1
|
Puzakov MV, Puzakova LV, Ulupova YN. Differential Activity of Genes with IS630/TC1/MARINER Transposon Fragments in the Genome of the Ctenophore Mnemiopsis leidyi. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2022. [DOI: 10.3103/s089141682204005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
2
|
Abstract
Adaptive immunity in jawed vertebrates relies on the assembly of antigen receptor genes by the recombination activating gene 1 (RAG1)-RAG2 (collectively RAG) recombinase in a reaction known as V(D)J recombination. Extensive biochemical and structural evidence indicates that RAG and V(D)J recombination evolved from the components of a RAG-like (RAGL) transposable element through a process known as transposon molecular domestication. This Review describes recent advances in our understanding of the functional and structural transitions that occurred during RAG evolution. We use the structures of RAG and RAGL enzymes to trace the evolutionary adaptations that yielded a RAG recombinase with exquisitely regulated cleavage activity and a multilayered array of mechanisms to suppress transposition. We describe how changes in modes of DNA binding, alterations in the dynamics of protein-DNA complexes, single amino acid mutations and a modular design likely enabled RAG family enzymes to survive and spread in the genomes of eukaryotes. These advances highlight the insight that can be gained from viewing evolution of vertebrate immunity through the lens of comparative genome analyses coupled with structural biology and biochemistry.
Collapse
|
3
|
Beilinson HA, Glynn RA, Yadavalli AD, Xiao J, Corbett E, Saribasak H, Arya R, Miot C, Bhattacharyya A, Jones JM, Pongubala JM, Bassing CH, Schatz DG. The RAG1 N-terminal region regulates the efficiency and pathways of synapsis for V(D)J recombination. J Exp Med 2021; 218:e20210250. [PMID: 34402853 PMCID: PMC8374863 DOI: 10.1084/jem.20210250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/30/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022] Open
Abstract
Immunoglobulin and T cell receptor gene assembly depends on V(D)J recombination initiated by the RAG1-RAG2 recombinase. The RAG1 N-terminal region (NTR; aa 1-383) has been implicated in regulatory functions whose influence on V(D)J recombination and lymphocyte development in vivo is poorly understood. We generated mice in which RAG1 lacks ubiquitin ligase activity (P326G), the major site of autoubiquitination (K233R), or its first 215 residues (Δ215). While few abnormalities were detected in R1.K233R mice, R1.P326G mice exhibit multiple features indicative of reduced recombination efficiency, including an increased Igκ+:Igλ+ B cell ratio and decreased recombination of Igh, Igκ, Igλ, and Tcrb loci. Previous studies indicate that synapsis of recombining partners during Igh recombination occurs through two pathways: long-range scanning and short-range collision. We find that R1Δ215 mice exhibit reduced short-range Igh and Tcrb D-to-J recombination. Our findings indicate that the RAG1 NTR regulates V(D)J recombination and lymphocyte development by multiple pathways, including control of the balance between short- and long-range recombination.
Collapse
Affiliation(s)
- Helen A. Beilinson
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT
| | - Rebecca A. Glynn
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anurupa Devi Yadavalli
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Jianxiong Xiao
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT
| | - Elizabeth Corbett
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT
| | - Huseyin Saribasak
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT
| | - Rahul Arya
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Charline Miot
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anamika Bhattacharyya
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Jessica M. Jones
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Jagan M.R. Pongubala
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Craig H. Bassing
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David G. Schatz
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| |
Collapse
|
4
|
Yakovenko I, Agronin J, Smith LC, Oren M. Guardian of the Genome: An Alternative RAG/Transib Co-Evolution Hypothesis for the Origin of V(D)J Recombination. Front Immunol 2021; 12:709165. [PMID: 34394111 PMCID: PMC8355894 DOI: 10.3389/fimmu.2021.709165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
The appearance of adaptive immunity in jawed vertebrates is termed the immunological 'Big Bang' because of the short evolutionary time over which it developed. Underlying it is the recombination activating gene (RAG)-based V(D)J recombination system, which initiates the sequence diversification of the immunoglobulins and lymphocyte antigen receptors. It was convincingly argued that the RAG1 and RAG2 genes originated from a single transposon. The current dogma postulates that the V(D)J recombination system was established by the split of a primordial vertebrate immune receptor gene into V and J segments by a RAG1/2 transposon, in parallel with the domestication of the same transposable element in a separate genomic locus as the RAG recombinase. Here, based on a new interpretation of previously published data, we propose an alternative evolutionary hypothesis suggesting that two different elements, a RAG1/2 transposase and a Transib transposon invader with RSS-like terminal inverted repeats, co-evolved to work together, resulting in a functional recombination process. This hypothesis offers an alternative understanding of the acquisition of recombinase function by RAGs and the origin of the V(D)J system.
Collapse
Affiliation(s)
- Iryna Yakovenko
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Jacob Agronin
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Matan Oren
- Department of Molecular Biology, Ariel University, Ariel, Israel
| |
Collapse
|
5
|
Tao X, Yuan S, Chen F, Gao X, Wang X, Yu W, Liu S, Huang Z, Chen S, Xu A. Functional requirement of terminal inverted repeats for efficient ProtoRAG activity reveals the early evolution of V(D)J recombination. Natl Sci Rev 2020; 7:403-417. [PMID: 34692056 PMCID: PMC8289069 DOI: 10.1093/nsr/nwz179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 11/30/2022] Open
Abstract
The discovery of ProtoRAG in amphioxus indicated that vertebrate RAG recombinases originated from an ancient transposon. However, the sequences of ProtoRAG terminal inverted repeats (TIRs) were obviously dissimilar to the consensus sequence of mouse 12/23RSS and recombination mediated by ProtoRAG or RAG made them incompatible with each other. Thus, it is difficult to determine whether or how 12/23RSS persisted in the vertebrate RAG system that evolved from the TIRs of ancient RAG transposons. Here, we found that the activity of ProtoRAG is highly dependent on its asymmetric 5′TIR and 3′TIR, which are composed of conserved TR1 and TR5 elements and a partially conserved TRsp element of 27/31 bp to separate them. Similar to the requirements for the recombination signal sequences (RSSs) of RAG recombinase, the first CAC in TR1, the three dinucleotides in TR5 and the specific length of the partially conserved TRsp are important for the efficient recombination activity of ProtoRAG. In addition, the homologous sequences flanking the signal sequences facilitate ProtoRAG- but not RAG-mediated recombination. In addition to the diverged TIRs, two differentiated functional domains in BbRAG1L were defined to coordinate with the divergence between TIRs and RSSs. One of these is the CTT* domain, which facilitates the specific TIR recognition of the BbRAGL complex, and the other is NBD*, which is responsible for DNA binding and the protein stabilization of the BbRAGL complex. Thus, our findings reveal that the functional requirement for ProtoRAG TIRs is similar to that for RSS in RAG-mediated recombination, which not only supports the common origin of ProtoRAG TIRs and RSSs from the asymmetric TIRs of ancient RAG transposons, but also reveals the development of RAG and RAG-like machineries during chordate evolution.
Collapse
Affiliation(s)
- Xin Tao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaochun Yuan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fan Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoman Gao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinli Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenjuan Yu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Song Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ziwen Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.,School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
6
|
The Tc1-like elements with the spliceosomal introns in mollusk genomes. Mol Genet Genomics 2020; 295:621-633. [DOI: 10.1007/s00438-020-01645-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022]
|
7
|
Biscotti MA, Barucca M, Canapa A. New insights into the genome repetitive fraction of the Antarctic bivalve Adamussium colbecki. PLoS One 2018; 13:e0194502. [PMID: 29590185 PMCID: PMC5874043 DOI: 10.1371/journal.pone.0194502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/05/2018] [Indexed: 11/29/2022] Open
Abstract
Repetitive DNA represents the major component of the genome in both plant and animal species. It includes transposable elements (TEs), which are dispersed throughout the genome, and satellite DNAs (satDNAs), which are tandemly organized in long arrays. The study of the structure and organization of repetitive DNA contributes to our understanding of genome architecture and the mechanisms leading to its evolution. Molluscs represent one of the largest groups of invertebrates and include organisms with a wide variety of morphologies and lifestyles. To increase our knowledge of bivalves at the genome level, we analysed the Antarctic scallop Adamussium colbecki. The screening of the genomic library evidenced the presence of two novel satDNA elements and the CvA transposon. The interspecific investigation performed in this study demonstrated that one of the two satDNAs isolated in A. colbecki is widespread in polar molluscan species, indicating a possible link between repetitive DNA and abiotic factors. Moreover, the transcriptional activity of CvA and its presence in long-diverged bivalves suggests a possible role for this ancient element in shaping the genome architecture of this clade.
Collapse
Affiliation(s)
- Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
8
|
Whole genome analysis of a schistosomiasis-transmitting freshwater snail. Nat Commun 2017; 8:15451. [PMID: 28508897 PMCID: PMC5440852 DOI: 10.1038/ncomms15451] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/30/2017] [Indexed: 12/31/2022] Open
Abstract
Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome, and provide timely and important information on snail biology. We describe aspects of phero-perception, stress responses, immune function and regulation of gene expression that support the persistence of B. glabrata in the field and may define this species as a suitable snail host for S. mansoni. We identify several potential targets for developing novel control measures aimed at reducing snail-mediated transmission of schistosomiasis.
Collapse
|
9
|
The RAG transposon is active through the deuterostome evolution and domesticated in jawed vertebrates. Immunogenetics 2017; 69:391-400. [PMID: 28451741 DOI: 10.1007/s00251-017-0979-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
RAG1 and RAG2 are essential subunits of the V(D)J recombinase required for the generation of the variability of antibodies and T cell receptors in jawed vertebrates. It was demonstrated that the amphioxus homologue of RAG1-RAG2 is encoded in an active transposon, belonging to the transposase DDE superfamily. The data provided support the possibility that the RAG transposon has been active through the deuterostome evolution and is still active in several lineages. The RAG transposon corresponds to several families present in deuterostomes. RAG1-RAG2 V(D)J recombinase evolved from one of them, partially due to the new ability of the transposon to interact with the cellular reparation machinery. Considering the fact that the RAG transposon survived millions of years in many different lineages, in multiple copies, and that DDE transposases evolved their association with proteins involved in repair mechanisms, we propose that the apparition of V(D)J recombination machinery could be a predictable genetic event.
Collapse
|
10
|
Carmona LM, Schatz DG. New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination. FEBS J 2017; 284:1590-1605. [PMID: 27973733 PMCID: PMC5459667 DOI: 10.1111/febs.13990] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/10/2016] [Accepted: 12/08/2016] [Indexed: 12/26/2022]
Abstract
The adaptive immune system of jawed vertebrates relies on V(D)J recombination as one of the main processes to generate the diverse array of receptors necessary for the recognition of a wide range of pathogens. The DNA cleavage reaction necessary for the assembly of the antigen receptor genes from an array of potential gene segments is mediated by the recombination-activating gene proteins RAG1 and RAG2. The RAG proteins have been proposed to originate from a transposable element (TE) as they share mechanistic and structural similarities with several families of transposases and are themselves capable of mediating transposition. A number of RAG-like proteins and TEs with sequence similarity to RAG1 and RAG2 have been identified, but only recently has their function begun to be characterized, revealing mechanistic links to the vertebrate RAGs. Of particular significance is the discovery of ProtoRAG, a transposon superfamily found in the genome of the basal chordate amphioxus. ProtoRAG has many of the sequence and mechanistic features predicted for the ancestral RAG transposon and is likely to be an evolutionary relative of RAG1 and RAG2. In addition, early observations suggesting that RAG1 is able to mediate V(D)J recombination in the absence of RAG2 have been confirmed, implying independent evolutionary origins for the two RAG genes. Here, recent progress in identifying and characterizing RAG-like proteins and the TEs that encode them is summarized and a refined model for the evolution of V(D)J recombination and the RAG proteins is presented.
Collapse
Affiliation(s)
- Lina Marcela Carmona
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, New Haven, CT, USA
| |
Collapse
|
11
|
Huang S, Tao X, Yuan S, Zhang Y, Li P, Beilinson HA, Zhang Y, Yu W, Pontarotti P, Escriva H, Le Petillon Y, Liu X, Chen S, Schatz DG, Xu A. Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination. Cell 2016; 166:102-14. [PMID: 27293192 DOI: 10.1016/j.cell.2016.05.032] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/18/2016] [Accepted: 05/06/2016] [Indexed: 01/08/2023]
Abstract
Co-option of RAG1 and RAG2 for antigen receptor gene assembly by V(D)J recombination was a crucial event in the evolution of jawed vertebrate adaptive immunity. RAG1/2 are proposed to have arisen from a transposable element, but definitive evidence for this is lacking. Here, we report the discovery of ProtoRAG, a DNA transposon family from lancelets, the most basal extant chordates. A typical ProtoRAG is flanked by 5-bp target site duplications and a pair of terminal inverted repeats (TIRs) resembling V(D)J recombination signal sequences. Between the TIRs reside tail-to-tail-oriented, intron-containing RAG1-like and RAG2-like genes. We demonstrate that ProtoRAG was recently active in the lancelet germline and that the lancelet RAG1/2-like proteins can mediate TIR-dependent transposon excision, host DNA recombination, transposition, and low-efficiency TIR rejoining using reaction mechanisms similar to those used by vertebrate RAGs. We propose that ProtoRAG represents a molecular "living fossil" of the long-sought RAG transposon.
Collapse
Affiliation(s)
- Shengfeng Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xin Tao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Shaochun Yuan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Yuhang Zhang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Peiyi Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Helen A Beilinson
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ya Zhang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Wenjuan Yu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Pierre Pontarotti
- CNRS, Centrale Marseille, I2M UMR 7373, Equipe Evolution Biologique et Modélisation, Aix-Marseille Université, 13284 Marseille, France
| | - Hector Escriva
- CNRS, UMR 7232, Biologie Integrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Banyuls-sur-Mer, Université Pierre et Marie Curie, Université Paris 6, 75005 Paris, France
| | - Yann Le Petillon
- CNRS, UMR 7232, Biologie Integrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Banyuls-sur-Mer, Université Pierre et Marie Curie, Université Paris 6, 75005 Paris, France
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, 295 Congress Avenue, New Haven, CT 06511, USA
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Beijing University of Chinese Medicine, Dong San Huan Road, Chao-yang District, Beijing 100029, People's Republic of China.
| |
Collapse
|
12
|
Koonin EV, Krupovic M. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat Rev Genet 2014; 16:184-92. [PMID: 25488578 DOI: 10.1038/nrg3859] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adaptive immune systems in prokaryotes and animals give rise to long-term memory through modification of specific genomic loci, such as by insertion of foreign (viral or plasmid) DNA fragments into clustered regularly interspaced short palindromic repeat (CRISPR) loci in prokaryotes and by V(D)J recombination of immunoglobulin genes in vertebrates. Strikingly, recombinases derived from unrelated mobile genetic elements have essential roles in both prokaryotic and vertebrate adaptive immune systems. Mobile elements, which are ubiquitous in cellular life forms, provide the only known, naturally evolved tools for genome engineering that are successfully adopted by both innate immune systems and genome-editing technologies. In this Opinion article, we present a general scenario for the origin of adaptive immunity from mobile elements and innate immune systems.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland 20894, USA
| | - Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
13
|
Elliott TA, Linquist S, Gregory TR. Conceptual and empirical challenges of ascribing functions to transposable elements. Am Nat 2014; 184:14-24. [PMID: 24921597 DOI: 10.1086/676588] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Media attention and the subsequent scientific backlash engendered by the claim by spokespeople for the Encyclopedia of DNA Elements (ENCODE) project that 80% of the human genome has a biochemical function highlight the need for a clearer understanding of function concepts in biology. This article provides an overview of two major function concepts that have been developed in the philosophy of science--the causal role concept and the selected effects concept--and their relevance to ENCODE. Unlike in some previous critiques, the ENCODE project is not considered problematic here because it employed a causal role definition of function (which is relatively common in genetics) but because of how this concept was misused. In addition, several unique challenges that arise when dealing with transposable elements (TEs) but that were ignored by ENCODE are highlighted. These include issues surrounding TE-level versus organism-level selection, the origins versus the persistence of elements, and accidental versus functional organism-level benefits. Finally, some key questions are presented that should be addressed in any study aiming to ascribe functions to major portions of large eukaryotic genomes, the majorities of which are made up of transposable elements.
Collapse
Affiliation(s)
- Tyler A Elliott
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
14
|
Pavelitz T, Gray LT, Padilla SL, Bailey AD, Weiner AM. PGBD5: a neural-specific intron-containing piggyBac transposase domesticated over 500 million years ago and conserved from cephalochordates to humans. Mob DNA 2013; 4:23. [PMID: 24180413 PMCID: PMC3902484 DOI: 10.1186/1759-8753-4-23] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/04/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND piggyBac domain (PGBD) transposons are found in organisms ranging from fungi to humans. Three domesticated piggyBac elements have been described. In the ciliates Paramecium tetraurelia and Tetrahymena thermophila, homologs known as piggyMacs excise internal eliminated sequences from germline micronuclear DNA during regeneration of the new somatic macronucleus. In primates, a PGBD3 element inserted into the Cockayne syndrome group B (CSB) gene over 43 Mya serves as an alternative 3' terminal exon, enabling the CSB gene to generate both full length CSB and a conserved CSB-PGBD3 fusion protein that joins an N-terminal CSB domain to the C-terminal transposase domain. RESULTS We describe a fourth domesticated piggyBac element called PGBD5. We show that i) PGBD5 was first domesticated in the common ancestor of the cephalochordate Branchiostoma floridae (aka lancelet or amphioxus) and vertebrates, and is conserved in all vertebrates including lamprey but cannot be found in more basal urochordates, hemichordates, or echinoderms; ii) the lancelet, lamprey, and human PGBD5 genes are syntenic and orthologous; iii) no potentially mobile ancestral PGBD5 elements can be identified in other more deeply rooted organisms; iv) although derived from an IS4-related transposase of the RNase H clan, PGBD5 protein is unlikely to retain enzymatic activity because the catalytic DDD(D) motif is not conserved; v) PGBD5 is preferentially expressed in certain granule cell lineages of the brain and in the central nervous system based on available mouse and human in situ hybridization data, and the tissue-specificity of documented mammalian EST and mRNA clones; vi) the human PGBD5 promoter and gene region is rich in bound regulatory factors including the neuron-restrictive silencer factors NRSF/REST and CoREST, as well as SIN3, KAP1, STAT3, and CTCF; and vii) despite preferential localization within the nucleus, PGBD5 protein is unlikely to bind DNA or chromatin as neither DNase I digestion nor high salt extraction release PGBD5 from fractionated mouse brain nuclei. CONCLUSIONS We speculate that the neural-specific PGBD5 transposase was domesticated >500 My after cephalochordates and vertebrates split from urochordates, and that PGBD5 may have played a role in the evolution of a primitive deuterostome neural network into a centralized nervous system.
Collapse
Affiliation(s)
| | | | | | | | - Alan M Weiner
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195-7350, USA.
| |
Collapse
|
15
|
Saylor B, Elliott TA, Linquist S, Kremer SC, Gregory TR, Cottenie K. A novel application of ecological analyses to assess transposable element distributions in the genome of the domestic cow, Bos taurus. Genome 2013; 56:521-33. [PMID: 24168673 DOI: 10.1139/gen-2012-0162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transposable elements (TEs) are among the most abundant components of many eukaryotic genomes. Efforts to explain TE abundance, as well as TE diversity among genomes, have led some researchers to draw an analogy between genomic and ecological processes. Adopting this perspective, we conducted an analysis of the cow (Bos taurus) genome using techniques developed by community ecologists to determine whether environmental factors influence community composition. Specifically, each chromosome within the Bos taurus genome was treated as a "linear transect", and a multivariate redundancy analysis (RDA) was used to identify large-scale spatial patterns in TE communities associated with 10 TE families. The position of each TE community on the chromosome accounted for ∼50% of the variation along the chromosome "transect". Multivariate analysis further revealed an effect of gene density on TE communities that is influenced by several other factors in the (genomic) environment, including chromosome length and TE density. The results of this analysis demonstrate that ecological methods can be applied successfully to help answer genomic questions.
Collapse
Affiliation(s)
- Brent Saylor
- a Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Aravind L, Anantharaman V, Zhang D, de Souza RF, Iyer LM. Gene flow and biological conflict systems in the origin and evolution of eukaryotes. Front Cell Infect Microbiol 2012; 2:89. [PMID: 22919680 PMCID: PMC3417536 DOI: 10.3389/fcimb.2012.00089] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/13/2012] [Indexed: 11/24/2022] Open
Abstract
The endosymbiotic origin of eukaryotes brought together two disparate genomes in the cell. Additionally, eukaryotic natural history has included other endosymbiotic events, phagotrophic consumption of organisms, and intimate interactions with viruses and endoparasites. These phenomena facilitated large-scale lateral gene transfer and biological conflicts. We synthesize information from nearly two decades of genomics to illustrate how the interplay between lateral gene transfer and biological conflicts has impacted the emergence of new adaptations in eukaryotes. Using apicomplexans as example, we illustrate how lateral transfer from animals has contributed to unique parasite-host interfaces comprised of adhesion- and O-linked glycosylation-related domains. Adaptations, emerging due to intense selection for diversity in the molecular participants in organismal and genomic conflicts, being dispersed by lateral transfer, were subsequently exapted for eukaryote-specific innovations. We illustrate this using examples relating to eukaryotic chromatin, RNAi and RNA-processing systems, signaling pathways, apoptosis and immunity. We highlight the major contributions from catalytic domains of bacterial toxin systems to the origin of signaling enzymes (e.g., ADP-ribosylation and small molecule messenger synthesis), mutagenic enzymes for immune receptor diversification and RNA-processing. Similarly, we discuss contributions of bacterial antibiotic/siderophore synthesis systems and intra-genomic and intra-cellular selfish elements (e.g., restriction-modification, mobile elements and lysogenic phages) in the emergence of chromatin remodeling/modifying enzymes and RNA-based regulation. We develop the concept that biological conflict systems served as evolutionary “nurseries” for innovations in the protein world, which were delivered to eukaryotes via lateral gene flow to spur key evolutionary innovations all the way from nucleogenesis to lineage-specific adaptations.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda MD, USA.
| | | | | | | | | |
Collapse
|
17
|
Danilova N. The evolution of adaptive immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 738:218-35. [PMID: 22399382 DOI: 10.1007/978-1-4614-1680-7_13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The concept of adaptive immunity suggests de novo generation in each individual of extremely large repertoires of diversified receptors and selective expansion of receptors that match the antigen/pathogen. Accordingly, adaptive immune system is also called "anticipatory". It allows each individual to have a unique repertoire of immune receptors corresponding to its life history. The memory of an antigen gets encoded in the clonal composition of the organism's immune cells instead of being encoded in the genome. Consequently, the immune response to repeated encounter with the same antigen becomes stronger, a phenomenon called immunological memory. Elements of adaptive immunity are found at all taxonomical levels, whereas in vertebrates, adaptive mechanisms have become the cornerstone of the immune system. In jaw vertebrates, adaptive immune receptors of T and B lymphoid cells belong to immunoglobulin superfamily and are created by rearrangement of gene segments. In jawless vertebrates lamprey and hagfish, recombination of leucine-rich repeat modules is used to form variable lymphocyte receptors. Striking functional similarity of the cellular and humoral branches of these systems suggests similar driving forces underlying their development.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA,USA.
| |
Collapse
|
18
|
Dittmar T, Zänker KS. Horizontal gene transfers with or without cell fusions in all categories of the living matter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 714:5-89. [PMID: 21506007 PMCID: PMC7120942 DOI: 10.1007/978-94-007-0782-5_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the history of widespread exchanges of genetic segments initiated over 3 billion years ago, to be part of their life style, by sphero-protoplastic cells, the ancestors of archaea, prokaryota, and eukaryota. These primordial cells shared a hostile anaerobic and overheated environment and competed for survival. "Coexist with, or subdue and conquer, expropriate its most useful possessions, or symbiose with it, your competitor" remain cellular life's basic rules. This author emphasizes the role of viruses, both in mediating cell fusions, such as the formation of the first eukaryotic cell(s) from a united crenarchaeon and prokaryota, and the transfer of host cell genes integrated into viral (phages) genomes. After rising above the Darwinian threshold, rigid rules of speciation and vertical inheritance in the three domains of life were established, but horizontal gene transfers with or without cell fusions were never abolished. The author proves with extensive, yet highly selective documentation, that not only unicellular microorganisms, but the most complex multicellular entities of the highest ranks resort to, and practice, cell fusions, and donate and accept horizontally (laterally) transferred genes. Cell fusions and horizontally exchanged genetic materials remain the fundamental attributes and inherent characteristics of the living matter, whether occurring accidentally or sought after intentionally. These events occur to cells stagnating for some 3 milliard years at a lower yet amazingly sophisticated level of evolution, and to cells achieving the highest degree of differentiation, and thus functioning in dependence on the support of a most advanced multicellular host, like those of the human brain. No living cell is completely exempt from gene drains or gene insertions.
Collapse
Affiliation(s)
- Thomas Dittmar
- Inst. Immunologie, Universität Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| | - Kurt S. Zänker
- Institute of Immunologie, University of Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| |
Collapse
|
19
|
Macagno ER, Gaasterland T, Edsall L, Bafna V, Soares MB, Scheetz T, Casavant T, Da Silva C, Wincker P, Tasiemski A, Salzet M. Construction of a medicinal leech transcriptome database and its application to the identification of leech homologs of neural and innate immune genes. BMC Genomics 2010; 11:407. [PMID: 20579359 PMCID: PMC2996935 DOI: 10.1186/1471-2164-11-407] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 06/25/2010] [Indexed: 11/17/2022] Open
Abstract
Background The medicinal leech, Hirudo medicinalis, is an important model system for the study of nervous system structure, function, development, regeneration and repair. It is also a unique species in being presently approved for use in medical procedures, such as clearing of pooled blood following certain surgical procedures. It is a current, and potentially also future, source of medically useful molecular factors, such as anticoagulants and antibacterial peptides, which may have evolved as a result of its parasitizing large mammals, including humans. Despite the broad focus of research on this system, little has been done at the genomic or transcriptomic levels and there is a paucity of openly available sequence data. To begin to address this problem, we constructed whole embryo and adult central nervous system (CNS) EST libraries and created a clustered sequence database of the Hirudo transcriptome that is available to the scientific community. Results A total of ~133,000 EST clones from two directionally-cloned cDNA libraries, one constructed from mRNA derived from whole embryos at several developmental stages and the other from adult CNS cords, were sequenced in one or both directions by three different groups: Genoscope (French National Sequencing Center), the University of Iowa Sequencing Facility and the DOE Joint Genome Institute. These were assembled using the phrap software package into 31,232 unique contigs and singletons, with an average length of 827 nt. The assembled transcripts were then translated in all six frames and compared to proteins in NCBI's non-redundant (NR) and to the Gene Ontology (GO) protein sequence databases, resulting in 15,565 matches to 11,236 proteins in NR and 13,935 matches to 8,073 proteins in GO. Searching the database for transcripts of genes homologous to those thought to be involved in the innate immune responses of vertebrates and other invertebrates yielded a set of nearly one hundred evolutionarily conserved sequences, representing all known pathways involved in these important functions. Conclusions The sequences obtained for Hirudo transcripts represent the first major database of genes expressed in this important model system. Comparison of translated open reading frames (ORFs) with the other openly available leech datasets, the genome and transcriptome of Helobdella robusta, shows an average identity at the amino acid level of 58% in matched sequences. Interestingly, comparison with other available Lophotrochozoans shows similar high levels of amino acid identity, where sequences match, for example, 64% with Capitella capitata (a polychaete) and 56% with Aplysia californica (a mollusk), as well as 58% with Schistosoma mansoni (a platyhelminth). Phylogenetic comparisons of putative Hirudo innate immune response genes present within the Hirudo transcriptome database herein described show a strong resemblance to the corresponding mammalian genes, indicating that this important physiological response may have older origins than what has been previously proposed.
Collapse
Affiliation(s)
- Eduardo R Macagno
- Division of Biological Sciences, University of California, San Diego, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hickman AB, Chandler M, Dyda F. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit Rev Biochem Mol Biol 2010; 45:50-69. [PMID: 20067338 DOI: 10.3109/10409230903505596] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
DNA rearrangements are important in genome function and evolution. Genetic material can be rearranged inadvertently during processes such as DNA repair, or can be moved in a controlled manner by enzymes specifically dedicated to the task. DNA transposases comprise one class of such enzymes. These move DNA segments known as transposons to new locations, without the need for sequence homology between transposon and target site. Several biochemically distinct pathways have evolved for DNA transposition, and genetic and biochemical studies have provided valuable insights into many of these. However, structural information on transposases - particularly with DNA substrates - has proven elusive in most cases. On the other hand, large-scale genome sequencing projects have led to an explosion in the number of annotated prokaryotic and eukaryotic mobile elements. Here, we briefly review biochemical and mechanistic aspects of DNA transposition, and propose that integrating sequence information with structural information using bioinformatics tools such as secondary structure prediction and protein threading can lead not only to an additional level of understanding but possibly also to testable hypotheses regarding transposition mechanisms. Detailed understanding of transposition pathways is a prerequisite for the long-term goal of exploiting DNA transposons as genetic tools and as a basis for genetic medical applications.
Collapse
Affiliation(s)
- Alison Burgess Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
21
|
Walters ET, Moroz LL. Molluscan memory of injury: evolutionary insights into chronic pain and neurological disorders. BRAIN, BEHAVIOR AND EVOLUTION 2009; 74:206-18. [PMID: 20029184 PMCID: PMC2855280 DOI: 10.1159/000258667] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molluscan preparations have yielded seminal discoveries in neuroscience, but the experimental advantages of this group have not, until now, been complemented by adequate molecular or genomic information for comparisons to genetically defined model organisms in other phyla. The recent sequencing of the transcriptome and genome of Aplysia californica, however, will enable extensive comparative studies at the molecular level. Among other benefits, this will bring the power of individually identifiable and manipulable neurons to bear upon questions of cellular function for evolutionarily conserved genes associated with clinically important neural dysfunction. Because of the slower rate of gene evolution in this molluscan lineage, more homologs of genes associated with human disease are present in Aplysia than in leading model organisms from Arthropoda (Drosophila) or Nematoda (Caenorhabditis elegans). Research has hardly begun in molluscs on the cellular functions of gene products that in humans are associated with neurological diseases. On the other hand, much is known about molecular and cellular mechanisms of long-term neuronal plasticity. Persistent nociceptive sensitization of nociceptors in Aplysia displays many functional similarities to alterations in mammalian nociceptors associated with the clinical problem of chronic pain. Moreover, in Aplysia and mammals the same cell signaling pathways trigger persistent enhancement of excitability and synaptic transmission following noxious stimulation, and these highly conserved pathways are also used to induce memory traces in neural circuits of diverse species. This functional and molecular overlap in distantly related lineages and neuronal types supports the proposal that fundamental plasticity mechanisms important for memory, chronic pain, and other lasting alterations evolved from adaptive responses to peripheral injury in the earliest neurons. Molluscan preparations should become increasingly useful for comparative studies across phyla that can provide insight into cellular functions of clinically important genes.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Tex. 77030, USA.
| | | |
Collapse
|
22
|
Fugmann SD. The origins of the Rag genes--from transposition to V(D)J recombination. Semin Immunol 2009; 22:10-6. [PMID: 20004590 DOI: 10.1016/j.smim.2009.11.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Accepted: 11/11/2009] [Indexed: 01/06/2023]
Abstract
The recombination activating genes 1 and 2 (Rag1 and Rag2) encode the key enzyme that is required for the generation of the highly diversified antigen receptor repertoire central to adaptive immunity. The longstanding model proposed that this gene pair was acquired by horizontal gene transfer to explain its abrupt appearance in the vertebrate lineage. The analyses of the enormous amount of sequence data created by many genome sequencing projects now provide the basis for a more refined model as to how this unique gene pair evolved from a selfish DNA transposon into a sophisticated DNA recombinase essential for immunity.
Collapse
Affiliation(s)
- Sebastian D Fugmann
- Laboratory of Cellular and Molecular Biology, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
23
|
Abstract
Because of their extreme importance to human health, we probably know more about the structure and function of antibodies than practically any other molecule. Despite all the knowledge that has been accrued in the understanding of antibodies, modern approaches, especially comparative genomics, continue to yield novel findings regarding their underlying biology and evolution. In this review, we describe recent research that led to these revelations, and discuss the broad evolutionary implications of these findings. We have restricted our discussion to three vignettes. Considerable attention has been paid to the recent discovery that the teleost IgH locus is highly similar in organization to the Tcra-Tcrd locus, implicating an evolutionary common ancestor and parallels between the functions of B and T cells during development. Second, we discuss how a new type of antibody, recently discovered in jawless vertebrates, composed not of immunoglobulins but leucine-rich repeats, sheds new light on the overall forces driving evolution of all adaptive antigen receptors. Lastly, we discuss how accumulation of genomic sequences of various human subpopulations leads to better understanding of the directionality of antibody evolution. There is always more to learn from the unfolding saga of antibodies.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
24
|
Bao W, Jurka MG, Kapitonov VV, Jurka J. New superfamilies of eukaryotic DNA transposons and their internal divisions. Mol Biol Evol 2009; 26:983-93. [PMID: 19174482 PMCID: PMC2727372 DOI: 10.1093/molbev/msp013] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2009] [Indexed: 12/23/2022] Open
Abstract
Despite their enormous diversity and abundance, all currently known eukaryotic DNA transposons belong to only 15 superfamilies. Here, we report two new superfamilies of DNA transposons, named Sola and Zator. Sola transposons encode DDD-transposases (transposase, TPase) and are flanked by 4-bp target site duplications (TSD). Elements from the Sola superfamily are distributed in a variety of species including bacteria, protists, plants, and metazoans. They can be divided into three distinct groups of elements named Sola1, Sola2, and Sola3. The elements from each group have extremely low sequence identity to each other, different termini, and different target site preferences. However, all three groups belong to a single superfamily based on significant PSI-Blast identities between their TPases. The DDD TPase sequences encoded by Sola transposons are not similar to any known TPases. The second superfamily named Zator is characterized by 3-bp TSD. The Zator superfamily is relatively rare in eukaryotic species, and it evolved from a bacterial transposon encoding a TPase belonging to the "transposase 36" family (Pfam07592). These transposons are named TP36 elements (abbreviated from transposase 36).
Collapse
Affiliation(s)
- Weidong Bao
- Genetic Information Research Institute, Mountain View, CA, USA
| | | | | | | |
Collapse
|