1
|
Yu L, Deng Y, Wang X, Santos C, Davis IJ, Earp HS, Liu P. Co-targeting JAK1/STAT6/GAS6/TAM signaling improves chemotherapy efficacy in Ewing sarcoma. Nat Commun 2024; 15:5292. [PMID: 38906855 PMCID: PMC11192891 DOI: 10.1038/s41467-024-49667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
Ewing sarcoma is a pediatric bone and soft tissue tumor treated with chemotherapy, radiation, and surgery. Despite intensive multimodality therapy, ~50% patients eventually relapse and die of the disease due to chemoresistance. Here, using phospho-profiling, we find Ewing sarcoma cells treated with chemotherapeutic agents activate TAM (TYRO3, AXL, MERTK) kinases to augment Akt and ERK signaling facilitating chemoresistance. Mechanistically, chemotherapy-induced JAK1-SQ phosphorylation releases JAK1 pseudokinase domain inhibition allowing for JAK1 activation. This alternative JAK1 activation mechanism leads to STAT6 nuclear translocation triggering transcription and secretion of the TAM kinase ligand GAS6 with autocrine/paracrine consequences. Importantly, pharmacological inhibition of either JAK1 by filgotinib or TAM kinases by UNC2025 sensitizes Ewing sarcoma to chemotherapy in vitro and in vivo. Excitingly, the TAM kinase inhibitor MRX-2843 currently in human clinical trials to treat AML and advanced solid tumors, enhances chemotherapy efficacy to further suppress Ewing sarcoma tumor growth in vivo. Our findings reveal an Ewing sarcoma chemoresistance mechanism with an immediate translational value.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yu Deng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaodong Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Charlene Santos
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - H Shelton Earp
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Medicine and Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
2
|
Growth arrest-specific gene 6 transfer promotes mesenchymal stem cell survival and cardiac repair under hypoxia and ischemia via enhanced autocrine signaling and paracrine action. Arch Biochem Biophys 2018; 660:108-120. [PMID: 30365934 DOI: 10.1016/j.abb.2018.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/08/2018] [Accepted: 10/22/2018] [Indexed: 01/10/2023]
Abstract
Poor cell viability after transplantation has restricted the therapeutic capacity of mesenchymal stem cells (MSCs) for cardiac dysfunction after myocardial infarction (MI). Growth arrest-specific gene 6 (Gas6) encodes a secreted γ-carboxyglutamic acid (Gla)-containing protein that functions in cell growth, adhesion, chemotaxis, mitogenesis and cell survival. In this study, we genetically modified MSCs with Gas6 and evaluated cell survival, cardiac function, and infarct size in a rat model of MI via intramyocardial delivery. Functional studies demonstrated that Gas6 transfer significantly reduced MSC apoptosis, increased survival of MSCs in vitro and in vivo, and that Gas6-engineered MSCs (MSCGas6)-treated animals had smaller infarct size and showed remarkably functional recovery as compared with control MSCs (MSCNull)-treated animals. Mechanistically, Gas6 could enhance phosphatidylinositol 3-kinase (PI3K)/Akt signaling and improve hypoxia-inducible factor-1 alpha (HIF-1α)-driven secretion of four major growth factors (VEGF, bFGF, SDF and IGF-1) in MSCs under hypoxia in an Axl-dependent autocrine manner. The paracrine action of MSCGas6 was further validated by coculture neonatal rat cardiomyocytes with conditioned medium from hypoxia-treated MSCGas6, as well as by pretreatment cardiomyocytes with the specific receptor inhibitors of VEGF, bFGF, SDF and IGF-1. Collectively, our data suggest that Gas6 may advance the efficacy of MSC therapy for post-infarcted heart failure via enhanced Gas6/Axl autocrine prosurvival signaling and paracrine cytoprotective action.
Collapse
|
4
|
Characterization of the promoter elements of Bombyx mori bidensovirus nonstructural gene 1. Curr Microbiol 2012; 65:643-8. [PMID: 22898833 DOI: 10.1007/s00284-012-0199-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
Abstract
Bombyx mori Bidensovirus (BmBDV), a bipartite virus possesses two single-stranded linear DNAs (VD1 and VD2) and shows high pathogenic ability to Bombyx mori. Previous research found that the genes of nonstructural protein ns1 and ns2 were in the same transcript. To investigate the mechanism of transcriptional regulation of ns1 and ns2 genes, the 5'-flanking sequence (289 nt) of ns1 gene, encompasses the regions of the common terminal sequence (CTS) and the predicted P5 promoter from the 5'-terminus of the viral genome to the transcription initiation site of the ns1 gene was cloned and fused to the upstream of the luciferase reporter gene. The luciferase reporter assay showed that the 53 nt CTS of VD1 and VD2 can downregulate the activity of P5 by 13.3 %. The comparison in different cell lines showed that P5 possessed high promoter activity in BmN and Hi5 cell lines. Interestingly, P5 also had high activity in Hela cells, a kind of cancer cell of human. Subsequent truncated promoter analysis showed that the 31 nt (-236 to -206 nt) sequence is very important to P5 for the activity down to 36.5 % after deletion of it. While the activity also remained 26.5 % after the deletion of the TATA box, suggesting that the promoter is TATA independent. Moreover, in order to further understand the activity intensity of P5, a comparison with other three promoters, B. mori actin3 (Bm-actin3), B. mori nuclear polyhedrosis virus (BmNPV) immediate early 1 gene promoter (BmNPV-ie-1), and a synthetic promoter (3xP3) was carried out, the result indicated that the activity of P5 was weaker than that of anyone of them.
Collapse
|
5
|
Pan Q, Yang S, Wei Y, Sun F, Li Z. SP1 acts as a key factor, contributes to upregulation of ADAM23 expression under serum deprivation. Biochem Biophys Res Commun 2010; 401:306-12. [PMID: 20851106 DOI: 10.1016/j.bbrc.2010.09.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
Abstract
ADAM23 modulates many cellular functions, alteration of expression causes a number of tumor types; however, the mechanisms controlling ADAM23 expression remain unknown. Here we have identified a SP1 binding site (-202/-190) that binds SP1 at the proximal promoter of human ADAM23 gene; furthermore, serum deprivation enhances open chromatin accessibility and help expose the SP1 binding site; finally, SP1 binding recruits RNA polymerase II, which in turn results in upregulation of endogenous ADAM23 expression. Therefore, the present study delineates the fundamental elements of a core promoter structure that will be helpful for future studies of the regulation of ADAM23 gene.
Collapse
Affiliation(s)
- Qiuhui Pan
- The Central Laboratory, People's 10th Hospital, Shanghai 200072, PR China
| | | | | | | | | |
Collapse
|
6
|
SP1 is required for basal activation and chromatin accessibility of CD151 promoter in liver cancer cells. Biochem Biophys Res Commun 2010; 393:291-6. [DOI: 10.1016/j.bbrc.2010.01.127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 01/30/2010] [Indexed: 11/22/2022]
|