1
|
Gomaa F, Rogers DR, Utter DR, Powers C, Huang IT, Beaudoin DJ, Zhang Y, Cavanaugh C, Edgcomb VP, Bernhard JM. Array of metabolic pathways in a kleptoplastidic foraminiferan protist supports chemoautotrophy in dark, euxinic seafloor sediments. THE ISME JOURNAL 2025; 19:wrae248. [PMID: 39673188 PMCID: PMC11736642 DOI: 10.1093/ismejo/wrae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/09/2024] [Accepted: 12/13/2024] [Indexed: 12/16/2024]
Abstract
Investigations of the metabolic capabilities of anaerobic protists advances our understanding of the evolution of eukaryotic life on Earth and for uncovering analogous extraterrestrial complex microbial life. Certain species of foraminiferan protists live in environments analogous to early Earth conditions when eukaryotes evolved, including sulfidic, anoxic and hypoxic sediment porewaters. Foraminifera are known to form symbioses as well as to harbor organelles from other eukaryotes (chloroplasts), possibly bolstering the host's independence from oxygen. The full extent of foraminiferal physiological capabilities is not fully understood. To date, evidence for foraminiferal anaerobiosis was gleaned from specimens first subjected to stresses associated with removal from in situ conditions. Here, we report comprehensive gene expression analysis of benthic foraminiferal populations preserved in situ on the euxinic (anoxic and sulfidic) bathyal seafloor, thus avoiding environmental alterations associated with sample recovery, including pressure reduction, sunlight exposure, warming, and oxygenation. Metatranscriptomics, metagenome-assembled genomes, and measurements of substrate uptake were used to study the kleptoplastidic foraminifer Nonionella stella inhabiting sulfur-oxidizing bacterial mats of the Santa Barbara Basin, off California. We show N. stella energy generation under dark euxinia is unusual because it orchestrates complex metabolic pathways for ATP production and carbon fixation through the Calvin cycle. These pathways include extended glycolysis, anaerobic fermentation, sulfide oxidation, and the presence of a membrane-bound inorganic pyrophosphatase, an enzyme that hydrolyzes inorganic pyrophosphate to actively pump protons across the mitochondrial membrane.
Collapse
Affiliation(s)
- Fatma Gomaa
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States
| | - Daniel R Rogers
- Chemistry Department, Stonehill College, Easton, MA 02357 United States
| | - Daniel R Utter
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, United States
| | - Christopher Powers
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - I-Ting Huang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States
| | - David J Beaudoin
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Colleen Cavanaugh
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Joan M Bernhard
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| |
Collapse
|
2
|
López-Velázquez G, Fernández-Lainez C, de la Mora-de la Mora JI, Caudillo de la Portilla D, Reynoso-Robles R, González-Maciel A, Ridaura C, García-Torres I, Gutiérrez-Castrellón P, Olivos-García A, Flores-López LA, Enríquez-Flores S. On the molecular and cellular effects of omeprazole to further support its effectiveness as an antigiardial drug. Sci Rep 2019; 9:8922. [PMID: 31222100 PMCID: PMC6586891 DOI: 10.1038/s41598-019-45529-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/05/2019] [Indexed: 01/09/2023] Open
Abstract
Research on Giardia lamblia has accumulated large information about its molecular cell biology and infection biology. However, giardiasis is still one of the commonest parasitic diarrheal diseases affecting humans. Additionally, an alarming increase in cases refractory to conventional treatment has been reported in low prevalence settings. Consequently, efforts directed toward supporting the efficient use of alternative drugs, and the study of their molecular targets appears promising. Repurposing of proton pump inhibitors is effective in vitro against the parasite and the toxic activity is associated with the inhibition of the G. lamblia triosephosphate isomerase (GlTIM) via the formation of covalent adducts with cysteine residue at position 222. Herein, we evaluate the effectiveness of omeprazole in vitro and in situ on GlTIM mutants lacking the most superficial cysteines. We studied the influence on the glycolysis of Giardia trophozoites treated with omeprazole and characterized, for the first time, the morphological effect caused by this drug on the parasite. Our results support the effectiveness of omeprazole against GlTIM despite of the possibility to mutate the druggable amino acid targets as an adaptive response. Also, we further characterized the effect of omeprazole on trophozoites and discuss the possible mechanism involved in its antigiardial effect.
Collapse
Affiliation(s)
- Gabriel López-Velázquez
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico.
| | - Cynthia Fernández-Lainez
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico
| | - José Ignacio de la Mora-de la Mora
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico
| | - Daniela Caudillo de la Portilla
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico
| | - Rafael Reynoso-Robles
- Laboratorio de Morfología Celular y Tisular, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico
| | - Angélica González-Maciel
- Laboratorio de Morfología Celular y Tisular, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico
| | - Cecilia Ridaura
- Departamento de Patología, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico
| | - Itzhel García-Torres
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico
| | | | - Alfonso Olivos-García
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México y Hospital General, Ciudad de México, 04510, Mexico
| | - Luis Antonio Flores-López
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico.,CONACYT-Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México, 04530, Mexico
| | - Sergio Enríquez-Flores
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico.
| |
Collapse
|
3
|
Kashif M, Hira SK, Upadhyaya A, Gupta U, Singh R, Paladhi A, Khan FI, Rub A, Manna PP. In silico studies and evaluation of antiparasitic role of a novel pyruvate phosphate dikinase inhibitor in Leishmania donovani infected macrophages. Int J Antimicrob Agents 2019; 53:508-514. [DOI: 10.1016/j.ijantimicag.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/10/2018] [Accepted: 12/22/2018] [Indexed: 01/08/2023]
|
4
|
Control and regulation of the pyrophosphate-dependent glucose metabolism in Entamoeba histolytica. Mol Biochem Parasitol 2019; 229:75-87. [PMID: 30772421 DOI: 10.1016/j.molbiopara.2019.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 01/10/2023]
Abstract
Entamoeba histolytica has neither Krebs cycle nor oxidative phosphorylation activities; therefore, glycolysis is the main pathway for ATP supply and provision of carbon skeleton precursors for the synthesis of macromolecules. Glucose is metabolized through fermentative glycolysis, producing ethanol as its main end-product as well as some acetate. Amoebal glycolysis markedly differs from the typical Embden-Meyerhof-Parnas pathway present in human cells: (i) by the use of inorganic pyrophosphate, instead of ATP, as the high-energy phospho group donor; (ii) with one exception, the pathway enzymes can catalyze reversible reactions under physiological conditions; (iii) there is no allosteric regulation and sigmoidal kinetic behavior of key enzymes; and (iv) the presence of some glycolytic and fermentation enzymes similar to those of anaerobic bacteria. These peculiarities bring about alternative mechanisms of control and regulation of the PPi-dependent fermentative glycolysis in the parasite in comparison to the ATP-dependent and allosterically regulated glycolysis in many other eukaryotic cells. In this review, the current knowledge of the carbohydrate metabolism enzymes in E. histolytica is analyzed. Thermodynamics and stoichiometric analyses indicate 2 to 3.5 ATP yield per glucose metabolized, instead of the often presumed 5 ATP/glucose ratio. PPi derived from anabolism seems insufficient for PPi-glycolysis; hence, alternative ways of PPi supply are also discussed. Furthermore, the underlying mechanisms of control and regulation of the E. histolytica carbohydrate metabolism, analyzed by applying integral and systemic approaches such as Metabolic Control Analysis and kinetic modeling, contribute to unveiling alternative and promising drug targets.
Collapse
|
5
|
RNAi-Mediated Specific Gene Silencing as a Tool for the Discovery of New Drug Targets in Giardia lamblia; Evaluation Using the NADH Oxidase Gene. Genes (Basel) 2017; 8:genes8110303. [PMID: 29099754 PMCID: PMC5704216 DOI: 10.3390/genes8110303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/12/2017] [Accepted: 10/31/2017] [Indexed: 11/17/2022] Open
Abstract
The microaerophilic protozoan Giardia lamblia is the agent causing giardiasis, an intestinal parasitosis of worldwide distribution. Different pharmacotherapies have been employed against giardiasis; however, side effects in the host and reports of drug resistant strains generate the need to develop new strategies that identify novel biological targets for drug design. To support this requirement, we have designed and evaluated a vector containing a cassette for the synthesis of double-stranded RNA (dsRNA), which can silence expression of a target gene through the RNA interference (RNAi) pathway. Small silencing RNAs were detected and quantified in transformants expressing dsRNA by a stem-loop RT-qPCR approach. The results showed that, in transformants expressing dsRNA of 100-200 base pairs, the level of NADHox mRNA was reduced by around 30%, concomitant with a decrease in enzyme activity and a reduction in the number of trophozoites with respect to the wild type strain, indicating that NADHox is indeed an important enzyme for Giardia viability. These results suggest that it is possible to induce the G. lamblia RNAi machinery for attenuating the expression of genes encoding proteins of interest. We propose that our silencing strategy can be used to identify new potential drug targets, knocking down genes encoding different structural proteins and enzymes from a wide variety of metabolic pathways.
Collapse
|
6
|
Serrano-Bermúdez LM, González Barrios AF, Maranas CD, Montoya D. Clostridium butyricum maximizes growth while minimizing enzyme usage and ATP production: metabolic flux distribution of a strain cultured in glycerol. BMC SYSTEMS BIOLOGY 2017; 11:58. [PMID: 28571567 PMCID: PMC5455137 DOI: 10.1186/s12918-017-0434-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 05/16/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND The increase in glycerol obtained as a byproduct of biodiesel has encouraged the production of new industrial products, such as 1,3-propanediol (PDO), using biotechnological transformation via bacteria like Clostridium butyricum. However, despite the increasing role of Clostridium butyricum as a bio-production platform, its metabolism remains poorly modeled. RESULTS We reconstructed iCbu641, the first genome-scale metabolic (GSM) model of a PDO producer Clostridium strain, which included 641 genes, 365 enzymes, 891 reactions, and 701 metabolites. We found an enzyme expression prediction of nearly 84% after comparison of proteomic data with flux distribution estimation using flux balance analysis (FBA). The remaining 16% corresponded to enzymes directionally coupled to growth, according to flux coupling findings (FCF). The fermentation data validation also revealed different phenotype states that depended on culture media conditions; for example, Clostridium maximizes its biomass yield per enzyme usage under glycerol limitation. By contrast, under glycerol excess conditions, Clostridium grows sub-optimally, maximizing biomass yield while minimizing both enzyme usage and ATP production. We further evaluated perturbations in the GSM model through enzyme deletions and variations in biomass composition. The GSM predictions showed no significant increase in PDO production, suggesting a robustness to perturbations in the GSM model. We used the experimental results to predict that co-fermentation was a better alternative than iCbu641 perturbations for improving PDO yields. CONCLUSIONS The agreement between the predicted and experimental values allows the use of the GSM model constructed for the PDO-producing Clostridium strain to propose new scenarios for PDO production, such as dynamic simulations, thereby reducing the time and costs associated with experimentation.
Collapse
Affiliation(s)
- Luis Miguel Serrano-Bermúdez
- Bioprocesses and Bioprospecting Group, Universidad Nacional de Colombia. Ciudad Universitaria, Carrera 30 No. 45-03, Bogotá, D.C Colombia
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Carrera 1 N.° 18A – 12, Bogotá, Colombia
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Dolly Montoya
- Bioprocesses and Bioprospecting Group, Universidad Nacional de Colombia. Ciudad Universitaria, Carrera 30 No. 45-03, Bogotá, D.C Colombia
| |
Collapse
|
7
|
Taillefer M, Sparling R. Glycolysis as the Central Core of Fermentation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 156:55-77. [PMID: 26907549 DOI: 10.1007/10_2015_5003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The increasing concerns of greenhouse gas emissions have increased the interest in dark fermentation as a means of productions for industrial chemicals, especially from renewable cellulosic biomass. However, the metabolism, including glycolysis, of many candidate organisms for cellulosic biomass conversion through consolidated bioprocessing is still poorly understood and the genomes have only recently been sequenced. Because a variety of industrial chemicals are produced directly from sugar metabolism, the careful understanding of glycolysis from a genomic and biochemical point of view is essential in the development of strategies for increasing product yields and therefore increasing industrial potential. The current review discusses the different pathways available for glycolysis along with unexpected variations from traditional models, especially in the utilization of alternate energy intermediates (GTP, pyrophosphate). This reinforces the need for a careful description of interactions between energy metabolites and glycolysis enzymes for understanding carbon and electron flux regulation.
Collapse
Affiliation(s)
- M Taillefer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | - R Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2.
| |
Collapse
|
8
|
Court SJ, Waclaw B, Allen RJ. Lower glycolysis carries a higher flux than any biochemically possible alternative. Nat Commun 2015; 6:8427. [PMID: 26416228 PMCID: PMC4598745 DOI: 10.1038/ncomms9427] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/21/2015] [Indexed: 11/09/2022] Open
Abstract
The universality of many pathways of core metabolism suggests a strong role for evolutionary selection, but it remains unclear whether existing pathways have been selected from a large or small set of biochemical possibilities. To address this question, we construct in silico all possible biochemically feasible alternatives to the trunk pathway of glycolysis and gluconeogenesis, one of the most highly conserved pathways in metabolism. We show that, even though a large number of alternative pathways exist, the alternatives carry lower flux than the real pathway under typical physiological conditions. We also find that if physiological conditions were different, different pathways could outperform those found in nature. Together, our results demonstrate how thermodynamic and biophysical constraints restrict the biochemical alternatives that are open to evolution, and suggest that the existing trunk pathway of glycolysis and gluconeogenesis may represent a maximal flux solution. The biochemical pathways of central carbon metabolism are highly conserved across all domains of life. Here, Court et al. use a computational approach to test all possible pathways of glycolysis and gluconeogenesis and find that the existing trunk pathways may represent a maximal flux solution selected for during evolution.
Collapse
Affiliation(s)
- Steven J Court
- SUPA, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Bartlomiej Waclaw
- SUPA, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Rosalind J Allen
- SUPA, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| |
Collapse
|
9
|
Deramchia K, Morand P, Biran M, Millerioux Y, Mazet M, Wargnies M, Franconi JM, Bringaud F. Contribution of pyruvate phosphate dikinase in the maintenance of the glycosomal ATP/ADP balance in the Trypanosoma brucei procyclic form. J Biol Chem 2014; 289:17365-78. [PMID: 24794874 DOI: 10.1074/jbc.m114.567230] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei belongs to a group of protists that sequester the first six or seven glycolytic steps inside specialized peroxisomes, named glycosomes. Because of the glycosomal membrane impermeability to nucleotides, ATP molecules consumed by the first glycolytic steps need to be regenerated in the glycosomes by kinases, such as phosphoenolpyruvate carboxykinase (PEPCK). The glycosomal pyruvate phosphate dikinase (PPDK), which reversibly converts phosphoenolpyruvate into pyruvate, could also be involved in this process. To address this question, we analyzed the metabolism of the main carbon sources used by the procyclic trypanosomes (glucose, proline, and threonine) after deletion of the PPDK gene in the wild-type (Δppdk) and PEPCK null (Δppdk/Δpepck) backgrounds. The rate of acetate production from glucose is 30% reduced in the Δppdk mutant, whereas threonine-derived acetate production is not affected, showing that PPDK function in the glycolytic direction with production of ATP in the glycosomes. The Δppdk/Δpepck mutant incubated in glucose as the only carbon source showed a 3.8-fold reduction of the glycolytic rate compared with the Δpepck mutant, as a consequence of the imbalanced glycosomal ATP/ADP ratio. The role of PPDK in maintenance of the ATP/ADP balance was confirmed by expressing the glycosomal phosphoglycerate kinase (PGKC) in the Δppdk/Δpepck cell line, which restored the glycolytic flux. We also observed that expression of PGKC is lethal for procyclic trypanosomes, as a consequence of ATP depletion, due to glycosomal relocation of cytosolic ATP production. This illustrates the key roles played by glycosomal and cytosolic kinases, including PPDK, to maintain the cellular ATP/ADP homeostasis.
Collapse
Affiliation(s)
- Kamel Deramchia
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Pauline Morand
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Marc Biran
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Yoann Millerioux
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Muriel Mazet
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Marion Wargnies
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Jean-Michel Franconi
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Frédéric Bringaud
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| |
Collapse
|
10
|
Mustroph A, Hess N, Sasidharan R. Hypoxic Energy Metabolism and PPi as an Alternative Energy Currency. LOW-OXYGEN STRESS IN PLANTS 2014. [DOI: 10.1007/978-3-7091-1254-0_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Wu C, Dunaway-Mariano D, Mariano PS. Design, synthesis, and evaluation of inhibitors of pyruvate phosphate dikinase. J Org Chem 2012; 78:1910-22. [PMID: 23094589 DOI: 10.1021/jo3018473] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pyruvate phosphate dikinase (PPDK) catalyzes the phosphorylation reaction of pyruvate that forms phosphoenolpyruvate (PEP) via two partial reactions: PPDK + ATP + P(i) → PPDK-P + AMP + PP(i) and PPDK-P + pyruvate → PEP + PPDK. Based on its role in the metabolism of microbial human pathogens, PPDK is a potential drug target. A screen of substances that bind to the PPDK ATP-grasp domain active site revealed that flavone analogues are potent inhibitors of the Clostridium symbiosum PPDK. In silico modeling studies suggested that placement of a 3–6 carbon-tethered ammonium substituent at the 3′- or 4′-positions of 5,7-dihydroxyflavones would result in favorable electrostatic interactions with the PPDK Mg-ATP binding site. As a result, polymethylene-tethered amine derivatives of 5,7-dihydroxyflavones were prepared. Steady-state kinetic analysis of these substances demonstrates that the 4′-aminohexyl-5,7-dyhydroxyflavone 10 is a potent competitive PPDK inhibitor (K(i) = 1.6 ± 0.1 μM). Single turnover experiments were conducted using 4′-aminopropyl-5,7-dihydroxyflavone 7 to show that this flavone specifically targets the ATP binding site and inhibits catalysis of only the PPDK + ATP + P(i) → PPDK-P + AMP PP(i) partial reaction. Finally, the 4′-aminopbutyl-5,7-dihydroxyflavone 8 displays selectivity for inhibition of PPDK versus other enzymes that utilize ATP and NAD.
Collapse
Affiliation(s)
- Chun Wu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | | | | |
Collapse
|
12
|
Burton E, Martin VJJ. Proteomic analysis of Clostridium thermocellum ATCC 27405 reveals the upregulation of an alternative transhydrogenase-malate pathway and nitrogen assimilation in cells grown on cellulose. Can J Microbiol 2012; 58:1378-88. [PMID: 23210995 DOI: 10.1139/cjm-2012-0412] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Clostridium thermocellum is a Gram-positive thermophilic anaerobic bacterium with the ability to directly convert cellulosic biomass into useful products such as ethanol and hydrogen. In this study, a quantitative comparative proteomic analysis of the organism was performed to identify proteins and biochemical pathways that are differentially utilized by the organism after growth on cellobiose or cellulose. The cytoplasmic and membrane proteomes of C. thermocellum grown on cellulose or cellobiose were quantitatively compared using a metabolic (15)N isotope labelling method in conjunction with nanoLC-ESI-MS/MS (liquid chromatography - electrospray ionization - tandem mass spectrometry). In total, 1255 proteins were identified in the study, and 129 of those were able to have their relative abundance per cell compared in at least one cellular compartment in response to the substrate provided. This study reveals that cells grown on cellulose increase their abundance of phosphoenolpyruvate carboxykinase while decreasing the abundance of pyruvate dikinase and oxaloacetate decarboxylase, suggesting that the organism diverts carbon flow into a transhydrogenase-malate pathway that can increase the production of the biosynthetic intermediates NADPH and GTP. Glutamate dehydrogenase was also found to have increased abundance in cellulose-grown cells, suggesting that the assimilation of ammonia is upregulated in cells grown on the cellulosic substrates. The results illustrate a mechanism by which C. thermocellum can divert carbon into alternative pathways for the purpose of producing biosynthetic intermediates necessary to respond to growth on cellulose, including transhydrogenation of NADH to NADPH and increased nitrogen assimilation.
Collapse
Affiliation(s)
- Euan Burton
- Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
| | | |
Collapse
|
13
|
Auger C, Appanna V, Castonguay Z, Han S, Appanna VD. A facile electrophoretic technique to monitor phosphoenolpyruvate-dependent kinases. Electrophoresis 2012; 33:1095-101. [PMID: 22539312 DOI: 10.1002/elps.201100517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphoenolpyruvate (PEP)-dependent kinases are central to numerous metabolic processes and mediate the production of adenosine triphosphate (ATP) by substrate-level phosphorylation (SLP). While pyruvate kinase (PK, EC: 2.7.1.40), the final enzyme of the glycolytic pathway is critical in the anaerobic synthesis of ATP from ADP, pyruvate phosphate dikinase (PPDK, EC: 2.7.9.1), and phosphoenolpyruvate synthase (PEPS, EC: 2.7.9.2) help generate ATP from AMP coupled to PEP as a substrate. Here we demonstrate an inexpensive and effective electrophoretic technology to determine the activities of these enzymes by blue-native polyacrylamide gel electrophoresis (BN-PAGE). The generation of pyruvate is linked to exogenous lactate dehydrogenase (LDH), and the oxidation of reduced nicotinamide adenine dinucleotide (NADH) coupled to 2,6-dichloroindophenol (DCIP) and iodonitrotetrazolium chloride (INT) results in a formazan precipitate which is easily quantifiable. The selectivity of the enzymes is ensured by including either AMP or ADP and pyrophosphate (PP(i) ) or inorganic phosphate (P(i) ). Activity bands were readily obtained after incubation in the respective reaction mixtures for 20-30 min. Cell-free extract concentrations as low as 20 μg protein equivalent yielded activity bands and substrate levels were manipulated to optimize sensitivity of this analytical technique. High-pressure liquid chromatography (HPLC), two-dimensional (2-D) SDS-PAGE (where SDS is sodium dodecyl sulfate), and immunoblot studies of the excised activity band help further characterize these PEP-dependent kinases. Furthermore, these enzymes were readily identified on the same gel by incubating it sequentially in the respective reaction mixtures. This technique provides a facile method to elucidate these kinases in biological systems.
Collapse
Affiliation(s)
- Christopher Auger
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | | | | | | | | |
Collapse
|
14
|
Ma’ayeh SY, Brook-Carter PT. Representational difference analysis identifies specific genes in the interaction of Giardia duodenalis with the murine intestinal epithelial cell line, IEC-6. Int J Parasitol 2012; 42:501-9. [DOI: 10.1016/j.ijpara.2012.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
|
15
|
Palayam M, Lakshminarayanan K, Radhakrishnan M, Krishnaswamy G. Preliminary analysis to target pyruvate phosphate dikinase from wolbachia endosymbiont of Brugia malayi for designing anti-filarial agents. Interdiscip Sci 2012; 4:74-82. [PMID: 22392278 DOI: 10.1007/s12539-011-0109-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/27/2011] [Accepted: 05/20/2011] [Indexed: 11/24/2022]
Abstract
Filariasis causing nematode Brugia malayi is shown to harbor wolbachia bacteria as symbionts. The sequenced genome of the wolbachia endosymbiont from B.malayi (wBm) offers an unprecedented opportunity to identify new wolbachia drug targets. Genome analysis of the glycolytic/gluconeogenic pathway has revealed that wBm lacks pyruvate kinase (PK) and may instead utilize the enzyme pyruvate phosphate dikinase (PPDK; ATP: pyruvate, orthophosphate phosphotransferase, EC 2.7.9.1). PPDK catalyses the reversible conversion of AMP, PPi and phosphoenolpyruvate into ATP, Pi and pyruvate. Most organisms including mammals exclusively possess PK. Therefore the absence of PPDK in mammals makes this enzyme as attractive wolbachia drug target. In the present study we have modeled the three dimensional structure of wBm PPDK. The template with 50% identity and 67% similarity in amino acid sequence was employed for homology-modeling approach. The putative active site consists of His476, Arg360, Glu358, Asp344, Arg112, Lys43 and Glu346 was selected as site of interest for designing suitable inhibitor molecules. Docking studies were carried out using induced fit algorithms with OPLS force field of Schrödinger's Glide. The lead molecules which inhibit the PPDK activity are taken from the small molecule library (Pubchem database) and the interaction analysis showed that these compounds may inhibit the function of PPDK in wBm.
Collapse
Affiliation(s)
- Malathy Palayam
- Centre of Advanced study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600025, India
| | | | | | | |
Collapse
|
16
|
Alvarado ME, Wasserman M. Calmodulin expression during Giardia intestinalis differentiation and identification of calmodulin-binding proteins during the trophozoite stage. Parasitol Res 2011; 110:1371-80. [DOI: 10.1007/s00436-011-2637-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 09/02/2011] [Indexed: 11/28/2022]
|
17
|
Chastain CJ, Failing CJ, Manandhar L, Zimmerman MA, Lakner MM, Nguyen THT. Functional evolution of C(4) pyruvate, orthophosphate dikinase. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3083-91. [PMID: 21414960 DOI: 10.1093/jxb/err058] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Pyruvate,orthophosphate dikinase (PPDK) plays a controlling role in the PEP-regeneration phase of the C(4) photosynthetic pathway. Earlier studies have fully documented its biochemical properties and its post-translational regulation by the PPDK regulatory protein (PDRP). However, the question of its evolution into the C(4) pathway has, until recently, received little attention. One assumption concerning this evolution is that changes in catalytic and regulatory properties of PPDK were necessary for the enzyme to fulfil its role in the C(4) pathway. In this study, the functional evolution of PPDK from its ancient origins in the Archaea to its ascension as a photosynthetic enzyme in modern C(4) angiosperms is reviewed. This analysis is accompanied by a comparative investigation into key catalytic and regulatory properties of a C(3) PPDK isoform from Arabidopsis and the C(4) PPDK isoform from Zea mays. From these analyses, it is proposed that PPDK first became functionally seated in C(3) plants as an ancillary glycolytic enzyme and that its transition into a C(4) pathway enzyme involved only minor changes in enzyme properties per se.
Collapse
Affiliation(s)
- Chris J Chastain
- Department of Biosciences, Minnesota State University-Moorhead, Moorhead, MN 56563, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Bielen AAM, Willquist K, Engman J, van der Oost J, van Niel EWJ, Kengen SWM. Pyrophosphate as a central energy carrier in the hydrogen-producing extremely thermophilic Caldicellulosiruptor saccharolyticus. FEMS Microbiol Lett 2010; 307:48-54. [PMID: 20557574 DOI: 10.1111/j.1574-6968.2010.01957.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The role of inorganic pyrophosphate (PPi) as an energy carrier in the central metabolism of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus was investigated. In agreement with its annotated genome sequence, cell extracts were shown to exhibit PPi-dependent phosphofructokinase and pyruvate phosphate dikinase activity. In addition, membrane-bound pyrophosphatase activity was demonstrated, while no significant cytosolic pyrophosphatase activity was detected. During the exponential growth phase, high PPi levels (approximately 4 +/- 2 mM) and relatively low ATP levels (0.43 +/- 0.07 mM) were found, and the PPi/ATP ratio decreased 13-fold when the cells entered the stationary phase. Pyruvate kinase activity appeared to be allosterically affected by PPi. Altogether, these findings suggest an important role for PPi in the central energy metabolism of C. saccharolyticus.
Collapse
|
19
|
Raverdy S, Foster JM, Roopenian E, Carlow CK. The Wolbachia endosymbiont of Brugia malayi has an active pyruvate phosphate dikinase. Mol Biochem Parasitol 2008; 160:163-6. [DOI: 10.1016/j.molbiopara.2008.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 04/29/2008] [Accepted: 04/30/2008] [Indexed: 10/22/2022]
|