1
|
Fan K, Qian S, Zhang Z, Huang Q, Hu Z, Nie D, Meng J, Guo W, Zhao Z, Han Z. Recent advances in the combinations of plant-sourced natural products for the prevention of mycotoxin contamination in food. Crit Rev Food Sci Nutr 2023; 64:10626-10642. [PMID: 37357923 DOI: 10.1080/10408398.2023.2227260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Mycotoxins, secondary metabolites produced by mycotoxigenic fungi, are a major problem affecting food safety and security, because of their adverse health effects, their socio-economic impact and the difficulty of degradation or removal by conventional food processing methods. Plant-sourced natural products are a novel and effective control method for fungal infestation and mycotoxin production, with the advantages of biodegradability and acceptability for food use. However, development of resistance, low and inconsistent efficacy, and a limited range of antifungal activities hinder the effective application of single plant natural products for controlling mycotoxin contamination. To overcome these limitations, combinations of plant natural products have been tested extensively and found to increase efficacy, often synergistically. However, this extensive and promising research area has seen little development of practical applications. This review aims to provide up-to-date information on the antifungal, anti-mycotoxigenic and synergistic effects of combinations of plant natural products, as well as their mechanisms of action, to provide a reference source for future research and encourage application development.
Collapse
Affiliation(s)
- Kai Fan
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shenan Qian
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhiqi Zhang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qingwen Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Hu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenbo Guo
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Interspecific Nuclear Transfer Blastocysts Reconstructed from Arabian Oryx Somatic Cells and Domestic Cow Ooplasm. Vet Sci 2022; 10:vetsci10010017. [PMID: 36669018 PMCID: PMC9867358 DOI: 10.3390/vetsci10010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Cloning, commonly referred to as somatic cell nuclear transfer (SCNT), is the technique of enucleating an oocyte and injecting a somatic cell into it. This study was carried out with interspecific SCNT technology to clone the Arabian Oryx utilizing the oryx's fibroblast cells and transfer it to the enucleated oocytes of a domestic cow. The recipient oocytes were extracted from the cows that had been butchered. Oryx somatic nuclei were introduced into cow oocytes to produce embryonic cells. The study was conducted on three groups, Oryx interspecific somatic cell nuclear transfer into enucleated oocytes of domestic cows, cow SCNT "the same bovine family species", used as a control group, and in vitro fertilized (IVF) cows to verify all media used in this work. The rates of different embryo developmental stages varied slightly (from 1- cell to morula stage). Additionally, the oryx interspecies Somatic cell nuclear transfer blastocyst developmental rate (9.23%) was comparable to that of cow SCNT (8.33%). While the blastula stage rate of the (IVF) cow embryos exhibited a higher cleavage rate (42%) in the embryo development stage. The results of this study enhanced domestic cow oocytes' ability to support interspecific SCNT cloned oryx, and generate a viable embryo that can advance to the blastula stage.
Collapse
|
3
|
Ammari AA, ALghadi MG, ALhimaidi AR, Amran RA. The role of passage numbers of donor cells in the development of Arabian Oryx – Cow interspecific somatic cell nuclear transfer embryos. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The cloning between different animals known as interspecific somatic cell nuclear transfer (iSCNT) was carried out for endangered species. The iSCNT has been characterized by a poor success rate due to several factors that influence the formation of the SCNT in various cytoplasms. The cell cycle of the transferred somatic cell, the passage number of the cultured somatic cell, the mitochondria oocytes, and their capabilities are among these factors. This study investigates the role of the passage number of the Arabian Oryx somatic cell culture when transplanted to an enucleated domestic cow oocyte and embryo development in vitro. The fibroblast somatic cell of the Arabian Oryx was cultured for several passage lanes (3–13). The optimal passage cell number was found to be 10–13 Oryx cell lines that progressed to various cell stages up to the blastula stage. There was some variation between the different passage numbers of the oryx cell line. The 3–9 cell line did not show a good developmental stage. These could be attributed to several factors that control the iSCNT as stated by several investigators. More investigation is needed to clarify the role of factors that affect the success rate for the iSCNT.
Collapse
Affiliation(s)
- Aiman A. Ammari
- Department of Zoology, King Saud University, College of Science , P.O. Box 2455 , Riyadh 11451 , Kingdom of Saudi Arabia
| | - Muath G. ALghadi
- Department of Zoology, King Saud University, College of Science , P.O. Box 2455 , Riyadh 11451 , Kingdom of Saudi Arabia
| | - Ahmad R. ALhimaidi
- Department of Zoology, King Saud University, College of Science , P.O. Box 2455 , Riyadh 11451 , Kingdom of Saudi Arabia
| | - Ramzi A. Amran
- Department of Zoology, King Saud University, College of Science , P.O. Box 2455 , Riyadh 11451 , Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Yaakoub H, Sanchez NS, Ongay-Larios L, Courdavault V, Calenda A, Bouchara JP, Coria R, Papon N. The high osmolarity glycerol (HOG) pathway in fungi †. Crit Rev Microbiol 2021; 48:657-695. [PMID: 34893006 DOI: 10.1080/1040841x.2021.2011834] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While fungi are widely occupying nature, many species are responsible for devastating mycosis in humans. Such niche diversity explains how quick fungal adaptation is necessary to endow the capacity of withstanding fluctuating environments and to cope with host-imposed conditions. Among all the molecular mechanisms evolved by fungi, the most studied one is the activation of the phosphorelay signalling pathways, of which the high osmolarity glycerol (HOG) pathway constitutes one of the key molecular apparatus underpinning fungal adaptation and virulence. In this review, we summarize the seminal knowledge of the HOG pathway with its more recent developments. We specifically described the HOG-mediated stress adaptation, with a particular focus on osmotic and oxidative stress, and point out some lags in our understanding of its involvement in the virulence of pathogenic species including, the medically important fungi Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, compared to the model yeast Saccharomyces cerevisiae. Finally, we also highlighted some possible applications of the HOG pathway modifications to improve the fungal-based production of natural products in the industry.
Collapse
Affiliation(s)
- Hajar Yaakoub
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| | - Norma Silvia Sanchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Laura Ongay-Larios
- Unidad de Biología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Vincent Courdavault
- EA2106 "Biomolécules et Biotechnologies Végétales", Université de Tours, Tours, France
| | | | | | - Roberto Coria
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Nicolas Papon
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| |
Collapse
|
5
|
Venturini TP, Rossato L, Chassot F, De Azevedo MI, Al-Hatmi AMS, Santurio JM, Alves SH. Activity of cinnamaldehyde, carvacrol and thymol combined with antifungal agents against Fusarium spp. JOURNAL OF ESSENTIAL OIL RESEARCH 2021. [DOI: 10.1080/10412905.2021.1923580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tarcieli Pozzebon Venturini
- Postgraduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Luana Rossato
- Postgraduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Francieli Chassot
- Postgraduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Maria Isabel De Azevedo
- Department of Preventive Veterinary Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Janio Morais Santurio
- Department of Preventive Veterinary Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
- Postgraduate Program in Pharmacology, Health Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Sydney Hartz Alves
- Postgraduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
- Department of Preventive Veterinary Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
6
|
Shcherbakova L, Odintsova T, Pasechnik T, Arslanova L, Smetanina T, Kartashov M, Slezina M, Dzhavakhiya V. Fragments of a Wheat Hevein-Like Antimicrobial Peptide Augment the Inhibitory Effect of a Triazole Fungicide on Spore Germination of Fusarium oxysporum and Alternaria solani. Antibiotics (Basel) 2020; 9:E870. [PMID: 33291849 PMCID: PMC7762046 DOI: 10.3390/antibiotics9120870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
There are increasing environmental risks associated with extensive use of fungicides for crop protection. Hence, the use of new approaches using natural plant defense mechanisms, including application of plant antimicrobial peptides (AMPs), is of great interest. Recently, we studied the structural-function relationships between antifungal activity and five hevein-like AMPs from the WAMP (wheat AMP) family of Triticum kiharae Dorof. et Migush. We first discovered that short peptides derived from the central, N-, and C-terminal regions of one of the WAMPs (WAMP-2) were able to augment the inhibitory effect of Folicur® EC 250, a triazole fungicide, on spore germination of the wheat pathogenic fungi, including Fusarium spp. and Alternaria alternata. In this research, we explored the ability of chemically synthesized WAMP-2-derived peptides for enhancing the sensitivity of two other Fusarium and Alternaria species, F. oxysporum and A. solani, causing wilt and early blight of tomato, respectively, to Folicur®. The synthesized WAMP-2-derived peptides synergistically interacted with the fungicide and significantly increased its efficacy, inhibiting conidial germination at much lower Folicur® concentrations than required for the same efficiency using the fungicide alone. The experiments on co-applications of some of WAMP-2-fragments and the fungicide on tomato leaves and seedlings, which confirmed the results obtained in vitro, are described.
Collapse
Affiliation(s)
- Larisa Shcherbakova
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow reg., Russia; (T.P.); (L.A.); (T.S.); (M.K.); (V.D.)
| | - Tatyana Odintsova
- Vavilov Institute of General Genetics RAS, Gubkina Str. 3, 119333 Moscow, Russia;
| | - Tatyana Pasechnik
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow reg., Russia; (T.P.); (L.A.); (T.S.); (M.K.); (V.D.)
| | - Lenara Arslanova
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow reg., Russia; (T.P.); (L.A.); (T.S.); (M.K.); (V.D.)
| | - Tatyana Smetanina
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow reg., Russia; (T.P.); (L.A.); (T.S.); (M.K.); (V.D.)
| | - Maxim Kartashov
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow reg., Russia; (T.P.); (L.A.); (T.S.); (M.K.); (V.D.)
| | - Marina Slezina
- Vavilov Institute of General Genetics RAS, Gubkina Str. 3, 119333 Moscow, Russia;
| | - Vitaly Dzhavakhiya
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow reg., Russia; (T.P.); (L.A.); (T.S.); (M.K.); (V.D.)
| |
Collapse
|
7
|
Odintsova T, Shcherbakova L, Slezina M, Pasechnik T, Kartabaeva B, Istomina E, Dzhavakhiya V. Hevein-Like Antimicrobial Peptides Wamps: Structure-Function Relationship in Antifungal Activity and Sensitization of Plant Pathogenic Fungi to Tebuconazole by WAMP-2-Derived Peptides. Int J Mol Sci 2020; 21:E7912. [PMID: 33114433 PMCID: PMC7662308 DOI: 10.3390/ijms21217912] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Keywords: hevein-like antimicrobial peptides; antifungal activity; antifungal determinants; synergy; chemosensitization; tebuconazole; plant pathogenic fungi.
Collapse
Affiliation(s)
- Tatyana Odintsova
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.S.); (E.I.)
| | - Larisa Shcherbakova
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow, Russia; (T.P.); (B.K.)
| | - Marina Slezina
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.S.); (E.I.)
| | - Tatyana Pasechnik
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow, Russia; (T.P.); (B.K.)
| | - Bakhyt Kartabaeva
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow, Russia; (T.P.); (B.K.)
| | - Ekaterina Istomina
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.S.); (E.I.)
| | - Vitaly Dzhavakhiya
- Department of Molecular Biology, All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow, Russia;
| |
Collapse
|
8
|
Sharifzadeh A, Khosravi AR, Shokri H, Shirzadi H. Potential effect of 2-isopropyl-5-methylphenol (thymol) alone and in combination with fluconazole against clinical isolates of Candida albicans, C. glabrata and C. krusei. J Mycol Med 2018; 28:294-299. [PMID: 29661606 DOI: 10.1016/j.mycmed.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/06/2023]
Abstract
Limitations of antifungals used in the treatment of candidiasis, as the development of resistant strains, are known by the scientific community. In this context, the aim of this study was to investigate the activity of 2-isopropyl-5-methylphenol (thymol) in combination with fluconazole (FLZ) against clinical Candida strains. The antifungal activity of thymol along with FLZ was evaluated by the Clinical Laboratory Standards Institute (CLSI) M27-A2 broth microdilution method. In addition, synergism was observed for clinical strains of Candida spp. with combination of thymol-FLZ evaluated by the chequerboard microdilution method. The mean of minimum inhibitory concentration (MIC) values of thymol and FLZ were 49.37 and 0.475μg/ml for C. albicans, 51.25 and 18.80μg/ml for C. glabrata and 70 and 179.20μg/ml for C. krusei strains, respectively. Thymol in combination with FLZ exhibited the synergistic effects against all species of Candida tested. FICI values for thymol plus FLZ ranged from 0.366 to 0.607 for C. albicans strains, 0.367 to 0.482 for C. glabrata strains, and 0.375 to 0.563 for C. krusei strains. No antagonistic activity was seen in the strains tested. Thymol was found to have a fungicidal effect on Candida species and a synergistic effect when combined with FLZ.
Collapse
Affiliation(s)
- A Sharifzadeh
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Azadi street, Tehran, Iran.
| | - A R Khosravi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Azadi street, Tehran, Iran
| | - H Shokri
- Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - H Shirzadi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Azadi street, Tehran, Iran
| |
Collapse
|
9
|
Zacchino SA, Butassi E, Liberto MD, Raimondi M, Postigo A, Sortino M. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 37:27-48. [PMID: 29174958 DOI: 10.1016/j.phymed.2017.10.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 05/27/2023]
Abstract
BACKGROUND The intensive use of antibacterial and antifungal drugs has dramatically increased the microbial resistance and has led to a higher number of difficult-to-eradicate infections. Combination therapy with two or more antimicrobial drugs has emerged some years ago to overcome the issue, but it has proven to be not completely effective. Natural secondary metabolites of MW ≤ 500 represent promising adjuvants for antimicrobials and have been the object of several researches that have increased in the last two decades. PURPOSE The purpose of this Review is to do a literature search of the natural compounds that showed high enhancing capacity of antibacterials' and antifungals' effects against planktonic bacteria and fungi and to analyze which are the natural products most used in combination with a focus on polyphenols and terpenoids. RESULTS One hundred of papers were collected for reviewing. Fifty six (56) of them deal with combinations of low MW natural products with antibacterial drugs against planktonic bacteria and forty four (44) on natural products with antifungal drugs against planktonic fungi. Of the antibacterial adjuvants, 41 (73%) were either polyphenols (27; 48%) or terpenes (14; 25%). The remaining 15 papers (27%), deal with different class of natural products. Since most natural potentiators belong to the terpene or phenolic structural types, a more detailed description of the works dealing with these type of compounds is provided here. Bacterial and fungal resistance mechanisms, the modes of action of the main classes of antibacterial and antifungal drugs and the methodologies most used to assess the type of interactions in the combinations were included in the Review too. CONCLUSIONS AND PERSPECTIVES Several promising results on the potentiation effects of antifungals' and antibacterials' activities by low MW natural products mainly on polyphenols and terpenes were reported in the literature and, in spite of that most works included only in vitro assays, this knowledge opens a wide range of possibilities for the combination antimicrobial therapy. Further research including in vivo assays and clinical trials are required to determine the relevance of these antimicrobial enhancers in the clinical area and should be the focus of future studies in order to develop new antimicrobial combination agents that overpass the drawbacks of the existing antibiotics and antifungals in clinical use.
Collapse
Affiliation(s)
- Susana A Zacchino
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - Estefania Butassi
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Melina Di Liberto
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Marcela Raimondi
- Area Microbiología, Facultad de Cs. Médicas, Universidad Nacional de Rosario, Santa Fe 3100, Rosario 2000, Argentina
| | - Agustina Postigo
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Maximiliano Sortino
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina; Área Micología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| |
Collapse
|
10
|
Rasouli H, Farzaei MH, Mansouri K, Mohammadzadeh S, Khodarahmi R. Plant Cell Cancer: May Natural Phenolic Compounds Prevent Onset and Development of Plant Cell Malignancy? A Literature Review. Molecules 2016; 21:E1104. [PMID: 27563858 PMCID: PMC6274315 DOI: 10.3390/molecules21091104] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 12/15/2022] Open
Abstract
Phenolic compounds (PCs) are known as a chemically diverse category of secondary and reactive metabolites which are produced in plants via the shikimate-phenylpropanoid pathways. These compounds-ubiquitous in plants-are an essential part of the human diet, and are of considerable interest due to their antioxidant properties. Phenolic compounds are essential for plant functions, because they are involved in oxidative stress reactions, defensive systems, growth, and development. A large body of cellular and animal evidence carried out in recent decades has confirmed the anticancer role of PCs. Phytohormones-especially auxins and cytokinins-are key contributors to uncontrolled growth and tumor formation. Phenolic compounds can prevent plant growth by the endogenous regulation of auxin transport and enzymatic performance, resulting in the prevention of tumorigenesis. To conclude, polyphenols can reduce plant over-growth rate and the development of tumors in plant cells by regulating phytohormones. Future mechanistic studies are necessary to reveal intracellular transcription and transduction agents associated with the preventive role of phenolics versus plant pathological malignancy cascades.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
| | - Mohammad Hosein Farzaei
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
| | - Sara Mohammadzadeh
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
| | - Reza Khodarahmi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
- Nano Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
| |
Collapse
|
11
|
The fungal resistome: a risk and an opportunity for the development of novel antifungal therapies. Future Med Chem 2016; 8:1503-20. [PMID: 27485839 DOI: 10.4155/fmc-2016-0051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The risks for toxicity of novel antifungal compounds, together with the emergence of resistance, makes the use of inhibitors of resistance, in combination with antifungal compounds, a suitable strategy for developing novel antifungal formulations. Among them, inhibitors of efflux pumps are suitable candidates. Increasing drug influx or interfering with the stress response may also improve the efficacy of antifungals. Therapies as induction of fungal apoptosis or immunostimulation are also good strategies for reducing the risks for resistance and to improve antifungals' efficacy. Understanding the effect of the acquisition of resistance on the fungal physiology and determining the collateral sensitivity networks are useful for the development of novel strategies based on combination of antifungals for improving the efficacy of the therapy.
Collapse
|
12
|
Butts A, Palmer GE, Rogers PD. Antifungal adjuvants: Preserving and extending the antifungal arsenal. Virulence 2016; 8:198-210. [PMID: 27459018 DOI: 10.1080/21505594.2016.1216283] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
As the rates of systemic fungal infections continue to rise and antifungal drug resistance becomes more prevalent, there is an urgent need for new therapeutic options. This issue is exacerbated by the limited number of systemic antifungal drug classes. However, the discovery, development, and approval of novel antifungals is an extensive process that often takes decades. For this reason, there is growing interest and research into the possibility of combining existing therapies with various adjuvants that either enhance activity or overcome existing mechanisms of resistance. Reports of antifungal adjuvants range from plant extracts to repurposed compounds, to synthetic peptides. This approach would potentially prolong the utility of currently approved antifungals and mitigate the ongoing development of resistance.
Collapse
Affiliation(s)
- Arielle Butts
- a Department of Clinical Pharmacy , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Glen E Palmer
- a Department of Clinical Pharmacy , University of Tennessee Health Science Center , Memphis , TN , USA
| | - P David Rogers
- a Department of Clinical Pharmacy , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
13
|
Wang M, Zhao Q, Yang J, Jiang B, Wang F, Liu K, Fang X. A mitogen-activated protein kinase Tmk3 participates in high osmolarity resistance, cell wall integrity maintenance and cellulase production regulation in Trichoderma reesei. PLoS One 2013; 8:e72189. [PMID: 23991059 PMCID: PMC3753334 DOI: 10.1371/journal.pone.0072189] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/07/2013] [Indexed: 01/09/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathways are important signal transduction pathways conserved in essentially all eukaryotes, but haven't been subjected to functional studies in the most important cellulase-producing filamentous fungus Trichoderma reesei. Previous reports suggested the presence of three MAPKs in T. reesei: Tmk1, Tmk2, and Tmk3. By exploring the phenotypic features of T. reesei Δtmk3, we first showed elevated NaCl sensitivity and repressed transcription of genes involved in glycerol/trehalose biosynthesis under higher osmolarity, suggesting Tmk3 participates in high osmolarity resistance via derepression of genes involved in osmotic stabilizer biosynthesis. We also showed significant downregulation of genes encoding chitin synthases and a β-1,3-glucan synthase, decreased chitin content, ‘budded’ hyphal appearance typical to cell wall defective strains, and increased sensitivity to calcofluor white/Congo red in the tmk3 deficient strain, suggesting Tmk3 is involved in cell wall integrity maintenance in T. reesei. We further observed the decrease of cellulase transcription and production in T. reesei Δtmk3 during submerged cultivation, as well as the presence of MAPK phosphorylation sites on known transcription factors involved in cellulase regulation, suggesting Tmk3 is also involved in the regulation of cellulase production. Finally, the expression of cell wall integrity related genes, the expression of cellulase coding genes, cellulase production and biomass accumulation were compared between T. reesei Δtmk3 grown in solid state media and submerged media, showing a strong restoration effect in solid state media from defects resulted from tmk3 deletion. These results showed novel physiological processes that fungal Hog1-type MAPKs are involved in, and present the first experimental investigation of MAPK signaling pathways in T. reesei. Our observations on the restoration effect during solid state cultivation suggest that T. reesei is evolved to favor solid state growth, bringing up the proposal that the submerged condition normally used during investigations on fungal physiology might be misleading.
Collapse
Affiliation(s)
- Mingyu Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- National Glycoengineering Research Center, Shandong University, Jinan, China
| | - Qiushuang Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jinghua Yang
- Department of Surgery, VA Boston Healthcare System, Boston University, Boston, Massachusetts, United States of America
- Cancer Research Center, Shandong University School of Medicine, Jinan, China
| | - Baojie Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Fangzhong Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Kuimei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- National Glycoengineering Research Center, Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
14
|
Youngsaye W, Hartland CL, Morgan BJ, Ting A, Nag PP, Vincent B, Mosher CA, Bittker JA, Dandapani S, Palmer M, Whitesell L, Lindquist S, Schreiber SL, Munoz B. ML212: A small-molecule probe for investigating fluconazole resistance mechanisms in Candida albicans. Beilstein J Org Chem 2013; 9:1501-7. [PMID: 23946849 PMCID: PMC3740683 DOI: 10.3762/bjoc.9.171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/10/2013] [Indexed: 11/23/2022] Open
Abstract
The National Institutes of Health Molecular Libraries and Probe Production Centers Network (NIH-MLPCN) screened >300,000 compounds to evaluate their ability to restore fluconazole susceptibility in resistant Candida albicans isolates. Additional counter screens were incorporated to remove substances inherently toxic to either mammalian or fungal cells. A substituted indazole possessing the desired bioactivity profile was selected for further development, and initial investigation of structure–activity relationships led to the discovery of ML212.
Collapse
Affiliation(s)
- Willmen Youngsaye
- Chemical Biology Platform and Probe Development Center, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kim JH, Campbell BC, Chan KL, Mahoney N, Haff RP. Synergism of antifungal activity between mitochondrial respiration inhibitors and kojic acid. Molecules 2013; 18:1564-81. [PMID: 23353126 PMCID: PMC6269749 DOI: 10.3390/molecules18021564] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/19/2013] [Accepted: 01/22/2013] [Indexed: 11/17/2022] Open
Abstract
Co-application of certain types of compounds to conventional antimicrobial drugs can enhance the efficacy of the drugs through a process termed chemosensitization. We show that kojic acid (KA), a natural pyrone, is a potent chemosensitizing agent of complex III inhibitors disrupting the mitochondrial respiratory chain in fungi. Addition of KA greatly lowered the minimum inhibitory concentrations of complex III inhibitors tested against certain filamentous fungi. Efficacy of KA synergism in decreasing order was pyraclostrobin > kresoxim-methyl > antimycin A. KA was also found to be a chemosensitizer of cells to hydrogen peroxide (H2O2), tested as a mimic of reactive oxygen species involved in host defense during infection, against several human fungal pathogens and Penicillium strains infecting crops. In comparison, KA-mediated chemosensitization to complex III inhibitors/H2O2 was undetectable in other types of fungi, including Aspergillus flavus, A. parasiticus, and P. griseofulvum, among others. Of note, KA was found to function as an antioxidant, but not as an antifungal chemosensitizer in yeasts. In summary, KA could serve as an antifungal chemosensitizer to complex III inhibitors or H2O2 against selected human pathogens or Penicillium species. KA-mediated chemosensitization to H2O2 seemed specific for filamentous fungi. Thus, results indicate strain- and/or drug-specificity exist during KA chemosensitization.
Collapse
Affiliation(s)
- Jong H Kim
- Plant Mycotoxin Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan St., Albany, CA 94710, USA.
| | | | | | | | | |
Collapse
|
16
|
Kim JH, Chan KL, Faria NCG, Martins MDL, Campbell BC. Targeting the oxidative stress response system of fungi with redox-potent chemosensitizing agents. Front Microbiol 2012; 3:88. [PMID: 22438852 PMCID: PMC3305922 DOI: 10.3389/fmicb.2012.00088] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/22/2012] [Indexed: 11/28/2022] Open
Abstract
The cellular antioxidant system is a target in the antifungal action of amphotericin B (AMB) and itraconazole (ITZ), in filamentous fungi. The sakAΔ mutant of Aspergillus fumigatus, a mitogen-activated protein kinase (MAPK) gene deletion mutant in the antioxidant system, was found to be more sensitive to AMB or ITZ than other A. fumigatus strains, a wild type and a mpkCΔ mutant (a MAPK gene deletion mutant in the polyalcohol sugar utilization system). Complete fungal kill (≥99.9%) by ITZ or AMB was also achieved by much lower dosages for the sakAΔ mutant than for the other strains. It appears msnA, an Aspergillus ortholog to Saccharomyces cerevisiaeMSN2 (encoding a stress-responsive C2H2-type zinc-finger regulator) and sakA and/or mpkC (upstream MAPKs) are in the same stress response network under tert-butyl hydroperoxide (t-BuOOH)-, hydrogen peroxide (H2O2)- or AMB-triggered toxicity. Of note is that ITZ-sensitive yeast pathogens were also sensitive to t-BuOOH, showing a connection between ITZ sensitivity and antioxidant capacity of fungi. Enhanced antifungal activity of AMB or ITZ was achieved when these drugs were co-applied with redox-potent natural compounds, 2,3-dihydroxybenzaldehyde, thymol or salicylaldehyde, as chemosensitizing agents. We concluded that redox-potent compounds, which target the antioxidant system in fungi, possess a chemosensitizing capacity to enhance efficacy of conventional drugs.
Collapse
Affiliation(s)
- Jong H Kim
- Plant Mycotoxin Research Unit, Western Regional Research Center, USDA-ARS Albany, CA, USA
| | | | | | | | | |
Collapse
|
17
|
Campbell BC, Chan KL, Kim JH. Chemosensitization as a means to augment commercial antifungal agents. Front Microbiol 2012; 3:79. [PMID: 22393330 PMCID: PMC3289909 DOI: 10.3389/fmicb.2012.00079] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 02/15/2012] [Indexed: 11/13/2022] Open
Abstract
Antimycotic chemosensitization and its mode of action are of growing interest. Currently, use of antifungal agents in agriculture and medicine has a number of obstacles. Foremost of these is development of resistance or cross-resistance to one or more antifungal agents. The generally high expense and negative impact, or side effects, associated with antifungal agents are two further issues of concern. Collectively, these problems are exacerbated by efforts to control resistant strains, which can evolve into a treadmill of higher dosages for longer periods. This cycle in turn, inflates cost of treatment, dramatically. A further problem is stagnation in development of new and effective antifungal agents, especially for treatment of human mycoses. Efforts to overcome some of these issues have involved using combinations of available antimycotics (e.g., combination therapy for invasive mycoses). However, this approach has had inconsistent success and is often associated with a marked increase in negative side effects. Chemosensitization by natural compounds to increase effectiveness of commercial antimycotics is a somewhat new approach to dealing with the aforementioned problems. The potential for safe natural products to improve antifungal activity has been observed for over three decades. Chemosensitizing agents possess antifungal activity, but at insufficient levels to serve as antimycotics, alone. Their main function is to disrupt fungal stress response, destabilize the structural integrity of cellular and vacuolar membranes or stimulate production of reactive oxygen species, augmenting oxidative stress and apoptosis. Use of safe chemosensitizing agents has potential benefit to both agriculture and medicine. When co-applied with a commercial antifungal agent, an additive or synergistic interaction may occur, augmenting antifungal efficacy. This augmentation, in turn, lowers effective dosages, costs, negative side effects and, in some cases, countermands resistance.
Collapse
Affiliation(s)
- Bruce C. Campbell
- Plant Mycotoxin Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of AgricultureAlbany, CA, USA
| | - Kathleen L. Chan
- Plant Mycotoxin Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of AgricultureAlbany, CA, USA
| | - Jong H. Kim
- Plant Mycotoxin Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of AgricultureAlbany, CA, USA
| |
Collapse
|
18
|
Superoxide dismutases are involved in Candida albicans biofilm persistence against miconazole. Antimicrob Agents Chemother 2011; 55:4033-7. [PMID: 21746956 DOI: 10.1128/aac.00280-11] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the cellular mechanisms responsible for the occurrence of miconazole-tolerant persisters in Candida albicans biofilms. Miconazole induced about 30% killing of sessile C. albicans cells at 75 μM. The fraction of miconazole-tolerant persisters, i.e., cells that can survive high doses of miconazole (0.6 to 2.4 mM), in these biofilms was 1 to 2%. Since miconazole induces reactive oxygen species (ROS) in sessile C. albicans cells, we focused on a role for superoxide dismutases (Sods) in persistence and found the expression of Sod-encoding genes in sessile C. albicans cells induced by miconazole compared to the expression levels in untreated sessile C. albicans cells. Moreover, addition of the superoxide dismutase inhibitor N,N'-diethyldithiocarbamate (DDC) to C. albicans biofilms resulted in an 18-fold reduction of the miconazole-tolerant persister fraction and in increased endogenous ROS levels in these cells. Treatment of biofilms of C. albicans clinical isolates with DDC resulted in an 18-fold to more than 200-fold reduction of their miconazole-tolerant persister fraction. To further confirm the important role for Sods in C. albicans biofilm persistence, we used a Δsod4 Δsod5 mutant lacking Sods 4 and 5. Biofilms of the Δsod4 Δsod5 mutant contained at least 3-fold less of the miconazole-tolerant persisters and had increased ROS levels compared to biofilms of the isogenic wild type (WT). In conclusion, the occurrence of miconazole-tolerant persisters in C. albicans biofilms is linked to the ROS-detoxifying activity of Sods. Moreover, Sod inhibitors can be used to potentiate the activity of miconazole against C. albicans biofilms.
Collapse
|
19
|
Kim JH, Chan KL, Mahoney N, Campbell BC. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation. Ann Clin Microbiol Antimicrob 2011; 10:23. [PMID: 21627838 PMCID: PMC3127747 DOI: 10.1186/1476-0711-10-23] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/31/2011] [Indexed: 11/10/2022] Open
Abstract
Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI). Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ) and two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus (sakAΔ, mpkCΔ), indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations. Effective inhibition of fungal growth can also be achieved using combinations of these benzaldehydes. Conclusions Natural benzaldehydes targeting cellular antioxidation components of fungi, such as superoxide dismutases, glutathione reductase, etc., effectively inhibit fungal growth. They possess antifungal or chemosensitizing capacity to enhance efficacy of conventional antifungal agents. Chemosensitization can reduce costs, abate resistance, and alleviate negative side effects associated with current antifungal treatments.
Collapse
Affiliation(s)
- Jong H Kim
- Plant Mycotoxin Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan St,, Albany, CA 94710, USA
| | | | | | | |
Collapse
|
20
|
Faria NCG, Kim JH, Gonçalves LAP, Martins MDL, Chan KL, Campbell BC. Enhanced activity of antifungal drugs using natural phenolics against yeast strains of Candida and Cryptococcus. Lett Appl Microbiol 2011; 52:506-13. [PMID: 21332761 DOI: 10.1111/j.1472-765x.2011.03032.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Determine whether certain, natural phenolic compounds enhance activity of commercial antifungal drugs against yeast strains of Candida and Cryptococcus neoformans. METHODS AND RESULTS Twelve natural phenolics were examined for fungicidal activity against nine reference strains of Candida and one of C. neoformans. Six compounds were selected for synergistic enhancement of antifungal drugs, amphotericin B (AMB), fluconazole (FLU) and itraconazole (ITR). Matrix assays of phenolic and drug combinations conducted against one reference strain, each, of Candida albicans and C. neoformans showed cinnamic and benzoic acids, thymol, and 2,3- and 2,5-dihydroxybenzaldehydes (-DBA) had synergistic interactions depending upon drug and yeast strain. 2,5-DBA was synergistic with almost all drug and strain combinations. Thymol was synergistic with all drugs against Ca. albicans and with AMB in C. neoformans. Combinations of benzoic acid or thymol with ITR showed highest synergistic activity. Of 36 combinations of natural product and drug tested, none were antagonistic. CONCLUSIONS Relatively nontoxic natural products can synergistically enhance antifungal drug activity, in vitro. SIGNIFICANCE AND IMPACT OF THE STUDY This is a proof-of-concept, having clinical implications. Natural chemosensitizing agents could lower dosages needed for effective chemotherapy of invasive mycoses. Further studies against clinical yeast strains and use of animal models are warranted.
Collapse
Affiliation(s)
- N C G Faria
- Instituto de Higiene e Medicina Tropical/CREM, Universidade Nova de Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
21
|
Chemosensitization of aflatoxigenic fungi to antimycin A and strobilurin using salicylaldehyde, a volatile natural compound targeting cellular antioxidation system. Mycopathologia 2010; 171:291-8. [PMID: 20803256 DOI: 10.1007/s11046-010-9356-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 08/05/2010] [Indexed: 10/19/2022]
Abstract
Various species of fungi in the genus Aspergillus are the most common causative agents of invasive aspergillosis and/or producers of hepato-carcinogenic mycotoxins. Salicylaldehyde (SA), a volatile natural compound, exhibited potent antifungal and anti-mycotoxigenic activities to A. flavus and A. parasiticus. By exposure to the volatilized SA, the growth of A. parasiticus was inhibited up to 10-75% at 9.5 mM ≤ SA ≤ 16.0 mM, while complete growth inhibition was achieved at 19.0 mM ≤ SA. Similar trends were also observed with A. flavus. The aflatoxin production, i.e., aflatoxin B(1) and B(2) (AFB(1), AFB(2)) for A. flavus and AFB(1), AFB(2), AFG(1), and AFG(2) for A. parasiticus, in the SA-treated (9.5 mM) fungi was reduced by ~13-45% compared with the untreated control. Using gene deletion mutants of the model yeast Saccharomyces cerevisiae, we identified the fungal antioxidation system as the molecular target of SA, where sod1Δ [cytosolic superoxide dismutase (SOD)], sod2Δ (mitochondrial SOD), and glr1Δ (glutathione reductase) mutants showed increased sensitivity to this compound. Also sensitive was the gene deletion mutant, vph2Δ, for the vacuolar ATPase assembly protein, suggesting vacuolar detoxification plays an important role for fungal tolerance to SA. In chemosensitization experiments, co-application of SA with either antimycin A or strobilurin (inhibitors of mitochondrial respiration) resulted in complete growth inhibition of Aspergillus at much lower dose treatment of either agent, alone. Therefore, SA can enhance antifungal activity of commercial antifungal agents required to achieve effective control. SA is a potent antifungal and anti-aflatoxigenic volatile that may have some practical application as a fumigant.
Collapse
|
22
|
Kim JH, Campbell BC, Mahoney N, Chan KL, Molyneux RJ, Balajee A. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents. Fungal Biol 2010; 114:817-24. [PMID: 20943191 DOI: 10.1016/j.funbio.2010.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 07/12/2010] [Accepted: 07/29/2010] [Indexed: 11/25/2022]
Abstract
A number of benzoic acid analogues showed antifungal activity against strains of Aspergillus flavus, Aspergillus fumigatus and Aspergillus terreus, causative agents of human aspergillosis, in in vitro bioassays. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids were increased by addition of a methyl, methoxyl or chloro group at position 4 of the aromatic ring, or by esterification of the carboxylic acid with an alkyl group, respectively. Thymol, a natural phenolic compound, was a potent chemosensitizing agent when co-applied with the antifungal azole drugs fluconazole and ketoconazole. The thymol-azole drug combination demonstrated complete inhibition of fungal growth at dosages far lower than the drugs alone. Co-application of thymol with amphotericin B had an additive effect on all strains of aspergilli tested with the exception of two of three strains of A. terreus, where there was an antagonistic effect. Use of two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus, sakAΔ and mpkCΔ, having gene deletions in the oxidative stress response pathway, indicated antifungal and/or chemosensitization activity of the benzo analogues was by disruption of the oxidative stress response system. Results showed that both these genes play overlapping roles in the MAPK system in this fungus. The potential of safe, natural compounds or analogues to serve as chemosensitizing agents to enhance efficacy of commercial antifungal agents is discussed.
Collapse
Affiliation(s)
- Jong H Kim
- Western Regional Research Center, USDA-ARS, Albany, CA 94710, USA
| | | | | | | | | | | |
Collapse
|
23
|
Expression, purification, and characterization of Aspergillus fumigatus sterol 14-alpha demethylase (CYP51) isoenzymes A and B. Antimicrob Agents Chemother 2010; 54:4225-34. [PMID: 20660663 DOI: 10.1128/aac.00316-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aspergillus fumigatus sterol 14-α demethylase (CYP51) isoenzymes A (AF51A) and B (AF51B) were expressed in Escherichia coli and purified. The dithionite-reduced CO-P450 complex for AF51A was unstable, rapidly denaturing to inactive P420, in marked contrast to AF51B, where the CO-P450 complex was stable. Type I substrate binding spectra were obtained with purified AF51B using lanosterol (K(s), 8.6 μM) and eburicol (K(s), 22.6 μM). Membrane suspensions of AF51A bound to both lanosterol (K(s), 3.1 μM) and eburicol (K(s), 4.1 μM). The binding of azoles, with the exception of fluconazole, to AF51B was tight, with the K(d) (dissociation constant) values for clotrimazole, itraconazole, posaconazole, and voriconazole being 0.21, 0.06, 0.12, and 0.42 μM, respectively, in comparison with a K(d) value of 4 μM for fluconazole. Characteristic type II azole binding spectra were obtained with AF51B, whereas an additional trough and a blue-shifted spectral peak were present in AF51A binding spectra for all azoles except clotrimazole. This suggests two distinct azole binding conformations within the heme prosthetic group of AF51A. All five azoles bound relatively weakly to AF51A, with K(d) values ranging from 1 μM for itraconazole to 11.9 μM for fluconazole. The azole binding properties of purified AF51A and AF51B suggest an explanation for the intrinsic azole (fluconazole) resistance observed in Aspergillus fumigatus.
Collapse
|
24
|
Kim JH, Campbell BC, Mahoney N, Chan KL, Molyneux RJ, Xiao CL. Use of chemosensitization to overcome fludioxonil resistance in Penicillium expansum. Lett Appl Microbiol 2010; 51:177-83. [PMID: 20536709 DOI: 10.1111/j.1472-765x.2010.02875.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To overcome fludioxonil resistance of Penicillium expansum, a mycotoxigenic fungal pathogen causing postharvest decay in apple, by using natural phenolic chemosensitizing agents. METHODS AND RESULTS Fludioxonil-resistant mutants of P. expansum were co-treated with different oxidising and natural phenolic agents. Resistance was overcome by natural phenolic chemosensitizing agents targeting the oxidative stress-response pathway. These agents also augmented effectiveness of the fungicide, kresoxim-methyl. Results indicated that alkyl gallates target mitochondrial respiration and/or its antioxidation system. Fungal mitochondrial superoxide dismutase (Mn-SOD) plays a protective role against alkyl gallates. CONCLUSIONS Natural chemosensitizing agents targeting the oxidative stress-response system, such as Mn-SOD, can synergize commercial fungicides. SIGNIFICANCE AND IMPACT OF THE STUDY Redox-active compounds can serve as potent chemosensitizing agents to overcome resistance and lower effective dosages of fungicides. This can reduce costs with coincidental lowering of environmental and health risks.
Collapse
Affiliation(s)
- J H Kim
- Plant Mycotoxin Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, USA
| | | | | | | | | | | |
Collapse
|
25
|
Bi X, Guo N, Jin J, Liu J, Feng H, Shi J, Xiang H, Wu X, Dong J, Hu H, Yan S, Yu C, Wang X, Deng X, Yu L. The global gene expression profile of the model fungusSaccharomyces cerevisiaeinduced by thymol. J Appl Microbiol 2010; 108:712-22. [DOI: 10.1111/j.1365-2672.2009.04470.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Gastebois A, Clavaud C, Aimanianda V, Latgé JP. Aspergillus fumigatus: cell wall polysaccharides, their biosynthesis and organization. Future Microbiol 2009; 4:583-95. [DOI: 10.2217/fmb.09.29] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aspergillus fumigatus is the most prevalent thermophilic inhabitants of decaying vegetation and one of the most important human opportunistic fungal pathogens. Like other fungi, A. fumigatus cells are covered by a cell wall, which is both a protective, rigid exoskeleton and a dynamic structure, undergoing constant modification depending on its environment. The cell wall, in the majority of fungi, is composed of polysaccharides, and understanding the biochemical organization and biogenesis of an A. fumigatus cell wall is essential as this envelop is continuously in contact with the environment/host cell and acts as a sieve and reservoir for molecules, such as enzymes and toxins that play an active role during infection. This article is intended to give an overview of the biosynthesis of constituent cell wall polysaccharides and their postsynthetic modification in A. fumigatus, it also discusses the antifungal drugs that affect cell wall polysaccharide biosynthesis.
Collapse
Affiliation(s)
- Amandine Gastebois
- Unite des Aspergillus, Institut Pasteur, 25–28 rue du Docteur Roux, 75724, Paris, cedex 15, France
| | - Cécile Clavaud
- Unite des Aspergillus, Institut Pasteur, 25–28 rue du Docteur Roux, 75724, Paris, cedex 15, France
| | - Vishukumar Aimanianda
- Unite des Aspergillus, Institut Pasteur, 25–28 rue du Docteur Roux, 75724, Paris, cedex 15, France
| | - Jean-Paul Latgé
- Unite des Aspergillus, Institut Pasteur, 25–28 rue du Docteur Roux, 75724, Paris, cedex 15, France
| |
Collapse
|
27
|
Aspergillus nidulans UDP-galactopyranose mutase, encoded by ugmA plays key roles in colony growth, hyphal morphogensis, and conidiation. Fungal Genet Biol 2008; 45:1533-42. [DOI: 10.1016/j.fgb.2008.09.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 09/15/2008] [Accepted: 09/17/2008] [Indexed: 11/18/2022]
|