, Department of Radiation Oncology, The Ohio State University, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH, 43210, USA
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- Icahn Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
7
|
Barberio AE, Smith SG, Pires IS, Iyer S, Reinhardt F, Melo MB, Suh H, Weinberg RA, Irvine DJ, Hammond PT. Layer-by-layer interleukin-12 nanoparticles drive a safe and effective response in ovarian tumors. Bioeng Transl Med 2023; 8:e10453. [PMID: 36925719 PMCID: PMC10013828 DOI: 10.1002/btm2.10453] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/08/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
Ovarian cancer is especially deadly, challenging to treat, and has proven refractory to known immunotherapies. Cytokine therapy is an attractive strategy to drive a proinflammatory immune response in immunologically cold tumors such as many high grade ovarian cancers; however, this strategy has been limited in the past due to severe toxicity. We previously demonstrated the use of a layer-by-layer (LbL) nanoparticle (NP) delivery vehicle in subcutaneous flank tumors to reduce the toxicity of interleukin-12 (IL-12) therapy upon intratumoral injection. However, ovarian cancer cannot be treated by local injection as it presents as dispersed metastases. Herein, we demonstrate the use of systemically delivered LbL NPs using a cancer cell membrane-binding outer layer to effectively target and engage the adaptive immune system as a treatment in multiple orthotopic ovarian tumor models, including immunologically cold tumors. IL-12 therapy from systemically delivered LbL NPs shows reduced severe toxicity and maintained anti-tumor efficacy compared to carrier-free IL-12 or layer-free liposomal NPs leading to a 30% complete survival rate.
Collapse
Affiliation(s)
- Antonio E. Barberio
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Sean G. Smith
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Ivan S. Pires
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Sonia Iyer
- Whitehead Institute for Biomedical ResearchCambridgeMassachusettsUSA
| | - Ferenc Reinhardt
- Whitehead Institute for Biomedical ResearchCambridgeMassachusettsUSA
| | - Mariane B. Melo
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Ragon Institute of Massachusetts General HospitalMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Heikyung Suh
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Robert A. Weinberg
- Whitehead Institute for Biomedical ResearchCambridgeMassachusettsUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Ludwig/MIT Center for Molecular OncologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Ragon Institute of Massachusetts General HospitalMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Howard Hughes Medical InstituteChevy ChaseMarylandUSA
| | - Paula T. Hammond
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Institute for Soldier NanotechnologiesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
8
|
Liu C, Liao Y, Liu L, Xie L, Liu J, Zhang Y, Li Y. Application of injectable hydrogels in cancer immunotherapy. Front Bioeng Biotechnol 2023; 11:1121887. [PMID: 36815890 PMCID: PMC9935944 DOI: 10.3389/fbioe.2023.1121887] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy is a revolutionary and promising approach to cancer treatment. However, traditional cancer immunotherapy often has the disadvantages of limited immune response rate, poor targeting, and low treatment index due to systemic administration. Hydrogels are drug carriers with many advantages. They can be loaded and transported with immunotherapeutic agents, chemical anticancer drugs, radiopharmaceuticals, photothermal agents, photosensitizers, and other therapeutic agents to achieve controlled release of drugs, extend the retention time of drugs, and thus successfully trigger anti-tumor effects and maintain long-term therapeutic effects after administration. This paper reviews recent advances in injectable hydrogel-based cancer immunotherapy, including immunotherapy alone, immunotherapy with combination chemotherapy, radiotherapy, phototherapy, and DNA hydrogel-based immunotherapy. Finally, we review the potential and limitations of injectable hydrogels in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Junbo Liu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yumao Zhang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuzhen Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Narayanan KB, Bhaskar R, Han SS. Recent Advances in the Biomedical Applications of Functionalized Nanogels. Pharmaceutics 2022; 14:2832. [PMID: 36559325 PMCID: PMC9782855 DOI: 10.3390/pharmaceutics14122832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Nanomaterials have been extensively used in several applications in the past few decades related to biomedicine and healthcare. Among them, nanogels (NGs) have emerged as an important nanoplatform with the properties of both hydrogels and nanoparticles for the controlled/sustained delivery of chemo drugs, nucleic acids, or other bioactive molecules for therapeutic or diagnostic purposes. In the recent past, significant research efforts have been invested in synthesizing NGs through various synthetic methodologies such as free radical polymerization, reversible addition-fragmentation chain-transfer method (RAFT) and atom transfer radical polymerization (ATRP), as well as emulsion techniques. With further polymeric functionalizations using activated esters, thiol-ene/yne processes, imines/oximes formation, cycloadditions, nucleophilic addition reactions of isocyanates, ring-opening, and multicomponent reactions were used to obtain functionalized NGs for targeted delivery of drug and other compounds. NGs are particularly intriguing for use in the areas of diagnosis, analytics, and biomedicine due to their nanodimensionality, material characteristics, physiological stability, tunable multi-functionality, and biocompatibility. Numerous NGs with a wide range of functionalities and various external/internal stimuli-responsive modalities have been possible with novel synthetic reliable methodologies. Such continuous development of innovative, intelligent materials with novel characteristics is crucial for nanomedicine for next-generation biomedical applications. This paper reviews the synthesis and various functionalization strategies of NGs with a focus on the recent advances in different biomedical applications of these surface modified/functionalized single-/dual-/multi-responsive NGs, with various active targeting moieties, in the fields of cancer theranostics, immunotherapy, antimicrobial/antiviral, antigen presentation for the vaccine, sensing, wound healing, thrombolysis, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
10
|
Nanogels: Update on the methods of synthesis and applications for cardiovascular and neurological complications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Ma X, Li SJ, Liu Y, Zhang T, Xue P, Kang Y, Sun ZJ, Xu Z. Bioengineered nanogels for cancer immunotherapy. Chem Soc Rev 2022; 51:5136-5174. [PMID: 35666131 DOI: 10.1039/d2cs00247g] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed increasingly rapid advances in nanocarrier-based biomedicine aimed at improving treatment paradigms for cancer. Nanogels serve as multipurpose and constructed vectors formed via intramolecular cross-linking to generate drug delivery systems, which is attributed predominantly to their satisfactory biocompatibility, bio-responsiveness, high stability, and low toxicity. Recently, immunotherapy has experienced unprecedented growth and has become the preferred strategy for cancer treatment, and mainly involves the mobilisation of the immune system and an enhanced anti-tumour immunity of the tumour microenvironment. Despite the inspiring success, immunotherapeutic strategies are limited due to the low response rates and immune-related adverse events. Like other nanomedicines, nanogels are comparably limited by lower focal enrichment rates upon introduction into the organism via injection. Because nanogels are three-dimensional cross-linked aqueous materials that exhibit similar properties to natural tissues and are structurally stable, they can comfortably cope with shear forces and serum proteins in the bloodstream, and the longer circulation life increases the chance of nanogel accumulation in the tumour, conferring deep tumour penetration. The large specific surface area can reduce or eliminate off-target effects by introducing stimuli-responsive functional groups, allowing multiple physical and chemical modifications for specific purposes to improve targeting to specific immune cell subpopulations or immune organs, increasing the bioavailability of the drug, and conferring a low immune-related adverse events on nanogel therapies. The slow release upon reaching the tumour site facilitates long-term awakening of the host's immune system, ultimately achieving enhanced therapeutic effects. As an effective candidate for cancer immunotherapy, nanogel-based immunotherapy has been widely used. In this review, we mainly summarize the recent advances of nanogel-based immunotherapy to deliver immunomodulatory small molecule drugs, antibodies, genes and cytokines, to target antigen presenting cells, form cancer vaccines, and enable chimeric antigen receptor (CAR)-T cell therapy. Future challenges as well as expected and feasible prospects for clinical treatment are also highlighted.
Collapse
Affiliation(s)
- Xianbin Ma
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Shu-Jin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Yuantong Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Tian Zhang
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Peng Xue
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Yuejun Kang
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Zhigang Xu
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| |
Collapse
|
12
|
|
13
|
Cui R, Wu Q, Wang J, Zheng X, Ou R, Xu Y, Qu S, Li D. Hydrogel-By-Design: Smart Delivery System for Cancer Immunotherapy. Front Bioeng Biotechnol 2021; 9:723490. [PMID: 34368109 PMCID: PMC8334721 DOI: 10.3389/fbioe.2021.723490] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022] Open
Abstract
Immunotherapy has emerged as a promising strategy for cancer treatment, in which durable immune responses were generated in patients with malignant tumors. In the past decade, biomaterials have played vital roles as smart drug delivery systems for cancer immunotherapy to achieve both enhanced therapeutic benefits and reduced side effects. Hydrogels as one of the most biocompatible and versatile biomaterials have been widely applied in localized drug delivery systems due to their unique properties, such as loadable, implantable, injectable, degradable and stimulus responsible. Herein, we have briefly summarized the recent advances on hydrogel-by-design delivery systems including the design of hydrogels and their applications for delivering of immunomodulatory molecules (e.g., cytokine, adjuvant, checkpoint inhibitor, antigen), immune cells and environmental regulatory substances in cancer immunotherapy. We have also discussed the challenges and future perspectives of hydrogels in the development of cancer immunotherapy for precision medicine at the end.
Collapse
Affiliation(s)
- Rongwei Cui
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qiang Wu
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jing Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Xiaoming Zheng
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Rongying Ou
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunsheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shuxin Qu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Danyang Li
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
14
|
Chander S, Kulkarni GT, Dhiman N, Kharkwal H. Protein-Based Nanohydrogels for Bioactive Delivery. Front Chem 2021; 9:573748. [PMID: 34307293 PMCID: PMC8299995 DOI: 10.3389/fchem.2021.573748] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogels possess a unique three-dimensional, cross-linked network of polymers capable of absorbing large amounts of water and biological fluids without dissolving. Nanohydrogels (NGs) or nanogels are composed of diverse types of polymers of synthetic or natural origin. Their combination is bound by a chemical covalent bond or is physically cross-linked with non-covalent bonds like electrostatic interactions, hydrophobic interactions, and hydrogen bonding. Its remarkable ability to absorb water or other fluids is mainly attributed to hydrophilic groups like hydroxyl, amide, and sulphate, etc. Natural biomolecules such as protein- or peptide-based nanohydrogels are an important category of hydrogels which possess high biocompatibility and metabolic degradability. The preparation of protein nanohydrogels and the subsequent encapsulation process generally involve use of environment friendly solvents and can be fabricated using different proteins, such as fibroins, albumin, collagen, elastin, gelatin, and lipoprotein, etc. involving emulsion, electrospray, and desolvation methods to name a few. Nanohydrogels are excellent biomaterials with broad applications in the areas of regenerative medicine, tissue engineering, and drug delivery due to certain advantages like biodegradability, biocompatibility, tunable mechanical strength, molecular binding abilities, and customizable responses to certain stimuli like ionic concentration, pH, and temperature. The present review aims to provide an insightful analysis of protein/peptide nanohydrogels including their preparation, biophysiochemical aspects, and applications in diverse disciplines like in drug delivery, immunotherapy, intracellular delivery, nutraceutical delivery, cell adhesion, and wound dressing. Naturally occurring structural proteins that are being explored in protein nanohydrogels, along with their unique properties, are also discussed briefly. Further, the review also covers the advantages, limitations, overview of clinical potential, toxicity aspects, stability issues, and future perspectives of protein nanohydrogels.
Collapse
Affiliation(s)
- Subhash Chander
- Amity Institute of Phytochemistry and Phytomedicine, Amity University, Noida, India
| | - Giriraj T. Kulkarni
- Amity Institute of Pharmacy, Amity University, Noida, India
- Gokaraju Rangaraju College of Pharmacy, Hyderabad, India
| | | | - Harsha Kharkwal
- Amity Institute of Phytochemistry and Phytomedicine, Amity University, Noida, India
| |
Collapse
|
15
|
Peng X, Wang J, Zhou F, Liu Q, Zhang Z. Nanoparticle-based approaches to target the lymphatic system for antitumor treatment. Cell Mol Life Sci 2021; 78:5139-5161. [PMID: 33963442 PMCID: PMC11072902 DOI: 10.1007/s00018-021-03842-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/14/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Immunotherapies have been established as safe and efficient modalities for numerous tumor treatments. The lymphatic system, which is an important system, can modulate the immune system via a complex network, which includes lymph nodes, vessels, and lymphocytes. With the deepening understanding of tumor immunology, a plethora of immunotherapies, which include vaccines, photothermal therapy, and photodynamic therapy, have been established for antitumor treatments. However, the deleterious off-target effects and nonspecific targeting of therapeutic agents result in low efficacy of immunotherapy. Fortunately, nanoparticle-based approaches for targeting the lymphatic system afford a unique opportunity to manufacture drugs that can simultaneously tackle both aspects, thereby improving tumor treatments. Over the past decades, great strides have been made in the development of DC vaccines and nanomedicine as antitumor treatments in the field of lymphatic therapeutics and diagnosis. In this review, we summarize the current strategies through which nanoparticle technology has been designed to target the lymphatic system and describe applications of lymphatic imaging for the diagnosis and image-guided surgery of tumor metastasis. Moreover, improvements in the tumor specificity of nanovaccines and medicines, which have been realized through targeting or stimulating the lymphatic system, can provide amplified antitumor immune responses and reduce side effects, thereby promoting the paradigm of antitumor treatment into the clinic to benefit patients.
Collapse
Affiliation(s)
- Xingzhou Peng
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Junjie Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Feifan Zhou
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Qian Liu
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China.
| | - Zhihong Zhang
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China.
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
16
|
Strategies to load therapeutics into polysaccharide-based nanogels with a focus on microfluidics: A review. Carbohydr Polym 2021; 266:118119. [PMID: 34044935 DOI: 10.1016/j.carbpol.2021.118119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 01/05/2023]
Abstract
Nowadays nanoparticles are increasingly investigated for the targeted and controlled delivery of therapeutics, as suggested by the high number of research articles (2400 in 2000 vs 8500 in 2020). Among them, almost 2% investigated nanogels in 2020. Nanogels or nanohydrogels (NGs) are nanoparticles formed by a swollen three-dimensional network of synthetic polymers or natural macromolecules such as polysaccharides. NGs represent a highly versatile nanocarrier, able to deliver a number of therapeutics. Currently, NGs are undergoing clinical trials for the delivery of anti-cancer vaccines. Herein, the strategies to load low molecular weight drugs, (poly)peptides and genetic material into polysaccharide NGs as well as to formulate NGs-based vaccines are summarized, with a focus on the microfluidics approach.
Collapse
|
17
|
Wang Y, Wang J, Zhu D, Wang Y, Qing G, Zhang Y, Liu X, Liang XJ. Effect of physicochemical properties on in vivo fate of nanoparticle-based cancer immunotherapies. Acta Pharm Sin B 2021; 11:886-902. [PMID: 33996405 PMCID: PMC8105773 DOI: 10.1016/j.apsb.2021.03.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/25/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Current advances of immunotherapy have greatly changed the way of cancer treatment. At the same time, a great number of nanoparticle-based cancer immunotherapies (NBCIs) have also been explored to elicit potent immune responses against tumors. However, few NBCIs are nearly in the clinical trial which is mainly ascribed to a lack understanding of in vivo fate of nanoparticles (NPs) for cancer immunotherapy. NPs for cancer immunotherapy mainly target the immune organs or immune cells to enable efficient antitumor immune responses. The physicochemical properties of NPs including size, shape, elasticity and surface properties directly affect their interaction with immune systems as well as their in vivo fate and therapeutic effect. Hence, systematic analysis of the physicochemical properties and their effect on in vivo fate is urgently needed. In this review, we first recapitulate the fundamentals for the in vivo fate of NBCIs including physio-anatomical features of lymphatic system and strategies to modulate immune responses. Moreover, we highlight the effect of physicochemical properties on their in vivo fate including lymph nodes (LNs) drainage, cellular uptake and intracellular transfer. Challenges and opportunities for rational design of NPs for cancer immunotherapy are also discussed in detail.
Collapse
|
18
|
Thakur N, Thakur S, Chatterjee S, Das J, Sil PC. Nanoparticles as Smart Carriers for Enhanced Cancer Immunotherapy. Front Chem 2020; 8:597806. [PMID: 33409265 PMCID: PMC7779678 DOI: 10.3389/fchem.2020.597806] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy for the treatment of many forms of cancer by stimulating body's own immune system. This therapy not only eradicates tumor cells by inducing strong anti-tumor immune response but also prevent their recurrence. The clinical cancer immunotherapy faces some insurmountable challenges including high immune-mediated toxicity, lack of effective and targeted delivery of cancer antigens to immune cells and off-target side effects. However, nanotechnology offers some solutions to overcome those limitations, and thus can potentiate the efficacy of immunotherapy. This review focuses on the advancement of nanoparticle-mediated delivery of immunostimulating agents for efficient cancer immunotherapy. Here we have outlined the use of the immunostimulatory nanoparticles as a smart carrier for effective delivery of cancer antigens and adjuvants, type of interactions between nanoparticles and the antigen/adjuvant as well as the factors controlling the interaction between nanoparticles and the receptors on antigen presenting cells. Besides, the role of nanoparticles in targeting/activating immune cells and modulating the immunosuppressive tumor microenvironment has also been discussed extensively. Finally, we have summarized some theranostic applications of the immunomodulatory nanomaterials in treating cancers based on the earlier published reports.
Collapse
Affiliation(s)
- Neelam Thakur
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, India
| | - Saloni Thakur
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | | | - Joydeep Das
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
19
|
Huang S, Zhao Q. Nanomedicine-Combined Immunotherapy for Cancer. Curr Med Chem 2020; 27:5716-5729. [PMID: 31250752 DOI: 10.2174/0929867326666190618161610] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Immunotherapy for cancer includes Chimeric Antigen Receptor (CAR)-T cells, CAR-natural Killer (NK) cells, PD1, and the PD-L1 inhibitor. However, the proportion of patients who respond to cancer immunotherapy is not satisfactory. Concurrently, nanotechnology has experienced a revolution in cancer diagnosis and therapy. There are few clinically approved nanoparticles that can selectively bind and target cancer cells and incorporate molecules, although many therapeutic nanocarriers have been approved for clinical use. There are no systematic reviews outlining how nanomedicine and immunotherapy are used in combination to treat cancer. OBJECTIVE This review aims to illustrate how nanomedicine and immunotherapy can be used for cancer treatment to overcome the limitations of the low proportion of patients who respond to cancer immunotherapy and the rarity of nanomaterials in clinical use. METHODS A literature review of MEDLINE, PubMed / PubMed Central, and Google Scholar was performed. We performed a structured search of literature reviews on nanoparticle drug-delivery systems, which included photodynamic therapy, photothermal therapy, photoacoustic therapy, and immunotherapy for cancer. Moreover, we detailed the advantages and disadvantages of the various nanoparticles incorporated with molecules to discuss the challenges and solutions associated with cancer treatment. CONCLUSION This review identified the advantages and disadvantages associated with improving health care and outcomes. The findings of this review confirmed the importance of nanomedicinecombined immunotherapy for improving the efficacy of cancer treatment. It may become a new way to develop novel cancer therapeutics using nanomaterials to achieve synergistic anticancer immunity.
Collapse
Affiliation(s)
- Shigao Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, P.R. China
| | - Qi Zhao
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, P.R. China
| |
Collapse
|
20
|
Pinelli F, Ortolà ÓF, Makvandi P, Perale G, Rossi F. In vivo drug delivery applications of nanogels: a review. Nanomedicine (Lond) 2020; 15:2707-2727. [PMID: 33103960 DOI: 10.2217/nnm-2020-0274] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, nanogels have emerged as promising drug delivery vehicles; their ability in holding active molecules, macromolecules and drugs, together with the capability to respond to external stimuli, makes them a suitable tool for a wide range of applications. These features allow nanogels to be exploited against many challenges of nanomedicine associated with different kinds of pathologies which require the use of specific drug delivery systems. In this review our aim is to give the reader an overview of the diseases that can be treated with nanogels as drug delivery systems, such as cancer, CNS disorders, cardiovascular diseases, wound healing and other diseases of human body. For all of these pathologies, biological in vivo assays can be found in the literature and in this work. We focus on the peculiarities of these nanogels, highlighting their features and their advantages in respect to conventional treatments.
Collapse
Affiliation(s)
- Filippo Pinelli
- Department of Chemistry, Materials & Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milan, Italy
| | - Óscar Fullana Ortolà
- Department of Chemistry, Materials & Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milan, Italy
| | - Pooyan Makvandi
- Institute for Polymers, Composites & Biomaterials, National Research Council, Via Campi Flegrei, 34 - 80078 Pozzuoli (NA), Italy.,Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Giuseppe Perale
- Faculty of Biomedical Sciences, University of Southern Switzerland (USI), Via Buffi 13, 6900 Lugano, Switzerland
| | - Filippo Rossi
- Department of Chemistry, Materials & Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milan, Italy
| |
Collapse
|
21
|
Adachi T, Boschetto F, Miyamoto N, Yamamoto T, Marin E, Zhu W, Kanamura N, Tahara Y, Akiyoshi K, Mazda O, Nishimura I, Pezzotti G. In Vivo Regeneration of Large Bone Defects by Cross-Linked Porous Hydrogel: A Pilot Study in Mice Combining Micro Tomography, Histological Analyses, Raman Spectroscopy and Synchrotron Infrared Imaging. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4275. [PMID: 32992758 PMCID: PMC7579234 DOI: 10.3390/ma13194275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 01/25/2023]
Abstract
The transplantation of engineered three-dimensional (3D) bone graft substitutes is a viable approach to the regeneration of severe bone defects. For large bone defects, an appropriate 3D scaffold may be necessary to support and stimulate bone regeneration, even when a sufficient number of cells and cell cytokines are available. In this study, we evaluated the in vivo performance of a nanogel tectonic 3D scaffold specifically developed for bone tissue engineering, referred to as nanogel cross-linked porous-freeze-dry (NanoCliP-FD) gel. Samples were characterized by a combination of micro-computed tomography scanning, Raman spectroscopy, histological analyses, and synchrotron radiation-based Fourier transform infrared spectroscopy. NanoCliP-FD gel is a modified version of a previously developed nanogel cross-linked porous (NanoCliP) gel and was designed to achieve highly improved functionality in bone mineralization. Spectroscopic imaging of the bone tissue grown in vivo upon application of NanoCliP-FD gel enables an evaluation of bone quality and can be employed to judge the feasibility of NanoCliP-FD gel scaffolding as a therapeutic modality for bone diseases associated with large bone defects.
Collapse
Affiliation(s)
- Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (F.B.); (N.M.); (T.Y.); (E.M.); (N.K.)
| | - Francesco Boschetto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (F.B.); (N.M.); (T.Y.); (E.M.); (N.K.)
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (W.Z.); (G.P.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Nao Miyamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (F.B.); (N.M.); (T.Y.); (E.M.); (N.K.)
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (F.B.); (N.M.); (T.Y.); (E.M.); (N.K.)
| | - Elia Marin
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (F.B.); (N.M.); (T.Y.); (E.M.); (N.K.)
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (W.Z.); (G.P.)
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (W.Z.); (G.P.)
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (F.B.); (N.M.); (T.Y.); (E.M.); (N.K.)
| | - Yoshiro Tahara
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto-fu 610-0394, Japan;
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Ichiro Nishimura
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA;
- Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Re-constructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (W.Z.); (G.P.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| |
Collapse
|
22
|
Barberio AE, Smith SG, Correa S, Nguyen C, Nhan B, Melo M, Tokatlian T, Suh H, Irvine DJ, Hammond PT. Cancer Cell Coating Nanoparticles for Optimal Tumor-Specific Cytokine Delivery. ACS NANO 2020; 14:11238-11253. [PMID: 32692155 PMCID: PMC7530125 DOI: 10.1021/acsnano.0c03109] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Although cytokine therapy is an attractive strategy to build a more robust immune response in tumors, cytokines have faced clinical failures due to toxicity. In particular, interleukin-12 has shown great clinical promise but was limited in translation because of systemic toxicity. In this study, we demonstrate an enhanced ability to reduce toxicity without affecting the efficacy of IL-12 therapy. We engineer the material properties of a NP to meet the enhanced demands for optimal cytokine delivery by using the layer-by-layer (LbL) approach. Importantly, using LbL, we demonstrate cell-level trafficking of NPs to preferentially localize to the cell's outer surface and act as a drug depot, which is required for optimal payload activity on neighboring cytokine membrane receptors. LbL-NPs showed efficacy against a tumor challenge in both colorectal and ovarian tumors at doses that were not tolerated when administered carrier-free.
Collapse
Affiliation(s)
- Antonio E. Barberio
- Department of Chemical Engineering, Massachusetts Institute of Technology, 183 Memorial Drive, Cambridge, MA 02142, USA
| | - Sean G Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, 183 Memorial Drive, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Santiago Correa
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames Street, Cambridge MA 02142, USA
| | - Cathy Nguyen
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames Street, Cambridge MA 02142, USA
| | - Bang Nhan
- Department of Chemistry, Wellesley College, 106 Central Street, Wellesley, MA 02481
| | - Mariane Melo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Talar Tokatlian
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Heikyung Suh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames Street, Cambridge MA 02142, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Paula T. Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, 183 Memorial Drive, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Institute for Soldier Nanotechnologies
| |
Collapse
|
23
|
Acebes-Fernández V, Landeira-Viñuela A, Juanes-Velasco P, Hernández AP, Otazo-Perez A, Manzano-Román R, Gongora R, Fuentes M. Nanomedicine and Onco-Immunotherapy: From the Bench to Bedside to Biomarkers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1274. [PMID: 32610601 PMCID: PMC7407304 DOI: 10.3390/nano10071274] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
The broad relationship between the immune system and cancer is opening a new hallmark to explore for nanomedicine. Here, all the common and synergy points between both areas are reviewed and described, and the recent approaches which show the progress from the bench to the beside to biomarkers developed in nanomedicine and onco-immunotherapy.
Collapse
Affiliation(s)
- Vanessa Acebes-Fernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Alicia Landeira-Viñuela
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Pablo Juanes-Velasco
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Angela-Patricia Hernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Andrea Otazo-Perez
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain;
| | - Rafael Gongora
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Manuel Fuentes
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain;
| |
Collapse
|
24
|
Ahmed OAA, Fahmy UA, Badr-Eldin SM, Aldawsari HM, Awan ZA, Asfour HZ, Kammoun AK, Caruso G, Caraci F, Alfarsi A, A. Al-Ghamdi R, A. Al-Ghamdi R, Alhakamy NA. Application of Nanopharmaceutics for Flibanserin Brain Delivery Augmentation Via the Nasal Route. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1270. [PMID: 32610539 PMCID: PMC7408465 DOI: 10.3390/nano10071270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 01/29/2023]
Abstract
Flibanserin (FLB) is a nonhormonal medicine approved by the Food and Drug Administration (FDA) to treat the hypoactive sexual appetite disorder in females. However, the peroral administration of the medicine is greatly affected by its poor bioavailability as a result of its extensive first-pass effect and poor solubility. Aiming at circumventing these drawbacks, this work involves the formulation of optimized FLB transfersome (TRF) loaded intranasal hydrogel. Box-Behnken design was utilized for the improvement of FLB TRFs with decreased size. The FLB-to-phospholipid molar ratio, the edge activator hydrophilic lipophilic balance, and the pH of the hydration medium all exhibited significant effects on the TRF size. The optimized/developed TRFs were unilamellar in shape. Hydroxypropyl methyl cellulose based hydrogel filled with the optimized FLB TRFs exhibited an improved ex vivo permeation when compared with the control FLB-loaded hydrogel. In addition, the optimized TRF-loaded hydrogel exhibited higher bioavailability and enhanced brain delivery relative to the control hydrogel following intranasal administration in Wistar rats. The results foreshadow the possible potential application of the proposed intranasal optimized FLB-TRF-loaded hydrogel to increase the bioavailability and nose-to-brain delivery of the drug.
Collapse
Affiliation(s)
- Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.A.A.A.); (S.M.B.-E.); (H.M.A.); (A.A.); (N.A.A.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.A.A.A.); (S.M.B.-E.); (H.M.A.); (A.A.); (N.A.A.)
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.A.A.A.); (S.M.B.-E.); (H.M.A.); (A.A.); (N.A.A.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.A.A.A.); (S.M.B.-E.); (H.M.A.); (A.A.); (N.A.A.)
| | - Zuhier A. Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ahmed K. Kammoun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Giuseppe Caruso
- Oasi Research Institute—IRCCS, Via Conte Ruggero, 73, 94018 Troina (EN), Italy; (G.C.); (F.C.)
| | - Filippo Caraci
- Oasi Research Institute—IRCCS, Via Conte Ruggero, 73, 94018 Troina (EN), Italy; (G.C.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Anas Alfarsi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.A.A.A.); (S.M.B.-E.); (H.M.A.); (A.A.); (N.A.A.)
| | - Raniyah A. Al-Ghamdi
- Ibn Sina National College for Medical Studies, Clinical Pharmacy Department, Jeddah 22421, Saudi Arabia;
| | - Rawan A. Al-Ghamdi
- Ibn Sina National College for Medical Studies, Jeddah 22421, Saudi Arabia;
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.A.A.A.); (S.M.B.-E.); (H.M.A.); (A.A.); (N.A.A.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
25
|
Kinoshita N, Sasaki Y, Marukawa E, Hirose R, Sawada SI, Harada H, Akiyoshi K. Crosslinked nanogel-based porous hydrogel as a functional scaffold for tongue muscle regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1254-1271. [PMID: 32208921 DOI: 10.1080/09205063.2020.1744246] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Surgical resection in tongue cancer can impair speech and swallowing, reducing quality of life. There is a need for biomaterials that can regenerate tongue muscle tissue defects. Ideally, such a biomaterial would allow controlled release of therapeutic proteins, support the survival and differentiation of therapeutic cells, and promote tongue muscle regeneration in vivo. The aim of the current study was to assess these factors in an acryloyl group-modified crosslinked nanogel, consisting of cholesterol-bearing pullulan hydrogel nanoparticles, to determine its potential as a regenerative therapeutic following tongue resection. The hydrogel demonstrated substantial porosity and underwent slow biodegradation. When loaded with a model protein, the gel enabled sustained protein release over two weeks in serum, with no initial burst release. Mouse myoblasts demonstrated adhesion to the hydrogel and cell survival was observed up to one week. Gel-encapsulated myoblasts demonstrated normal myotube differentiation. Myoblast-loaded gels were implanted in a tongue defect in mice, and there was a significant increase in newly-regenerated myofibers in gel-implanted animals. The developed biomaterial platform demonstrates significant potential as a regenerative treatment following tongue resection, as it facilitates both protein and cell-mediated therapy, and stimulates tongue muscle regeneration in vivo.
Collapse
Affiliation(s)
- Naoya Kinoshita
- Department of Oral and Maxillofacial Surgery, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Japan
| | - Eriko Marukawa
- Department of Maxillofacial Surgery, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Hirose
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Japan
| |
Collapse
|
26
|
Shetab Boushehri MA, Dietrich D, Lamprecht A. Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art. Pharmaceutics 2020; 12:pharmaceutics12060510. [PMID: 32503171 PMCID: PMC7356945 DOI: 10.3390/pharmaceutics12060510] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Within recent decades, the development of nanotechnology has made a significant contribution to the progress of various fields of study, including the domains of medical and pharmaceutical sciences. A substantially transformed arena within the context of the latter is the development and production of various injectable parenteral formulations. Indeed, recent decades have witnessed a rapid growth of the marketed and pipeline nanotechnology-based injectable products, which is a testimony to the remarkability of the aforementioned contribution. Adjunct to the ability of nanomaterials to deliver the incorporated payloads to many different targets of interest, nanotechnology has substantially assisted to the development of many further facets of the art. Such contributions include the enhancement of the drug solubility, development of long-acting locally and systemically injectable formulations, tuning the onset of the drug’s release through the endowment of sensitivity to various internal or external stimuli, as well as adjuvancy and immune activation, which is a desirable component for injectable vaccines and immunotherapeutic formulations. The current work seeks to provide a comprehensive review of all the abovementioned contributions, along with the most recent advances made within each domain. Furthermore, recent developments within the domains of passive and active targeting will be briefly debated.
Collapse
Affiliation(s)
- Maryam A. Shetab Boushehri
- Department of Pharmaceutics, Faculty of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- Correspondence: ; Tel.: +49-228-736428; Fax: +49-228-735268
| | - Dirk Dietrich
- Department of Neurosurgery, University Clinic of Bonn, 53105 Bonn, Germany;
| | - Alf Lamprecht
- Department of Pharmaceutics, Faculty of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- PEPITE EA4267, Institute of Pharmacy, University Bourgogne Franche-Comté, 25000 Besançon, France
| |
Collapse
|
27
|
Abstract
Therapeutic targeting of the immune system in cancer is now a clinical reality and marked successes have been achieved, most notably through the use of checkpoint blockade antibodies and chimeric antigen receptor T cell therapy. However, efforts to develop new immunotherapy agents or combination treatments to increase the proportion of patients who benefit have met with challenges of limited efficacy and/or significant toxicity. Nanomedicines - therapeutics composed of or formulated in carrier materials typically smaller than 100 nm - were originally developed to increase the uptake of chemotherapy agents by tumours and to reduce their off-target toxicity. Here, we discuss how nanomedicine-based treatment strategies are well suited to immunotherapy on the basis of nanomaterials' ability to direct immunomodulators to tumours and lymphoid organs, to alter the way biologics engage with target immune cells and to accumulate in myeloid cells in tumours and systemic compartments. We also discuss early efforts towards clinical translation of nanomedicine-based immunotherapy.
Collapse
|
28
|
Li J, Lin W, Chen H, Xu Z, Ye Y, Chen M. Dual-target IL-12-containing nanoparticles enhance T cell functions for cancer immunotherapy. Cell Immunol 2020; 349:104042. [PMID: 32061376 DOI: 10.1016/j.cellimm.2020.104042] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/10/2020] [Indexed: 01/26/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) play a major role in cancer immunotherapy. A potent tumor immunotherapy may not only require activation of anti-tumor effector cells but also rely on the use of cytokines to create a controlled environment for the development of anti-tumor T cells. In this study, we fabricated a dual-target immunonanoparticle, e.g. poly(d,l-lactide-co-glycolide) nanoparticle, by loading Interleukin-12 (IL-12) and modifying with CD8 and Glypican-3 antibodies on the surface. Our results demonstrate that the fabricated targeting immunonanoparticles bind specifically to the two target cells of interest, i.e. CD8+ T cells and HepG-2 cells via the antibody-antigen interactions and form T cell-HepG-2 cell clusters, which enhances the cytotoxicity of T cells. IL-12-containing dual-target immunonanoparticles delivered IL-12 specifically to CD8+ T cells, and favored the expansion, activation and cytotoxic activity of CD8+ T lymphocytes. These results suggest that dual-target IL-12-encapsulated nanoparticles are a promising platform for cancer immunotherapy.
Collapse
Affiliation(s)
- Jieyu Li
- Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian 350014, China
| | - Wansong Lin
- Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian 350014, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Huijing Chen
- Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian 350014, China
| | - Zhiping Xu
- Australian Institute for Bioengineering and Nanotechnology (Building 75), The University of Queensland, Cooper Rd., St Lucia, Brisbane, QLD 4072, Australia
| | - Yunbin Ye
- Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian 350014, China.
| | - Mingshui Chen
- Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian 350014, China.
| |
Collapse
|
29
|
Abstract
Mucosal surfaces are the interface between the host’s internal milieu and the external environment, and they have dual functions, serving as physical barriers to foreign antigens and as accepting sites for vital materials. Mucosal vaccines are more favored to prevent mucosal infections from the portal of entry. Although mucosal vaccination has many advantages, licensed mucosal vaccines are scarce. The most widely studied mucosal routes are oral and intranasal. Licensed oral and intranasal vaccines are composed mostly of whole cell killed or live attenuated microorganisms serving as both delivery systems and built-in adjuvants. Future mucosal vaccines should be made with more purified antigen components, which will be relatively less immunogenic. To induce robust protective immune responses against well-purified vaccine antigens, an effective mucosal delivery system is an essential requisite. Recent developments in biomaterials and nanotechnology have enabled many innovative mucosal vaccine trials. For oral vaccination, the vaccine delivery system should be able to stably carry antigens and adjuvants and resist harsh physicochemical conditions in the stomach and intestinal tract. Besides many nano/microcarrier tools generated by using natural and chemical materials, the development of oral vaccine delivery systems using food materials should be more robustly researched to expand vaccine coverage of gastrointestinal infections in developing countries. For intranasal vaccination, the vaccine delivery system should survive the very active mucociliary clearance mechanisms and prove safety because of the anatomical location of nasal cavity separated by a thin barrier. Future mucosal vaccine carriers, regardless of administration routes, should have certain common characteristics. They should maintain stability in given environments, be mucoadhesive, and have the ability to target specific tissues and cells.
Collapse
|
30
|
Gasparri AM, Sacchi A, Basso V, Cortesi F, Freschi M, Rrapaj E, Bellone M, Casorati G, Dellabona P, Mondino A, Corti A, Curnis F. Boosting Interleukin-12 Antitumor Activity and Synergism with Immunotherapy by Targeted Delivery with isoDGR-Tagged Nanogold. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903462. [PMID: 31523920 DOI: 10.1002/smll.201903462] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/26/2019] [Indexed: 06/10/2023]
Abstract
The clinical use of interleukin-12 (IL12), a cytokine endowed with potent immunotherapeutic anticancer activity, is limited by systemic toxicity. The hypothesis is addressed that gold nanoparticles tagged with a tumor-homing peptide containing isoDGR, an αvβ3-integrin binding motif, can be exploited for delivering IL12 to tumors and improving its therapeutic index. To this aim, gold nanospheres are functionalized with the head-to-tail cyclized-peptide CGisoDGRG (Iso1) and murine IL12. The resulting nanodrug (Iso1/Au/IL12) is monodispersed, stable, and bifunctional in terms of αvβ3 and IL12-receptor recognition. Low-dose Iso1/Au/IL12, equivalent to 18-75 pg of IL12, induces antitumor effects in murine models of fibrosarcomas and mammary adenocarcinomas, with no evidence of toxicity. Equivalent doses of Au/IL12 (a nanodrug lacking Iso1) fail to delay tumor growth, whereas 15 000 pg of free IL12 is necessary to achieve similar effects. Iso1/Au/IL12 significantly increases tumor infiltration by innate immune cells, such as NK and iNKT cells, monocytes, and neutrophils. NK cell depletion completely inhibits its antitumor effects. Low-dose Iso1/Au/IL12 can also increase the therapeutic efficacy of adoptive T-cell therapy in mice with autochthonous prostate cancer. These findings indicate that coupling IL12 to isoDGR-tagged nanogold is a valid strategy for enhancing its therapeutic index and sustaining adoptive T-cell therapy.
Collapse
Affiliation(s)
- Anna Maria Gasparri
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Angelina Sacchi
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Veronica Basso
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Filippo Cortesi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Massimo Freschi
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Eltjona Rrapaj
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Matteo Bellone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Giulia Casorati
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Paolo Dellabona
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Angelo Corti
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele, Milan, 20132, Italy
| | - Flavio Curnis
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| |
Collapse
|
31
|
Zhuang J, Holay M, Park JH, Fang RH, Zhang J, Zhang L. Nanoparticle Delivery of Immunostimulatory Agents for Cancer Immunotherapy. Theranostics 2019; 9:7826-7848. [PMID: 31695803 PMCID: PMC6831474 DOI: 10.7150/thno.37216] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Immunostimulatory agents, including adjuvants, cytokines, and monoclonal antibodies, hold great potential for the treatment of cancer. However, their direct administration often results in suboptimal pharmacokinetics, vulnerability to biodegradation, and compromised targeting. More recently, encapsulation into biocompatible nanoparticulate carriers has become an emerging strategy for improving the delivery of these immunotherapeutic agents. Such approaches can address many of the challenges facing current treatment modalities by endowing additional protection and significantly elevating the bioavailability of the encapsulated payloads. To further improve the delivery efficiency and subsequent immune responses associated with current nanoscale approaches, biomimetic modifications and materials have been employed to create delivery platforms with enhanced functionalities. By leveraging nature-inspired design principles, these biomimetic nanodelivery vehicles have the potential to alter the current clinical landscape of cancer immunotherapy.
Collapse
Affiliation(s)
- Jia Zhuang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Joon Ho Park
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jie Zhang
- Cello Therapeutics, Inc., San Diego, CA 92121, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
32
|
Hajebi S, Rabiee N, Bagherzadeh M, Ahmadi S, Rabiee M, Roghani-Mamaqani H, Tahriri M, Tayebi L, Hamblin MR. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater 2019; 92:1-18. [PMID: 31096042 PMCID: PMC6661071 DOI: 10.1016/j.actbio.2019.05.018] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
Abstract
Nanogels are three-dimensional nanoscale networks formed by physically or chemically cross-linking polymers. Nanogels have been explored as drug delivery systems due to their advantageous properties, such as biocompatibility, high stability, tunable particle size, drug loading capacity, and possible modification of the surface for active targeting by attaching ligands that recognize cognate receptors on the target cells or tissues. Nanogels can be designed to be stimulus responsive, and react to internal or external stimuli such as pH, temperature, light and redox, thus resulting in the controlled release of loaded drugs. This "smart" targeting ability prevents drug accumulation in non-target tissues and minimizes the side effects of the drug. This review aims to provide an introduction to nanogels, their preparation methods, and to discuss the design of various stimulus-responsive nanogels that are able to provide controlled drug release in response to particular stimuli. STATEMENT OF SIGNIFICANCE: Smart and stimulus-responsive drug delivery is a rapidly growing area of biomaterial research. The explosive rise in nanotechnology and nanomedicine, has provided a host of nanoparticles and nanovehicles which may bewilder the uninitiated reader. This review will lay out the evidence that polymeric nanogels have an important role to play in the design of innovative drug delivery vehicles that respond to internal and external stimuli such as temperature, pH, redox, and light.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Sepideh Ahmadi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Division of Diseases, Advanced Technologies Research Group, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA; Department of Dermatology, Harvard Medical School, Boston, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, USA.
| |
Collapse
|
33
|
Zang X, Zhang X, Zhao X, Hu H, Qiao M, Deng Y, Chen D. Targeted Delivery of miRNA 155 to Tumor Associated Macrophages for Tumor Immunotherapy. Mol Pharm 2019; 16:1714-1722. [DOI: 10.1021/acs.molpharmaceut.9b00065] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xinlong Zang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Xiaoxu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yihui Deng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| |
Collapse
|
34
|
Challenges of using lipopolysaccharides for cancer immunotherapy and potential delivery-based solutions thereto. Ther Deliv 2019; 10:165-187. [DOI: 10.4155/tde-2018-0076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite being one of the earliest Toll-like receptor (TLR)-based cancer immunotherapeutics discovered and investigated, the full extent of lipopolysaccharide (LPS) potentials within this arena remains hitherto unexploited. In this review, we will debate the challenges that have complicated the improvement of LPS-based immunotherapeutic approaches in cancer therapy. Based on their nature, those will be discussed with a focus on side effect-related, tolerance-related and in vivo model-related challenges. We will then explore how drug delivery strategies can be integrated within this domain to address such challenges in order to improve the therapeutic outcome, and will present a summary of the studies that have been dedicated thereto. This paper may inspire further developments based on reconciling the advantages of drug delivery and LPS-based cancer immunotherapy.
Collapse
|
35
|
Hong E, Dobrovolskaia MA. Addressing barriers to effective cancer immunotherapy with nanotechnology: achievements, challenges, and roadmap to the next generation of nanoimmunotherapeutics. Adv Drug Deliv Rev 2019; 141:3-22. [PMID: 29339144 DOI: 10.1016/j.addr.2018.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/18/2017] [Accepted: 01/11/2018] [Indexed: 12/18/2022]
Abstract
Cancer is a complex systemic disorder that affects many organs and tissues and arises from the altered function of multiple cellular and molecular mechanisms. One of the systems malfunctioning in cancer is the immune system. Restoring and improving the ability of the immune system to effectively recognize and eradicate cancer is the main focus of immunotherapy, a topic which has garnered recent and significant interest. The initial excitement about immunotherapy, however, has been challenged by its limited efficacy in certain patient populations and the development of adverse effects such as therapeutic resistance and autoimmunity. At the same time, a number of advances in the field of nanotechnology have sought to address the challenges faced by modern immunotherapeutics and allow these therapeutic strategies to realize their full potential. This endeavour requires an understanding of not only the immunological barriers in cancer but also the mechanisms by which modern technologies and immunotherapeutics modulate the function of the immune system. Herein, we summarize the major barriers relevant to cancer immunotherapy and review current progress in addressing these obstacles using various approaches and clinically approved therapies. We then discuss the remaining challenges and how they can be addressed by nanotechnology. We lay out translational considerations relevant to the therapies described and propose a framework for the development of next-generation nanotechnology-enabled immunotherapies.
Collapse
|
36
|
Cheng CT, Castro G, Liu CH, Lau P. Advanced nanotechnology: An arsenal to enhance immunotherapy in fighting cancer. Clin Chim Acta 2019; 492:12-19. [PMID: 30711524 DOI: 10.1016/j.cca.2019.01.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/15/2022]
Abstract
Cancer remains a major disease process with considerable healthcare and socioeconomic impact worldwide. Unfortunately, standard treatments using chemotherapy often do not effectively control cancer progression or prevent relapse. Over the past decades, the development of targeted therapies has substantially improved outcomes. Recently, immunotherapy has emerged as a new alternative for more effective cancer treatment and may even bring hope of a cure. Cancer immunotherapy functions by reinforcing a patient's immune defense system to fight the disease. Clinically, promising immunotherapy approaches have, however, been limited by unpredictable response and strong adverse effects. A drug delivery system (DDS) that effectively targets tumor and reduces drug exposure to normal tissue would mitigate these limitations. In this regard, nanotechnology has been intensively studied as a DDS for targeting tumors with various oncologic drugs. Several have resulted in improved treatment and outcome. Research has shown that nanoparticle drug delivery technologies can also be applied to immunotherapy. In this review, the current state of nanotechnology will be discussed. Because most cancer immunotherapies approved in recent years are protein drugs, this article will focus on a micellar nanocomplex (MNC) technology, a DDS platform especially suited for targeted delivery of these therapeutics to solid tumors.
Collapse
Affiliation(s)
- Chun-Ting Cheng
- Suntec Medical, Inc., 28F., No. 27-2, Sec. 2, Zhongzheng E. Rd., Tamsui Dist., New Taipei City 251, Taiwan
| | - Gabriel Castro
- Suntec Medical, Inc., 28F., No. 27-2, Sec. 2, Zhongzheng E. Rd., Tamsui Dist., New Taipei City 251, Taiwan
| | - Chun-Hsin Liu
- Suntec Medical, Inc., 28F., No. 27-2, Sec. 2, Zhongzheng E. Rd., Tamsui Dist., New Taipei City 251, Taiwan
| | - Pauline Lau
- Suntec Medical, Inc., 28F., No. 27-2, Sec. 2, Zhongzheng E. Rd., Tamsui Dist., New Taipei City 251, Taiwan; Suntec Medical, Inc, 4008 Blair Ridge Drive, Chino Hills, CA 91709, USA.
| |
Collapse
|
37
|
Affiliation(s)
- Wahid Khan
- Department of PharmaceuticsNational Institute of Pharmaceutical Education & Research (NIPER) Hyderabad 500037 India
| | - Ester Abtew
- School of Pharmacy-Faculty of MedicineThe Hebrew University of Jerusalem Jerusalem 91120 Israel
| | - Sheela Modani
- Department of PharmaceuticsNational Institute of Pharmaceutical Education & Research (NIPER) Hyderabad 500037 India
| | - Abraham J. Domb
- School of Pharmacy-Faculty of MedicineThe Hebrew University of Jerusalem Jerusalem 91120 Israel
| |
Collapse
|
38
|
Li S, Feng X, Wang J, He L, Wang C, Ding J, Chen X. Polymer nanoparticles as adjuvants in cancer immunotherapy. NANO RESEARCH 2018; 11:5769-5786. [DOI: 10.1007/s12274-018-2124-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 10/14/2024]
|
39
|
Zhang T, Yang R, Yang S, Guan J, Zhang D, Ma Y, Liu H. Research progress of self-assembled nanogel and hybrid hydrogel systems based on pullulan derivatives. Drug Deliv 2018; 25:278-292. [PMID: 29334800 PMCID: PMC6058595 DOI: 10.1080/10717544.2018.1425776] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/29/2023] Open
Abstract
Polymer nano-sized hydrogels (nanogels) as drug delivery carriers have been investigated over the last few decades. Pullulan, a nontoxic and nonimmunogenic hydrophilic polysaccharide derived from fermentation of black yeast like Aureobasidium pullulans with great biocompatibility and biodegradability, is one of the most attractive carriers for drug delivery systems. In this review, we describe the preparation, characterization, and 'switch-on/off' mechanism of typical pullulan self-assembled nanogels (self-nanogels), and then introduce the development of hybrid hydrogels that are numerous resources applied for regenerative medicine. A major section is used for biomedical applications of different nanogel systems based on modified pullulan, which exert smart stimuli-responses at ambient conditions such as charge, pH, temperature, light, and redox. Pullulan self-nanogels have found increasingly extensive application in protein delivery, tissue engineering, vaccine development, cancer therapy, and biological imaging. Functional groups are incorporated into self-nanogels and contribute to expressing desirable results such as targeting and modified release. Various molecules, especially insoluble or unstable drugs and encapsulated proteins, present improved solubility and bioavailability as well as reduced side effects when incorporated into self-nanogels. Finally, the advantages and disadvantages of pullulan self-nanogels will be analyzed accordingly, and the development of pullulan nanogel systems will be reviewed.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Ruyi Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shengnan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jibin Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dong Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yan Ma
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongzhuo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
40
|
Nanogel tectonic porous 3D scaffold for direct reprogramming fibroblasts into osteoblasts and bone regeneration. Sci Rep 2018; 8:15824. [PMID: 30361649 PMCID: PMC6202359 DOI: 10.1038/s41598-018-33892-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/08/2018] [Indexed: 11/20/2022] Open
Abstract
Transplantation of engineered three-dimensional (3D) bone tissue may provide therapeutic benefits to patients with various bone diseases. To achieve this goal, appropriate 3D scaffolds and cells are required. In the present study, we devised a novel nanogel tectonic material for artificial 3D scaffold, namely the nanogel-cross-linked porous (NanoCliP)-freeze-dried (FD) gel, and estimated its potential as a 3D scaffold for bone tissue engineering. As the osteoblasts, directly converted osteoblasts (dOBs) were used, because a large number of highly functional osteoblasts could be induced from fibroblasts that can be collected from patients with a minimally invasive procedure. The NanoCliP-FD gel was highly porous, and fibronectin coating of the gel allowed efficient adhesion of the dOBs, so that the cells occupied the almost entire surface of the walls of the pores after culturing for 7 days. The dOBs massively produced calcified bone matrix, and the culture could be continued for at least 28 days. The NanoCliP-FD gel with dOBs remarkably promoted bone regeneration in vivo after having been grafted to bone defect lesions that were artificially created in mice. The present findings suggest that the combination of the NanoCliP-FD gel and dOBs may provide a feasible therapeutic modality for bone diseases.
Collapse
|
41
|
Recent advances in applying nanotechnologies for cancer immunotherapy. J Control Release 2018; 288:239-263. [PMID: 30223043 DOI: 10.1016/j.jconrel.2018.09.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy aimed at boosting cancer-specific immunoresponses to eradicate tumor cells has evolved as a new treatment modality. Nanoparticles incorporating antigens and immunomodulatory agents can activate immune cells and modulate the tumor microenvironment to enhance anti-tumor immunity. The nanotechnology approach has been demonstrated to be superior to standard formulations in in-vivo settings. In this article, we focus on recent advances made within the last 5 years in nanoparticle-based cancer immunotherapy, including peptide- and nucleic acid-based nanovaccines, nanomedicines containing an immunoadjuvant to activate anti-tumor immunity, nanoparticle delivery of immune checkpoint inhibitors and the combination of the above approaches. Encouraging results and new emerging nanotechnologies in drug delivery promise the continuous growth of this field and ultimately clinical translation of enhanced immunotherapy of cancer.
Collapse
|
42
|
Wang H, Mooney DJ. Biomaterial-assisted targeted modulation of immune cells in cancer treatment. NATURE MATERIALS 2018; 17:761-772. [PMID: 30104668 DOI: 10.1038/s41563-018-0147-9] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/10/2018] [Indexed: 05/06/2023]
Abstract
The past decade has witnessed the accelerating development of immunotherapies for cancer treatment. Immune checkpoint blockade therapies and chimeric antigen receptor (CAR)-T cell therapies have demonstrated clinical efficacy against a variety of cancers. However, issues including life-threatening off-target side effects, long processing times, limited patient responses and high cost still limit the clinical utility of cancer immunotherapies. Biomaterial carriers of these therapies, though, enable one to troubleshoot the delivery issues, amplify immunomodulatory effects, integrate the synergistic effect of different molecules and, more importantly, home and manipulate immune cells in vivo. In this Review, we will analyse thus-far developed immunomaterials for targeted modulation of dendritic cells, T cells, tumour-associated macrophages, myeloid-derived suppressor cells, B cells and natural killer cells, and summarize the promises and challenges of cell-targeted immunomodulation for cancer treatment.
Collapse
Affiliation(s)
- Hua Wang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA
| | - David J Mooney
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA.
| |
Collapse
|
43
|
Zhu S, Li S, Escuin-Ordinas H, Dimatteo R, Xi W, Ribas A, Segura T. Accelerated wound healing by injectable star poly(ethylene glycol)-b-poly(propylene sulfide) scaffolds loaded with poorly water-soluble drugs. J Control Release 2018; 282:156-165. [PMID: 29751029 DOI: 10.1016/j.jconrel.2018.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022]
Abstract
Injectable hydrogel matrices take the shape of a wound cavity and serve as scaffold for tissue repair and regeneration. Yet these materials are generally hydrophilic, limiting the incorporation of poorly water soluble, hydrophobic drugs. Here we show this shortcoming is circumvented through a star-shaped amphiphilic block copolymer comprising poly(ethylene glycol) and poly (propylene sulfide). This star-shaped amphiphilic polymer self-assembles in an aqueous medium into a physically stable hydrogel and effectively dissolves hydrophobic molecules delivering them at therapeutic doses. The self assembled hydrogel is a robust three-dimensional scaffold in vivo effectively promoting cellular infiltration, reducing inflammation, and wound clsoure. When combined with a hydrophobic BRAF inhibitor that promotes paradoxical mitogen-activated protein kinase (MAPK) activation in keratinocytes and wound closure, our self assembled scaffold supported dermal wound closure at a reduced drug dosage compared to administering the drug in dimethyl sulfoxide (DMSO) without a polymeric matrix. This family of star-shaped amphiphilic polymers delivers poorly water soluble active agents at a fraction of generally required dosage for efficacy and supports three-dimensional cell growth at tissue wounds, showing great promise for novel uses of hydrophobic drugs in tissue repair applications.
Collapse
Affiliation(s)
- Suwei Zhu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, 5531 Boelter Hall, Los Angeles, CA 90095, United States
| | - Shuoran Li
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, 5531 Boelter Hall, Los Angeles, CA 90095, United States
| | - Helena Escuin-Ordinas
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, 420 Westwood Plaza, 5531 Boelter Hall, Los Angeles, CA 90095, United States
| | - Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, 5531 Boelter Hall, Los Angeles, CA 90095, United States
| | - Weixian Xi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, 5531 Boelter Hall, Los Angeles, CA 90095, United States; Department of Orthopedic Surgery, University of California, Los Angeles, 420 Westwood Plaza, 5531 Boelter Hall, Los Angeles, CA 90095, United States
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, 420 Westwood Plaza, 5531 Boelter Hall, Los Angeles, CA 90095, United States; Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, 420 Westwood Plaza, 5531 Boelter Hall, Los Angeles, CA 90095, United States; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, 420 Westwood Plaza, 5531 Boelter Hall, Los Angeles, CA 90095, United States; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 420 Westwood Plaza, 5531 Boelter Hall, Los Angeles, CA 90095, United States
| | - Tatiana Segura
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, 5531 Boelter Hall, Los Angeles, CA 90095, United States; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 420 Westwood Plaza, 5531 Boelter Hall, Los Angeles, CA 90095, United States; Department of Biomedical Engineering, Duke Univeristy, 101 Science Drive, PO Box 90281, 27708, United States.
| |
Collapse
|
44
|
Sau S, Alsaab HO, Bhise K, Alzhrani R, Nabil G, Iyer AK. Multifunctional nanoparticles for cancer immunotherapy: A groundbreaking approach for reprogramming malfunctioned tumor environment. J Control Release 2018; 274:24-34. [PMID: 29391232 PMCID: PMC5847475 DOI: 10.1016/j.jconrel.2018.01.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 12/24/2022]
Abstract
Several cancer immunotherapy approaches have been recently introduced into the clinics and they have shown remarkable therapeutic potentials. The groundbreaking cancer immunotherapeutic agents function as a stimulant or modulator of the body immune system to fight against or kill cancers. Although targeted immunotherapies such as immune check point inhibitors (CTLA-4 or PD-1/PD-L1), DNA vaccination and CAR-T therapy are revolutionizing cancer treatment, the delivery efficacy can be further improved while their off-target toxicity can be mitigated through nanotechnology approaches. Recent research has demonstrated that nanotechnology has multifaceted role for (i) reeducating tumor associated macrophages (TAM) to function as tumor suppressor agent, (ii) serving as an efficient alternative for Chimeric Antigen Receptor (CAR)-T cell generation and transduction, and (iii) selective knockdown of Kras oncogene addiction by nano-Crisper-Cas9 delivery system. The function of host immune stimulatory signals and tumor immunotherapies can further be improved by repurposing of nanomedicine platform. This review summarizes the role of multifunctional polymeric, lipid, metallic and cell based nanoparticles for improving current immunotherapy.
Collapse
Affiliation(s)
- Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA.
| | - Hashem O Alsaab
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA; Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 26571, Saudi Arabia
| | - Ketki Bhise
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA
| | - Rami Alzhrani
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA; Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 26571, Saudi Arabia
| | - Ghazal Nabil
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
45
|
Umeki Y, Saito M, Takahashi Y, Takakura Y, Nishikawa M. Retardation of Antigen Release from DNA Hydrogel Using Cholesterol-Modified DNA for Increased Antigen-Specific Immune Response. Adv Healthc Mater 2017; 6. [PMID: 28726304 DOI: 10.1002/adhm.201700355] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/15/2017] [Indexed: 12/21/2022]
Abstract
Our previous study indicates that cationization of an antigen is effective for sustained release of both immunostimulatory DNA containing unmethylated cytosine-phosphate-guanine (CpG) dinucleotides, or CpG DNA, and antigen from a DNA hydrogel. Another approach to sustained antigen release would increase the applicability and versatility of the system. In this study, a hydrophobic interaction-based sustained release system of ovalbumin (OVA), a model antigen, from immunostimulatory CpG DNA hydrogel is developed by the use of cholesterol-modified DNA and urea-denatured OVA (udOVA). Cholesterol-modified DNA forms a hydrogel, Dgel(chol), and induces IL-6 mRNA expression in mouse skin after intradermal injection, as DNA without cholesterol does. Cholesterol-modified DNA associated with OVA and denaturation of OVA using urea increases the interaction. The release of udOVA from Dgel(chol) is significantly slower than that from DNA hydrogel with no cholesterol, Dgel. Moreover, intratumoral injections of udOVA/Dgel(chol) significantly inhibit the growth of EG7-OVA tumors in mice. These results indicate that sustained release of antigen from Dgel can be achieved by the combination of urea denaturation and cholesterol modification, and retardation of antigen release is effective to induce antigen-specific cancer immunity.
Collapse
Affiliation(s)
- Yuka Umeki
- Department of Biopharmaceutics and Drug Metabolism; Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Masaaki Saito
- Department of Biopharmaceutics and Drug Metabolism; Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism; Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism; Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism; Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
- Laboratory of Biopharmaceutics; Faculty of Pharmaceutical Sciences; Tokyo University of Science; Noda Chiba 278-8510 Japan
| |
Collapse
|
46
|
Salatin S, Yari Khosroushahi A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J Cell Mol Med 2017; 21:1668-1686. [PMID: 28244656 PMCID: PMC5571529 DOI: 10.1111/jcmm.13110] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/30/2016] [Indexed: 12/15/2022] Open
Abstract
Nanoparticulate drug/gene carriers have gained much attention in the past decades because of their versatile and tunable properties. However, efficacy of the therapeutic agents can be further enhanced using naturally occurring materials-based nanoparticles. Polysaccharides are an emerging class of biopolymers; therefore, they are generally considered to be safe, non-toxic, biocompatible and biodegradable. Considering that the target of nanoparticle-based therapeutic strategies is localization of biomedical agents in subcellular compartments, a detailed understanding of the cellular mechanism involved in the uptake of polysaccharide-based nanoparticles is essential for safe and efficient therapeutic applications. Uptake of the nanoparticles by the cellular systems occurs with a process known as endocytosis and is influenced by the physicochemical characteristics of nanoparticles such as size, shape and surface chemistry as well as the employed experimental conditions. In this study, we highlight the main endocytosis mechanisms responsible for the cellular uptake of polysaccharide nanoparticles containing drug/gene.
Collapse
Affiliation(s)
- Sara Salatin
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
47
|
Tada H, Kishida T, Fujiwara H, Kosuga T, Konishi H, Komatsu S, Shiozaki A, Ichikawa D, Okamoto K, Otsuji E, Mazda O. Reprogrammed chondrocytes engineered to produce IL-12 provide novel ex vivo immune-gene therapy for cancer. Immunotherapy 2017; 9:239-248. [PMID: 28231722 DOI: 10.2217/imt-2016-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM The somatic cell reprogramming technology was applied to a novel and promising ex vivo immune-gene therapy strategy for cancer. To establish a novel ex vivo cytokine gene therapy of cancer using the somatic cell reprogramming procedures. METHODS Mouse fibroblasts were converted into chondrocytes and subsequently transduced with IL-12 gene. The resultant IL-12 induced chondrogenic cells were irradiated with x-ray and inoculated into mice bearing CT26 colon cancer. RESULTS The irradiation at 20 Gy or higher totally eliminated the proliferative potential of the cells, while less significantly influencing the IL-12 production from the cells. An inoculation of the irradiated IL-12 induced chondrogenic cells significantly suppressed tumor by inducing tumor-specific cytotoxic T lymphocytes, enhancing natural killer tumoricidal activity and inhibiting tumor neoangiogenesis in the mice. CONCLUSION The somatic cell reprogramming procedures may provide a novel and effective means to treat malignancies.
Collapse
Affiliation(s)
- Hiroyuki Tada
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.,Division of Digestive Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tsunao Kishida
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
48
|
Aslan C, Çelebi N, Değim İT, Atak A, Özer Ç. Development of Interleukin-2 Loaded Chitosan-Based Nanogels Using Artificial Neural Networks and Investigating the Effects on Wound Healing in Rats. AAPS PharmSciTech 2017; 18:1019-1030. [PMID: 27853994 DOI: 10.1208/s12249-016-0662-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/30/2016] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to develop and characterize rh- IL-2 loaded chitosan-based nanogels for the healing of wound incision in rats. Nanogels were prepared using chitosan and bovine serum albumin (BSA) by ionic gelation method and high temperature application, respectively. Particle size, zeta potential, and polydispersity index were measured for characterization of nanogels. The morphology of nanogels was examined by using SEM and AFM. The IL-2 loading capacity of nanogels was determined using ELISA method. In vitro release of IL-2 from nanogels was performed using Franz diffusion cells. Artificial neural network (ANN) models were developed using selected input parameters (stirring rate, chitosan%, BSA%, TPP%) where particle size was an output parameter for IL-2 free nanogels. Wound healing effect of IL-2 loaded chitosan-TPP nanogel was evaluated by determining the malondialdehyde (MDA) and glutathione (GSH) levels of wound tissues in rats. The particle size of IL-2 loaded chitosan-TPP nanogels was found to be larger than that of IL-2 loaded BSA-based chitosan nanogels. Drug loading capacity of nanogels was found 100% ± 0.010 for both nanogels. IL-2 was released slowly after the initial burst effect. According to SEM and AFM imaging, BSA-chitosan nanogel particles were of nanometer size and presented a swelling tendency, and chitosan-TPP nanogel particles were found to be spherical and homogenously dispersed. IL-2 loaded chitosan-TPP nanogel was found suitable for improving wound healing because it decreased the MDA levels and increased the GSH levels wound tissues comparing to control group.
Collapse
|
49
|
Rohner NA, Thomas SN. Flexible Macromolecule versus Rigid Particle Retention in the Injected Skin and Accumulation in Draining Lymph Nodes Are Differentially Influenced by Hydrodynamic Size. ACS Biomater Sci Eng 2017; 3:153-159. [PMID: 29888321 PMCID: PMC5990040 DOI: 10.1021/acsbiomaterials.6b00438] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Therapeutic immunomodulation in the skin, its draining lymph nodes, or both tissues simultaneously using an intradermal administration scheme is desirable for a variety of therapeutic scenarios. To inform how drug carriers comprising engineered biomaterials can be leveraged to improve treatment efficacy by enhancing the selective accumulation or retention of payload within these target tissues, we analyzed the influence of particle versus macromolecule hydrodynamic size on profiles of retention in the site of dermal injection as well as the corresponding extent of accumulation in draining lymph nodes and systemic off-target tissues. Using a panel of fluorescently labeled tracers comprising inert polymers that are resistant to hydrolysis and proteolytic degradation that span a size range of widely used drug carrier systems, we find that macromolecule but not rigid particle retention within the skin is size-dependent, whereas the relative dermal enrichment compared to systemic tissues increases with size for both tracer types. Additionally, macromolecules 10 nm in hydrodynamic size and greater accumulate in draining lymph nodes more extensively and selectively than particles, suggesting that intra- versus extracellular availability of delivered payload within draining lymph nodes may be influenced by both the size and form of engineered drug carriers. Our results inform how biomaterial-based drug carriers can be designed to enhance the selective exposure of formulated drug in target tissues to improve the therapeutic efficacy as well as minimize off-target effects of locoregional immunotherapy.
Collapse
Affiliation(s)
- Nathan Andrew Rohner
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Susan Napier Thomas
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road Northeast, Atlanta, Georgia 30322, United States
| |
Collapse
|
50
|
Garcia-Mazas C, Csaba N, Garcia-Fuentes M. Biomaterials to suppress cancer stem cells and disrupt their tumoral niche. Int J Pharm 2016; 523:490-505. [PMID: 27940172 DOI: 10.1016/j.ijpharm.2016.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 01/04/2023]
Abstract
Lack of improvement in the treatment options of several types of cancer can largely be attributed to the presence of a subpopulation of cancer cells with stem cell signatures and to the tumoral niche that supports and protects these cells. This review analyses the main strategies that specifically modulate or suppress cancer stem cells (CSCs) and the tumoral niche (TN), focusing on the role of biomaterials (i.e. implants, nanomedicines, etc.) in these therapies. In the case of CSCs, we discuss differentiation therapies and the disruption of critical cellular signaling networks. For the TN, we analyze diverse strategies to modulate tumor hypervascularization and hypoxia, tumor extracellular matrix, and the inflammatory and tumor immunosuppressive environment. Due to their capacity to control drug disposition and integrate diverse functionalities, biomaterial-based therapies can provide important benefits in these strategies. We illustrate this by providing case studies where biomaterial-based therapies either show CSC suppression and TN disruption or improved delivery of major modulators of these features. Finally, we discuss the future of these technologies in the framework of these emerging therapeutic concepts.
Collapse
Affiliation(s)
- Carla Garcia-Mazas
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) and Dept. of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Campus Vida, Santiago de Compostela, Spain
| | - Noemi Csaba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) and Dept. of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Campus Vida, Santiago de Compostela, Spain
| | - Marcos Garcia-Fuentes
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) and Dept. of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Campus Vida, Santiago de Compostela, Spain.
| |
Collapse
|