1
|
Dai G, Sun B, Wu L, Gao X, Song S, Sun H, Ju W. Comparative pharmacokinetics of three alkaloids in normal and acute hepatitis rats after oral administration of Yanhuanglian total alkaloids extract. Biomed Chromatogr 2018; 32:e4329. [PMID: 29972688 DOI: 10.1002/bmc.4329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/18/2018] [Accepted: 06/27/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Guoliang Dai
- Department of Clinical Pharmacology; Affiliated Hospital of Nanjing University of Chinese Medicine; Nanjing China
| | - Bingting Sun
- TCM Research Institution; the Third Affiliated Hospital of Nanjing University of Chinese Medicine; Nanjing China
| | - Lei Wu
- Department of Pharmacy; Affiliated Hospital of Nanjing University of Chinese Medicine; Nanjing China
| | - Xiaojun Gao
- Department of Pharmacy; Affiliated Hospital of Nanjing University of Chinese Medicine; Nanjing China
| | - Shanshan Song
- Department of Clinical Pharmacology; Affiliated Hospital of Nanjing University of Chinese Medicine; Nanjing China
| | - Hong Sun
- Department of Clinical Pharmacology; Affiliated Hospital of Nanjing University of Chinese Medicine; Nanjing China
| | - Wenzheng Ju
- Department of Clinical Pharmacology; Affiliated Hospital of Nanjing University of Chinese Medicine; Nanjing China
| |
Collapse
|
2
|
1-Methylmalate from Camu-Camu (Myrciaria dubia) SuppressedD-Galactosamine-Induced Liver Injury in Rats. Biosci Biotechnol Biochem 2014; 74:573-8. [DOI: 10.1271/bbb.90775] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Sato K, Egashira Y, Ono S, Mochizuki S, Shimmura Y, Suzuki Y, Nagata M, Hashimoto K, Kiyono T, Park EY, Nakamura Y, Itabashi M, Sakata Y, Furuta S, Sanada H. Identification of a hepatoprotective peptide in wheat gluten hydrolysate against D-galactosamine-induced acute hepatitis in rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6304-6310. [PMID: 23742096 DOI: 10.1021/jf400914e] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A hepatoprotective peptide, pyroglutamyl leucine (pyroGlu-Leu), was identified in wheat gluten hydrolysate through an in vivo activity-guided fractionation approach based on D-galactosamine-induced acute hepatitis in rats and fractionation of peptides with large-scale preparative ampholine-free isoelectric focusing. The active acidic fraction predominantly consisted of pyroglutamyl peptides and free pyroglutamic acid. Pyroglutamyl peptides were derivatized with phenyl isothiocyanate after removal of a pyroglutamyl residue by pyroglutamate aminopeptidase. The derivatives were purified by reversed-phase HPLC and subjected to sequence analysis. The active fraction contained pyroGlu-Ile, pyroGlu-Leu, pyroGlu-Gln, pyroGlu-Gln-Gln, and free pyroGlu. Ingestion of pyroGlu-Leu at 20 mg/kg body weight significantly decreased serum aspartate and alanine aminotransferases to approximately 30% and 20% of those values of the vehicle group, respectively, which were near the normal levels. Thirty minutes after ingestion of pyroGlu-Leu at 20 mg/kg, the concentration of pyroGlu-Leu in portal blood plasma increased to approximately 2 μM.
Collapse
Affiliation(s)
- Kenji Sato
- Division of Applied Life Sciences, Kyoto Prefectural University, Shimogamo, Kyoto 606 8522, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Turkez H, Geyikoglu F, Yousef MI, Celik K, Bakir TO. Ameliorative effect of supplementation with L-glutamine on oxidative stress, DNA damage, cell viability and hepatotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat hepatocyte cultures. Cytotechnology 2012; 64:687-99. [PMID: 22453904 PMCID: PMC3488374 DOI: 10.1007/s10616-012-9449-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/05/2012] [Indexed: 12/11/2022] Open
Abstract
The most potent of the dioxins, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is a persistent and ubiquitous environmental contaminant. And the health impact of exposure to TCDD is of great concern to the general public. Recent data indicate that L-glutamine (Gln) has antioxidant properties and may influence hepatotoxicity. The objective of the present study was undertaken to explore the effectiveness of Gln in alleviating the hepatotoxicity of TCDD on primary cultured rat hepatocytes. Gln (0.5, 1 and 2 mM) was added to cultures alone or simultaneously with TCDD (0.005 and 0.01 mM). The hepatocytes were treated with TCDD and Gln for 48 h. Then cell viability was detected by [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide] (MTT) assay and lactate dehydrogenase (LDH) release, while total antioxidant capacity (TAC), total glutathione (TGSH) and total oxidative stress (TOS) levels were determined to evaluate the oxidative injury. The DNA damage was also analyzed by liver micronucleus assay (MN) and 8-oxo-2-deoxyguanosine (8-OH-dG). The results of MTT and LDH assays showed that TCDD decreased cell viability but not L-glutamine. TCDD also increased TOS level in rat hepatocytes and significantly decreased TAC and TGSH levels. On the basis of increasing doses, the dioxin in a dose-dependent manner caused significant increases of micronucleated hepatocytes (MNHEPs) and 8-OH-dG as compared to control culture. Whereas, in cultures exposured with Gln alone, TOS levels were not changed and TAC and TGSH together were significantly increased in dose-dependent fashion. The presence of Gln with TCDD modulated the hepatotoxic effects of TCDD on primary hepatocytes cultures. Noteworthy, Gln has a protective effect against TCDD-mediated DNA damages. As conclusion, we reported here an increased potential therapeutic significance of L-glutamine in TCDD-mediated hepatic injury for the first time.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
| | - Mokhtar I. Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526 Egypt
| | - Kubra Celik
- Department of Biology, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
| | - Tulay O. Bakir
- Department of Biology, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
5
|
Suppressive effect of modified arabinoxylan from rice bran (MGN-3) on D-galactosamine-induced IL-18 expression and hepatitis in rats. Biosci Biotechnol Biochem 2012; 76:942-6. [PMID: 22738964 DOI: 10.1271/bbb.110968] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated in this study the effect of modified arabinoxylan from rice bran (MGN-3) and its fractions on D-galactosamine (D-GalN)-induced IL-18 expression and hepatitis in rats. Male Wistar rats were pretreated with MGN-3 or fractions of the MGN-3 hydrolysate, or with saline 1 h before administering D-GalN (400 mg/kg B.W.). The serum transaminase activities, IL-18 mRNA expression level in the liver and IL-18 concentration in the serum were determined 24 h after injecting D-GalN. Both the oral and intraperitoneal administration of MGN-3 (20 mg/kg B.W.) alleviated D-GalN-induced hepatic injury under these experimental conditions. The low-molecular-weight fraction (LMW) of MGN-3 showed the strongest protective effect on D-GalN-induced liver injury, its main sugar component being glucose. Moreover, the D-GalN-induced IL-18 expression was significantly reduced by treating with MGN-3 and LMW. The results suggest that MGN-3 and LMW could provide significant protection against D-GalN liver injury, and that IL-18 might be involved in their protective influence.
Collapse
|
6
|
Türkez H, Geyikoğlu F, Yousef MI. Modulatory effect of l-glutamine on 2,3,7,8 tetrachlorodibenzo-p-dioxin-induced liver injury in rats. Toxicol Ind Health 2011; 28:663-72. [DOI: 10.1177/0748233711420474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of this study was to explore the effectiveness of l-glutamine (Gln) in alleviating the toxicity of 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) in liver of rats. Rats were intraperitoneally administered Gln and TCDD doses daily for 21 days. In the liver of rats, the biochemical tests, pathological examination and micronucleus (MN) test were performed. TCDD significantly decreased the activities of antioxidant enzymes and serious pathological findings. Moreover, the rate of MNs in hepatocytes increased after treatment with dioxin. In rats treated with Gln alone, the MNs remained unchanged, but the ratio of glutathione (GSH) and the activity of glutathione peroxidase (GSH-Px) were significantly increased. Gln also prevented the suppression of GSH-Px (except for superoxide dismutase and catalase) and GSH in the livers of animals exposed to TCDD and displayed a strong protective effect against MNs. Thus, our findings for Gln might provide new insight into the development of therapeutic and preventive approaches in TCDD toxicity.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Biology, Atatürk University, Erzurum, Turkey
| | | | - Mokhtar I Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Gonzalez E, van Liempd S, Conde-Vancells J, Gutierrez-de Juan V, Perez-Cormenzana M, Mayo R, Berisa A, Alonso C, Marquez CA, Barr J, Lu SC, Mato JM, Falcon-Perez JM. Serum UPLC-MS/MS metabolic profiling in an experimental model for acute-liver injury reveals potential biomarkers for hepatotoxicity. Metabolomics 2011; 8:997-1011. [PMID: 23139648 PMCID: PMC3490499 DOI: 10.1007/s11306-011-0329-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A key interest in clinical diagnosis and pharmaceutical industry is to have a repertoire of noninvasive biomarkers to-individually or in combination-be able to infer or predict the degree of liver injury caused by pathological conditions or drugs. Metabolomics-a comprehensive study of global metabolites-has become a highly sensitive and powerful tool for biomarker discovery thanks to recent technological advances. An ultra-performance liquid chromatography/time-of-flight tandem mass spectrometry (UPLC/TOF MS/MS)-based metabolomics approach was employed to investigate sera from galactosamine-treated rats to find potential biomarkers for acute liver injury. Hepatic damage was quantified by determining serum transaminase activity and in situ liver histological lesions. Principal component analysis in combination with coefficient of correlation analysis was used for biomarker selection and identification. According to the data, serum levels of several metabolites including glucose, amino acids, and membrane lipids were significantly modified, some of them showing a high correlation with the degree of liver damage determined by histological examination of the livers. In conclusion, this study supports that UPLC-MS/MS based serum metabolomics in experimental animal models could be a powerful approach to search for biomarkers for drug- or disease-induced liver injury.
Collapse
Affiliation(s)
- Esperanza Gonzalez
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Sebastiaan van Liempd
- Metabolomics Platform, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Javier Conde-Vancells
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | | | | | - Rebeca Mayo
- OWL Genomics, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Agustin Berisa
- R&D and Innovation Department, FAES FARMA S.A., 48940 Leioa, Bizkaia, Spain
| | - Cristina Alonso
- OWL Genomics, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | | | - Jonathan Barr
- OWL Genomics, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Shelly C. Lu
- Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University Southern California, Los Angeles, CA 90033, USA
| | - Jose M. Mato
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Juan M. Falcon-Perez
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
8
|
Conde-Vancells J, Rodriguez-Suarez E, Gonzalez E, Berisa A, Gil D, Embade N, Valle M, Luka Z, Elortza F, Wagner C, Lu SC, Mato JM, Falcon-Perez M. Candidate biomarkers in exosome-like vesicles purified from rat and mouse urine samples. Proteomics Clin Appl 2011; 4:416-25. [PMID: 20535238 DOI: 10.1002/prca.200900103] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE There is a compelling clinical imperative to identify discerning molecular biomarkers of hepatic disease in order to inform the diagnosis, prognosis and treatment. EXPERIMENTAL DESIGN We have investigated the proteome of urinary vesicles present in urine samples obtained from experimental models for the study of liver injury, as an approach for identifying potential biomarkers for hepatic disease. RESULTS The biochemical and proteomic characterization of highly purified exosome-like urinary vesicles has identified 28 proteins previously unreported in these vesicles, and many that have been previously associated with diseases, such as the prion-related protein. Furthermore, in urine samples from D-galactosamine-treated rats, a well-characterized experimental model for acute liver injury, we have detected a severe reduction in some proteins that normally are clearly detected in urinary vesicles. Finally, differential protein content on urinary vesicles from a mouse model for chronic liver injury has been also identified. CONCLUSIONS AND CLINICAL RELEVANCE Our results argue positively that urinary vesicles could be a source for identifying non-invasive biomarkers of liver injury. We proposed some proteins such as Cd26, Cd81, Slc3A1 and Cd10 that have been found to be differentially expressed in urinary vesicles from some of the analyzed models as potential biomarkers for liver injury.
Collapse
Affiliation(s)
- Javier Conde-Vancells
- Metabolomics Unit, CICbioGUNE, CIBERehd, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Akachi T, Shiina Y, Ohishi Y, Kawaguchi T, Kawagishi H, Morita T, Mori M, Sugiyama K. Hepatoprotective effects of flavonoids from shekwasha (Citrus depressa) against D-galactosamine-induced liver injury in rats. J Nutr Sci Vitaminol (Tokyo) 2010; 56:60-7. [PMID: 20354348 DOI: 10.3177/jnsv.56.60] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We attempted to isolate the constituent(s) responsible for the suppressive effect of the juice of shekwasha, a citrus produced in Okinawa Prefecture, on D-galactosamine (GalN)-induced liver injury in rats. Liver injury-suppressive activity, as assessed by plasma alanine aminotransferase and aspartate aminotransferase activities, was found only in the fraction that was extracted with n-hexane when three fractions were added to the diet and fed to rats. Of five compounds isolated from the n-hexane-soluble fraction by silica gel column chromatography, three compounds had liver injury-suppressive effects when five compounds were singly force-fed to rats at a level of 300 mg/kg body wt 4 h before the injection with GalN. The structures of the three active compounds were determined as 3',4',5,6,7,8-hexamethoxyflavanone (citromitin), 4',5,6,7,8-pentamethoxyflavone (tangeretin) and 3',4',5,6,7,8-hexamethoxyflavone (nobiletin), which are known flavonoids mainly existing in citrus. Nobiletin, the most important compound in the n-hexane-soluble fraction, also had suppressive effects on liver injuries induced by carbon tetrachloride, acetaminophen and GalN/lipopolysaccharide (LPS) in addition to liver injury induced GalN. Nobiletin suppressed GalN/LPS-induced increases in plasma tumor necrosis factor (TNF)-alpha and nitric oxide (NO) concentrations and hepatic mRNA levels for inducible NO synthase and DNA fragmentation. These results suggest that nobiletin suppressed GalN/LPS-induced liver injury at least by suppressing the production of both TNF-alpha and NO. The results obtained here indicate that the hepatoprotective effect of shekwasha juice is mainly ascribed to several polymethoxy flavonoids included in the juice.
Collapse
Affiliation(s)
- Toshiyuki Akachi
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Protection by dietary Spirulina platensis against D-galactosamine--and acetaminophen-induced liver injuries. Br J Nutr 2010; 103:1573-6. [PMID: 20102673 DOI: 10.1017/s0007114509993758] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Increasing attention has been paid to Spirulina for its potential clinical uses. The present study investigated the protection by dietary Spirulina platensis against d-galactosamine (d-GalN)- and acetaminophen (APAP)-induced hepatitis in ICR mice. Mice in each group (n 6) were fed with a standard diet (American Institute of Nutrition (AIN)-93G), a positive control diet containing 0.5 % butylated hydroxytoluene (BHT), or a diet containing 3, 6 or 9 % S. platensis for 1 week. On the last day the mice were treated with d-GalN (300 mg/kg body weight, intraperitoneally) or APAP (150 mg/kg body weight, intraperitoneally) and 24 h later the mice were killed. The doses of both 6 and 9 % S. platensis were found to significantly alleviate the increase of serum glutamate oxaloacetoacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) activities in d-GalN- or APAP-intoxicated mice. The observation was very similar to that of the positive control groups. Two more experiments were carried out to investigate the involvement of thiobarbituric acid-reactive substances (TBARS) and IL-18 in the suppression of 6 % S. platensis on d-GalN- and APAP-induced hepatitis. The significant increase of GOT and GPT activities was found to be accompanied with the elevation of hepatic TBARS level, IL-18 mRNA expression and serum IL-18 concentration, and was significantly alleviated by supplementation with 6 % S. platensis in diets. These results showed that dietary S. platensis could provide a significant protection against d-GalN- and APAP-induced liver injuries, and IL-18 and lipid peroxidation might be involved in the protective influence of S. platensis.
Collapse
|