1
|
Miller LM, Draper BE, Barnes LF, Ofoegbu PC, Jarrold MF. Analysis of Megadalton-Sized DNA by Charge Detection Mass Spectrometry: Entropic Trapping and Shearing in Nanoelectrospray. Anal Chem 2023. [PMID: 37267126 DOI: 10.1021/acs.analchem.3c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The analysis of nucleic acids by conventional mass spectrometry is complicated by counter ions which cause mass heterogeneity and limit the size of the DNA that can be analyzed. In this work, we overcome this limitation using charge detection mass spectrometry to analyze megadalton-sized DNA. Using positive mode electrospray, we find two dramatically different charge distributions for DNA plasmids. A low charge population that charges like compact DNA origami and a much higher charge population, with charges that extend over a broad range. For the high-charge population, the deviation between the measured mass and mass expected from the DNA sequence is consistently around 1%. For the low-charge population, the deviation is larger and more variable. The high-charge population is attributed to the supercoiled plasmid in a random coil configuration, with the broad charge distribution resulting from the rich variety of geometries the random coil can adopt. High-resolution measurements show that the mass distribution shifts to slightly lower mass with increasing charge. The low-charge population is attributed to a condensed form of the plasmid. We suggest that the condensed form results from entropic trapping where the random coil must undergo a geometry change to squeeze through the Taylor cone and enter an electrospray droplet. For the larger plasmids, shearing (mechanical breakup) occurs during electrospray or in the electrospray interface. Shearing is reduced by lowering the salt concentration.
Collapse
Affiliation(s)
- Lohra M Miller
- Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Benjamin E Draper
- Megadalton Solutions Inc, 3750 E Bluebird Ln, Bloomington, Indiana 47401, United States
| | - Lauren F Barnes
- Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Polycarp C Ofoegbu
- Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Martin F Jarrold
- Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington, Indiana 47405, United States
| |
Collapse
|
2
|
Mikhail B, Dmitrijs M, Ivan M. A new device-mediated miniprep method. AMB Express 2022; 12:21. [PMID: 35192071 PMCID: PMC8863996 DOI: 10.1186/s13568-022-01360-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/30/2022] Open
Abstract
Small-scale plasmid DNA preparation or miniprep is a fundamental technique in estimation cloning experiments and is widely used for DNA methylation analysis in epigenetic research. Current plasmid DNA minipreps use the alkali-SDS-based method in a three-solution format and require spin column-based purification steps. This procedure requires the vortexing or pipetting of pelleted bacteria by centrifugation and manual mixing of the solutions. Here, we describe a centrifuge/mixer-based instrument with the ability to perform centrifugation, vibration, and rotor oscillation in order to perform all steps of plasmid DNA isolation by device only. We found that by applying rotor oscillation-driven mixing of solutions added in the lysis and neutralization steps, homogeneous mixing was achieved within 5 s at a rotor oscillation amplitude of 45° and oscillation frequency of 400 ± 30 rpm, yielding the maximal quantity and quality of plasmid DNA. No increase in host chromosome presence purified by this approach occurs for high-copy-number plasmids compared to manually performed miniprep, and indeed, there is a significant decrease in the presence of the chromosomal fraction in low-copy-number plasmids. The supercoiled form of plasmid DNA purified at a rotor oscillation amplitude of 45° does not turn into an open circular (OC) isoform when the plasmid is stored for 1 year at plus four degrees, in contrast to the plasmid purified with rotor oscillation amplitudes of 270°, 180° and 90°. The programmed time-work-efficient protocol of plasmid miniprep installed in the device gives the extreme simplicity of plasmid minipreps speeding up and facilitating the isolation of plasmid DNAs. New devise-mediated plasmid miniprep method (DM) performs all mixing steps without operator intervention. The DM method produces plasmid DNAs free of the dCCC form and significantly reduces the contamination with genomic DNA in the low-copy-number plasmid. DM miniprep plasmids are reliable templates for bisulfite PCR sequencing analysis.
Collapse
|
3
|
Kim J, Kim JY, Kim H, Kim E, Park S, Ryu KH, Lee EG. Increasing Transfection Efficiency of Lipoplexes by Modulating Complexation Solution for Transient Gene Expression. Int J Mol Sci 2021; 22:ijms222212344. [PMID: 34830226 PMCID: PMC8619889 DOI: 10.3390/ijms222212344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022] Open
Abstract
Transient gene expression is a suitable tool for the production of biopharmaceutical candidates in the early stage of development and provides a simple and rapid alternative to the generation of stable cell line. In this study, an efficient transient gene expression methodology using DC-Chol/DOPE cationic liposomes and pDNA in Chinese hamster ovary suspension cells was established through screening of diverse lipoplex formation conditions. We modulated properties of both the liposome formation and pDNA solution, together called complexation solutions. Protein expression and cellular cytotoxicity were evaluated following transfection over the cell cultivation period to select the optimal complexation solution. Changes in hydrodynamic size, polydispersity index, and ζ potential of the liposomes and lipoplexes were analyzed depending on the various pH ranges of the complexation solutions using dynamic light scattering. The transfer of lipoplexes to the cytosol and their conformation were traced using fluorescence analysis until the early period of transfection. As a result, up to 1785 mg/L and 191 mg/L of human Fc protein and immunoglobulin G (bevacizumab), respectively, were successfully produced using acidic liposome formation and alkaline pDNA solutions. We expect that this lipoplex formation in acidic and alkaline complexation solutions could be an effective methodology for a promising gene delivery strategy.
Collapse
Affiliation(s)
- Jaemun Kim
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea; (J.K.); (J.Y.K.)
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanji-ro Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Korea; (H.K.); (E.K.); (S.P.); (K.-H.R.)
| | - Ji Yul Kim
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea; (J.K.); (J.Y.K.)
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanji-ro Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Korea; (H.K.); (E.K.); (S.P.); (K.-H.R.)
| | - Hyeonkyeong Kim
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanji-ro Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Korea; (H.K.); (E.K.); (S.P.); (K.-H.R.)
| | - Eunsil Kim
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanji-ro Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Korea; (H.K.); (E.K.); (S.P.); (K.-H.R.)
| | - Soonyong Park
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanji-ro Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Korea; (H.K.); (E.K.); (S.P.); (K.-H.R.)
| | - Kyoung-Hwa Ryu
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanji-ro Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Korea; (H.K.); (E.K.); (S.P.); (K.-H.R.)
| | - Eun Gyo Lee
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea; (J.K.); (J.Y.K.)
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanji-ro Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Korea; (H.K.); (E.K.); (S.P.); (K.-H.R.)
- Correspondence: ; Tel.: +82-43-240-6633
| |
Collapse
|
4
|
Transformation of a Thermostable G-Quadruplex Structure into DNA Duplex Driven by Reverse Gyrase. Molecules 2017; 22:molecules22112021. [PMID: 29165328 PMCID: PMC6150213 DOI: 10.3390/molecules22112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 11/27/2022] Open
Abstract
Reverse gyrase is a topoisomerase that can introduce positive supercoils to its substrate DNA. It is demonstrated in our studies that a highly thermal stable G-quadruplex structure in a mini-plasmid DNA was transformed into its duplex conformation after a treatment with reverse gyrase. The structural difference of the topoisomers were verified and analyzed by gel electrophoresis, atomic force microscopy examination, and endonuclease digestion assays. All evidence suggested that the overwinding structure of positive supercoil could provide a driven force to disintegrate G-quadruplex and reform duplex. The results of our studies could suggest that hyperthermophiles might use reverse gyrase to manipulate the disintegration of non-B DNA structures and safekeep their genomic information.
Collapse
|
5
|
Li D, Lv B, Wang Q, Liu Y, Zhuge Q. Direct observation of positive supercoils introduced by reverse gyrase through atomic force microscopy. Bioorg Med Chem Lett 2017; 27:4086-4090. [PMID: 28756025 DOI: 10.1016/j.bmcl.2017.07.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 11/18/2022]
Abstract
Reverse gyrase is a hyperthermophilic enzyme that can introduce positive supercoiling in substrate DNA. It is showed in our studies that positive DNA supercoils were induced in both pBR322 vector and an artificially synthesized mini-plasmid DNA by reverse gyrase. The left-handed structures adopted by positively supercoiled DNA molecules could be identified from their right-handed topoisomers through atomic force microscopic examination. Additional structural comparisons revealed that positively supercoiled DNA molecule AFM images exhibited increased contour lengths. Moreover, enzymatic assays showed that the positively supercoiled DNA could not be cleaved by T7 endonuclease. Together, this suggests that the overwound structure of positive supercoils could prevent genomic duplex DNA from randomly forming single-stranded DNA regions and intra-stranded secondary structures.
Collapse
Affiliation(s)
- Dawei Li
- Key Lab of Forest Genetics and Biotechnology, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Bei Lv
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210037, China
| | - Qiang Wang
- Key Lab of Forest Genetics and Biotechnology, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yun Liu
- Key Lab of Forest Genetics and Biotechnology, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Qiang Zhuge
- Key Lab of Forest Genetics and Biotechnology, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| |
Collapse
|
6
|
Time-resolved chloroquine-induced relaxation of supercoiled plasmid DNA. Anal Bioanal Chem 2011; 402:373-80. [PMID: 21766217 DOI: 10.1007/s00216-011-5213-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/17/2011] [Accepted: 06/24/2011] [Indexed: 10/18/2022]
Abstract
Herein, we report on the in vitro change of DNA conformation of plasmids bound to a 3-aminopropyl-modified mica surface and monitoring the events by atomic force microscopy (AFM) imaging under near physiological conditions. In our study, we used an intercalating drug, chloroquine, which is known to decrease the twist of the double helix and thus altered the conformation of the whole DNA. During our experiments, a chloroquine solution was added while imaging a few highly condensed plasmid nanoparticles in solution. AFM images recorded after the drug addition clearly show a time-resolved relaxation of these bionanoparticles into a mixture of loose DNA strands.
Collapse
|