1
|
Wang G, Cheng X, Zhang J, Liao Y, Jia Y, Qing C. Possibility of inducing tumor cell senescence during therapy. Oncol Lett 2021; 22:496. [PMID: 33981358 PMCID: PMC8108274 DOI: 10.3892/ol.2021.12757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
The treatment options for cancer include surgery, radiotherapy and chemotherapy. However, the traditional approach of high-dose chemotherapy brings tremendous toxic side effects to patients, as well as potentially causing drug resistance. Drug resistance affects cell proliferation, cell senescence and apoptosis. Cellular senescence refers to the process in which cells change from an active proliferative status to a growth-arrested status. There are multiple factors that regulate this process and cellular senescence is activated by various pathways. Senescent cells present specific characteristics, such as an increased cell volume, flattened cell body morphology, ceased cell division and the expression of β-galactosidase. Tumor senescence can be categorized into replicative senescence and premature senescence. Cellular senescence may inhibit the occurrence and development of tumors, serving as an innovative strategy for the treatment of cancer. The present review mainly focuses on senescent biomarkers, methods for the induction of cellular senescence and its possible application in the treatment of cancer.
Collapse
Affiliation(s)
- Guohui Wang
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xianliang Cheng
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jingyi Zhang
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuan Liao
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yinnong Jia
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chen Qing
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
2
|
Ikeno M, Hasegawa Y. Applications of bottom-up human artificial chromosomes in cell research and cell engineering. Exp Cell Res 2020; 390:111793. [PMID: 31874174 DOI: 10.1016/j.yexcr.2019.111793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
Chromosome manipulation is a useful technique in biological science. We have constructed human artificial chromosomes (HACs) based on the transfection of centromeric alphoid DNA precursors into cultured human cells. Moreover, HAC-based technology has been developed into a novel gene expression vector tool for introducing large-size genomic DNA. This technique provides natural expression, as well as stable expression without the gene silencing that often occurs with conventional vectors in mammalian cells. Here we review the properties of HACs, and issues regarding the use of HAC technology for basic and applied research.
Collapse
Affiliation(s)
- Masashi Ikeno
- Department of Medical Biology, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Yoshinori Hasegawa
- Laboratory of Clinical Omics Research, Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| |
Collapse
|
3
|
Sinenko SA, Ponomartsev SV, Tomilin AN. Human artificial chromosomes for pluripotent stem cell-based tissue replacement therapy. Exp Cell Res 2020; 389:111882. [DOI: 10.1016/j.yexcr.2020.111882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
|
4
|
Oshimura M, Uno N, Kazuki Y, Katoh M, Inoue T. A pathway from chromosome transfer to engineering resulting in human and mouse artificial chromosomes for a variety of applications to bio-medical challenges. Chromosome Res 2015; 23:111-33. [PMID: 25657031 PMCID: PMC4365188 DOI: 10.1007/s10577-014-9459-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microcell-mediated chromosome transfer (MMCT) is a technique to transfer a chromosome from defined donor cells into recipient cells and to manipulate chromosomes as gene delivery vectors and open a new avenue in somatic cell genetics. However, it is difficult to uncover the function of a single specific gene via the transfer of an entire chromosome or fragment, because each chromosome or fragment contains a set of numerous genes. Thus, alternative tools are human artificial chromosome (HAC) and mouse artificial chromosome (MAC) vectors, which can carry a gene or genes of interest. HACs/MACs have been generated mainly by either a "top-down approach" (engineered creation) or a "bottom-up approach" (de novo creation). HACs/MACs with one or more acceptor sites exhibit several characteristics required by an ideal gene delivery vector, including stable episomal maintenance and the capacity to carry large genomic loci plus their regulatory elements, thus allowing the physiological regulation of the introduced gene in a manner similar to that of native chromosomes. The MMCT technique is also applied for manipulating HACs and MACs in donor cells and delivering them to recipient cells. This review describes the lessons learned and prospects identified from studies on the construction of HACs and MACs, and their ability to drive exogenous gene expression in cultured cells and transgenic animals via MMCT. New avenues for a variety of applications to bio-medical challenges are also proposed.
Collapse
Affiliation(s)
- Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan,
| | | | | | | | | |
Collapse
|
5
|
Katona RL. De novo formed satellite DNA-based mammalian artificial chromosomes and their possible applications. Chromosome Res 2015; 23:143-57. [DOI: 10.1007/s10577-014-9458-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Ramboer E, Vanhaecke T, Rogiers V, Vinken M. Immortalized Human Hepatic Cell Lines for In Vitro Testing and Research Purposes. Methods Mol Biol 2015; 1250:53-76. [PMID: 26272134 PMCID: PMC4579543 DOI: 10.1007/978-1-4939-2074-7_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ubiquitous shortage of primary human hepatocytes has urged the scientific community to search for alternative cell sources, such as immortalized hepatic cell lines. Over the years, several human hepatic cell lines have been produced, whether or not using a combination of viral oncogenes and human telomerase reverse transcriptase protein. Conditional approaches for hepatocyte immortalization have also been established and allow generation of growth-controlled cell lines. A variety of immortalized human hepatocytes have already proven useful as tools for liver-based in vitro testing and fundamental research purposes. The present chapter describes currently applied immortalization strategies and provides an overview of the actually available immortalized human hepatic cell lines and their in vitro applications.
Collapse
Affiliation(s)
- Eva Ramboer
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium,
| | | | | | | |
Collapse
|
7
|
Eva R, Bram DC, Joery DK, Tamara V, Geert B, Vera R, Mathieu V. Strategies for immortalization of primary hepatocytes. J Hepatol 2014; 61:925-43. [PMID: 24911463 PMCID: PMC4169710 DOI: 10.1016/j.jhep.2014.05.046] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/17/2014] [Accepted: 05/30/2014] [Indexed: 02/06/2023]
Abstract
The liver has the unique capacity to regenerate in response to a damaging event. Liver regeneration is hereby largely driven by hepatocyte proliferation, which in turn relies on cell cycling. The hepatocyte cell cycle is a complex process that is tightly regulated by several well-established mechanisms. In vitro, isolated hepatocytes do not longer retain this proliferative capacity. However, in vitro cell growth can be boosted by immortalization of hepatocytes. Well-defined immortalization genes can be artificially overexpressed in hepatocytes or the cells can be conditionally immortalized leading to controlled cell proliferation. This paper discusses the current immortalization techniques and provides a state-of-the-art overview of the actually available immortalized hepatocyte-derived cell lines and their applications.
Collapse
Affiliation(s)
- Ramboer Eva
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - De Craene Bram
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - De Kock Joery
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Vanhaecke Tamara
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Berx Geert
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Rogiers Vera
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Vinken Mathieu
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| |
Collapse
|
8
|
Qian Y, Yang L, Cao S. Telomeres and telomerase in T cells of tumor immunity. Cell Immunol 2014; 289:63-9. [PMID: 24727158 DOI: 10.1016/j.cellimm.2014.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 03/05/2014] [Accepted: 03/24/2014] [Indexed: 02/08/2023]
Abstract
Telomeres are specific nucleoprotein structures at the end of a eukaryotic chromosomes characterized by repeats of the sequence TTAGGG and regulated by the enzyme telomerase which prevents their degradation, loss, rearrangement and end-to-end fusion. During activation, T lymphocytes actively divide, albeit through only a finite number of cell divisions due to shortening of telomeres. However, studies have demonstrated that human telomerase reverse transcriptase (hTERT), thought to be the major component regulating telomerase activity, can enhance the proliferation of T cells when overexpressed. There are many treatments for cancers, most of which are targeting the telomere and telomerase of tumor cells. However, the hTERT-transduced T cells improve their potential for proliferation, making them an appropriate cell resource for tumor adoptive immunotherapy, a procedure whereby T cells are isolated from patients, expanded ex vivo and eventually delivered back into the patients, provides a new approach for tumor therapy through improved overall survival rates in cancer patients. In this review, we will focus on the telomerase activity in T cells, the regulation of telomerase activity, and hTERT-transduced T cells used in adoptive immunotherapy for cancer.
Collapse
Affiliation(s)
- Yaqin Qian
- Department of Immunology, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China; National Clinical Research Center of Cancer, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; Research Center of Lung Cancer, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China; National Clinical Research Center of Cancer, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; Research Center of Lung Cancer, Tianjin, China.
| | - Shui Cao
- Department of Immunology, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China; National Clinical Research Center of Cancer, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; Research Center of Lung Cancer, Tianjin, China.
| |
Collapse
|
9
|
Wu X, Song B, Zhang J, Li L, Ji H, Lu G, Chen Z, Li W, Zhou Z. Human Telomerase Reverse Transcriptase Transfection Reduces Apoptosis in Human Penile Smooth Muscle Cells and Slows Down Cellular Aging. J Sex Med 2012; 9:494-504. [DOI: 10.1111/j.1743-6109.2011.02603.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
A new chromosome 14-based human artificial chromosome (HAC) vector system for efficient transgene expression in human primary cells. Biochem Biophys Res Commun 2011; 415:439-44. [DOI: 10.1016/j.bbrc.2011.10.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 10/18/2011] [Indexed: 01/23/2023]
|
11
|
Gamble CM, Barton PA. Baculoviral expression of telomerase in primary human fibroblasts to rejuvenate cells for tissue engineering. J Tissue Eng Regen Med 2011; 6:414-20. [PMID: 21751423 DOI: 10.1002/term.447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 05/12/2011] [Indexed: 11/09/2022]
Abstract
Tissue engineering involves the use of synthetic or natural materials as a scaffold to support the growth of replacement tissue or organs. The use of autologous cells to populate the scaffold avoids problems associated with rejection; however, a major limitation of this approach is the finite lifespan of primary cells in culture. This finite lifespan is due to the shortening of telomeres, short repetitive sequences of DNA located at the ends of eukaryotic chromosomes. Ectopic expression of telomerase reverse transcriptase (hTERT) is able to reconstitute telomerase activity and maintain the length of telomeres. This study investigated an alternative gene delivery vector, baculovirus, for the expression of hTERT in primary human cells. A recombinant baculovirus was used to efficiently deliver the hTERT gene to primary fibroblasts and the telomerase enzyme was found to be active. Although no increase in telomere length was detected, expression of hTERT in primary fibroblasts resulted in a significant extension of replicative lifespan. To our knowledge this is a novel attempt to use a recombinant baculovirus for the extension of cellular lifespan by exogenous expression of telomerase.
Collapse
Affiliation(s)
- C M Gamble
- Faculty of Life and Social Sciences, Swinburne University of Technology, Melbourne, Australia
| | | |
Collapse
|
12
|
Kazuki Y, Oshimura M. Human artificial chromosomes for gene delivery and the development of animal models. Mol Ther 2011; 19:1591-601. [PMID: 21750534 DOI: 10.1038/mt.2011.136] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Random integration of conventional gene delivery vectors such as viruses, plasmids, P1 phage-derived artificial chromosomes, bacterial artificial chromosomes and yeast artificial chromosomes can be associated with transgene silencing. Furthermore, integrated viral sequences can activate oncogenes adjacent to the insertion site resulting in cancer. Various human artificial chromosomes (HACs) exhibit several potential characteristics desired for an ideal gene delivery vector, including stable episomal maintenance and the capacity to carry large genomic loci with their regulatory elements, thus allowing the physiological regulation of the introduced gene in a manner similar to that of native chromosomes. HACs have been generated mainly using either a "top-down approach" (engineered chromosomes), or a "bottom-up approach" (de novo artificial chromosomes). The recent emergence of stem cell-based tissue engineering has opened up new avenues for gene and cell therapies. This review describes the lessons learned and prospects identified mainly from studies in the construction of HACs and HAC-mediated gene expression systems in cultured cells, as well as in animals.
Collapse
Affiliation(s)
- Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
| | | |
Collapse
|
13
|
Katona RL, Vanderbyl SL, Perez CF. Mammalian artificial chromosomes and clinical applications for genetic modification of stem cells: an overview. Methods Mol Biol 2011; 738:199-216. [PMID: 21431729 DOI: 10.1007/978-1-61779-099-7_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Modifying multipotent, self-renewing human stem cells with mammalian artificial chromosomes (MACs), present a promising clinical strategy for numerous diseases, especially ex vivo cell therapies that can benefit from constitutive or overexpression of therapeutic gene(s). MACs are nonintegrating, autonomously replicating, with the capacity to carry large cDNA or genomic sequences, which in turn enable potentially prolonged, safe, and regulated therapeutic transgene expression, and render MACs as attractive genetic vectors for "gene replacement" or for controlling differentiation pathways in progenitor cells. The status quo is that the most versatile target cell would be one that was pluripotent and self-renewing to address multiple disease target cell types, thus making multilineage stem cells, such as adult derived early progenitor cells and embryonic stem cells, as attractive universal host cells. We will describe the progress of MAC technologies, the subsequent modifications of stem cells, and discuss the establishment of MAC platform stem cell lines to facilitate proof-of-principle studies and preclinical development.
Collapse
Affiliation(s)
- Robert L Katona
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | |
Collapse
|
14
|
Iida Y, Kim JH, Kazuki Y, Hoshiya H, Takiguchi M, Hayashi M, Erliandri I, Lee HS, Samoshkin A, Masumoto H, Earnshaw WC, Kouprina N, Larionov V, Oshimura M. Human artificial chromosome with a conditional centromere for gene delivery and gene expression. DNA Res 2010; 17:293-301. [PMID: 20798231 PMCID: PMC2955713 DOI: 10.1093/dnares/dsq020] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human artificial chromosomes (HACs), which carry a fully functional centromere and are maintained as a single-copy episome, are not associated with random mutagenesis and offer greater control over expression of ectopic genes on the HAC. Recently, we generated a HAC with a conditional centromere, which includes the tetracycline operator (tet-O) sequence embedded in the alphoid DNA array. This conditional centromere can be inactivated, loss of the alphoidtet-O (tet-O HAC) by expression of tet-repressor fusion proteins. In this report, we describe adaptation of the tet-O HAC vector for gene delivery and gene expression in human cells. A loxP cassette was inserted into the tet-O HAC by homologous recombination in chicken DT40 cells following a microcell-mediated chromosome transfer (MMCT). The tet-O HAC with the loxP cassette was then transferred into Chinese hamster ovary cells, and EGFP transgene was efficiently and accurately incorporated into the tet-O HAC vector. The EGFP transgene was stably expressed in human cells after transfer via MMCT. Because the transgenes inserted on the tet-O HAC can be eliminated from cells by HAC loss due to centromere inactivation, this HAC vector system provides important novel features and has potential applications for gene expression studies and gene therapy.
Collapse
Affiliation(s)
- Yuichi Iida
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, Nishi-cho, Yonago, Tottori, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Kinoshita Y, Kamitani H, Mamun MH, Wasita B, Kazuki Y, Hiratsuka M, Oshimura M, Watanabe T. A gene delivery system with a human artificial chromosome vector based on migration of mesenchymal stem cells towards human glioblastoma HTB14 cells. Neurol Res 2009; 32:429-37. [PMID: 19589205 DOI: 10.1179/174313209x455718] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mesenchymal stem cells (MSCs) have been expected to become useful gene delivery vehicles against human malignant gliomas when coupled with an appropriate vector system, because they migrate towards the lesion. Human artificial chromosomes (HACs) are non-integrating vectors with several advantages for gene therapy, namely, no limitations on the size and number of genes that can be inserted. We investigated the migration of human immortalized MSCs bearing a HAC vector containing the herpes simplex virus thymidine kinase gene (HAC-tk-hiMSCs) towards malignant gliomas in vivo. Red fluorescence protein-labeled human glioblastoma HTB14 cells were implanted into a subcortical region in nude mice. Four days later, green fluorescence protein-labeled HAC-tk-hiMSCs were injected into a contralateral subcortical region (the HTB14/HAC-tk-hiMSC injection model). Tropism to the glioma mass and the route of migration were visualized by fluorescence microscopy and immunohistochemical staining. HAC-tk-hiMSCs began to migrate toward the HTB14 glioma area via the corpus callosum on day 4, and gathered around the HTB14 glioma mass on day 7. To test whether the delivered gene could effectively treat glioblastoma in vivo, HTB14/HAC-tk-hiMSC injected mice were treated with ganciclovir (GCV) or PBS. The HTB14 glioma mass was significantly reduced by GCV treatment in mice injected with HAC-tk-hiMSCs. It was confirmed that gene delivery by our HAC-hiMSC system was effective after migration of MSCs to the glioma mass in vivo. Therefore, MSCs containing HACs carrying an anticancer gene or genes may provide a new tool for the treatment of malignant gliomas and possibly of other tumor types.
Collapse
Affiliation(s)
- Yusuke Kinoshita
- Department of Neurosurgery, Faculty of Medicine, Tottori University, Tottori, Japan.
| | | | | | | | | | | | | | | |
Collapse
|