1
|
Han Z, Benlagha K, Lee P, Park CS, Filatov A, Byazrova MG, Miller H, Yang L, Liu C. The function of serine/threonine-specific protein kinases in B cells. Front Immunol 2024; 15:1459527. [PMID: 39445011 PMCID: PMC11496051 DOI: 10.3389/fimmu.2024.1459527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
The serine/threonine-specific protein kinases (STKs) are important for cell survival, proliferation, differentiation, and apoptosis. In B cells, these kinases play indispensable roles in regulating important cellular functions. Multiple studies on human and other animal cells have shown that multiple STKs are involved in different stages of B cell development and antibody production. However, how STKs affect B cell development and function is still not completely understood. Considering that B cells are clinically important in immunity and diseases, our understanding of STKs' roles in B cells is in great need of investigation with current technologies. Investigating serine/threonine kinases will not only deepen our insight into B cell-related disorders but also facilitate the identification of more effective drug targets for conditions like lymphoma and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Zhennan Han
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Münchhalfen M, Görg R, Haberl M, Löber J, Willenbrink J, Schwarzt L, Höltermann C, Ickes C, Hammermann L, Kus J, Chapuy B, Ballabio A, Reichardt SD, Flügel A, Engels N, Wienands J. TFEB activation hallmarks antigenic experience of B lymphocytes and directs germinal center fate decisions. Nat Commun 2024; 15:6971. [PMID: 39138218 PMCID: PMC11322606 DOI: 10.1038/s41467-024-51166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Ligation of the B cell antigen receptor (BCR) initiates humoral immunity. However, BCR signaling without appropriate co-stimulation commits B cells to death rather than to differentiation into immune effector cells. How BCR activation depletes potentially autoreactive B cells while simultaneously primes for receiving rescue and differentiation signals from cognate T lymphocytes remains unknown. Here, we use a mass spectrometry-based proteomic approach to identify cytosolic/nuclear shuttling elements and uncover transcription factor EB (TFEB) as a central BCR-controlled rheostat that drives activation-induced apoptosis, and concurrently promotes the reception of co-stimulatory rescue signals by supporting B cell migration and antigen presentation. CD40 co-stimulation prevents TFEB-driven cell death, while enhancing and prolonging TFEB's nuclear residency, which hallmarks antigenic experience also of memory B cells. In mice, TFEB shapes the transcriptional landscape of germinal center B cells. Within the germinal center, TFEB facilitates the dark zone entry of light-zone-residing centrocytes through regulation of chemokine receptors and, by balancing the expression of Bcl-2/BH3-only family members, integrates antigen-induced apoptosis with T cell-provided CD40 survival signals. Thus, TFEB reprograms antigen-primed germinal center B cells for cell fate decisions.
Collapse
Affiliation(s)
- Matthias Münchhalfen
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Richard Görg
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Haberl
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Löber
- Department of Medical Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
- Department of Hematology, Oncology, and Tumor Immunology, Charité, Campus Benjamin Franklin, University Medical Center Berlin, Berlin, Germany
| | - Jakob Willenbrink
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Laura Schwarzt
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Charlotte Höltermann
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Ickes
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Leonard Hammermann
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Kus
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Chapuy
- Department of Medical Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
- Department of Hematology, Oncology, and Tumor Immunology, Charité, Campus Benjamin Franklin, University Medical Center Berlin, Berlin, Germany
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, USA
| | - Sybille D Reichardt
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Niklas Engels
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Wienands
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
3
|
Tkachenko A, Kupcova K, Havranek O. B-Cell Receptor Signaling and Beyond: The Role of Igα (CD79a)/Igβ (CD79b) in Normal and Malignant B Cells. Int J Mol Sci 2023; 25:10. [PMID: 38203179 PMCID: PMC10779339 DOI: 10.3390/ijms25010010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
B-cell receptor (BCR) is a B cell hallmark surface complex regulating multiple cellular processes in normal as well as malignant B cells. Igα (CD79a)/Igβ (CD79b) are essential components of BCR that are indispensable for its functionality, signal initiation, and signal transduction. CD79a/CD79b-mediated BCR signaling is required for the survival of normal as well as malignant B cells via a wide signaling network. Recent studies identified the great complexity of this signaling network and revealed the emerging role of CD79a/CD79b in signal integration. In this review, we have focused on functional features of CD79a/CD79b, summarized signaling consequences of CD79a/CD79b post-translational modifications, and highlighted specifics of CD79a/CD79b interactions within BCR and related signaling cascades. We have reviewed the complex role of CD79a/CD79b in multiple aspects of normal B cell biology and how is the normal BCR signaling affected by lymphoid neoplasms associated CD79A/CD79B mutations. We have also summarized important unresolved questions and highlighted issues that remain to be explored for better understanding of CD79a/CD79b-mediated signal transduction and the eventual identification of additional therapeutically targetable BCR signaling vulnerabilities.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Kristyna Kupcova
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| |
Collapse
|
4
|
Li W, Wu M, Li Y, Shen J. Reactive nitrogen species as therapeutic targets for autophagy/mitophagy modulation to relieve neurodegeneration in multiple sclerosis: Potential application for drug discovery. Free Radic Biol Med 2023; 208:37-51. [PMID: 37532065 DOI: 10.1016/j.freeradbiomed.2023.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease with limited therapeutic effects, eventually developing into handicap. Seeking novel therapeutic strategies for MS is timely important. Active autophagy/mitophagy could mediate neurodegeneration, while its roles in MS remain controversial. To elucidate the exact roles of autophagy/mitophagy and reveal its in-depth regulatory mechanisms, we conduct a systematic literature study and analyze the factors that might be responsible for divergent results obtained. The dynamic change levels of autophagy/mitophagy appear to be a determining factor for final neuron fate during MS pathology. Excessive neuronal autophagy/mitophagy contributes to neurodegeneration after disease onset at the active MS phase. Reactive nitrogen species (RNS) serve as key regulators for redox-related modifications and participate in autophagy/mitophagy modulation in MS. Nitric oxide (•NO) and peroxynitrite (ONOO-), two representative RNS, could nitrate or nitrosate Drp1/parkin/PINK1 pathway, activating excessive mitophagy and aggravating neuronal injury. Targeting RNS-mediated excessive autophagy/mitophagy could be a promising strategy for developing novel anti-MS drugs. In this review, we highlight the important roles of RNS-mediated autophagy/mitophagy in neuronal injury and review the potential therapeutic compounds with the bioactivities of inhibiting RNS-mediated autophagy/mitophagy activation and attenuating MS progression. Overall, we conclude that reactive nitrogen species could be promising therapeutic targets to regulate autophagy/mitophagy for multiple sclerosis treatment.
Collapse
Affiliation(s)
- Wenting Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Horiuchi S, Koike T, Takebuchi H, Hoshino K, Sasaki I, Fukuda-Ohta Y, Kaisho T, Kitamura D. SpiB regulates the expression of B-cell-related genes and increases the longevity of memory B cells. Front Immunol 2023; 14:1250719. [PMID: 37965309 PMCID: PMC10641807 DOI: 10.3389/fimmu.2023.1250719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/18/2023] [Indexed: 11/16/2023] Open
Abstract
Generation of memory B cells is one of the key features of adaptive immunity as they respond rapidly to re-exposure to the antigen and generate functional antibodies. Although the functions of memory B cells are becoming clearer, the regulation of memory B cell generation and maintenance is still not well understood. Here we found that transcription factor SpiB is expressed in some germinal center (GC) B cells and memory B cells and participates in the maintenance of memory B cells. Overexpression and knockdown analyses revealed that SpiB suppresses plasma cell differentiation by suppressing the expression of Blimp1 while inducing Bach2 in the in-vitro-induced germinal center B (iGB) cell culture system, and that SpiB facilitates in-vivo appearance of memory-like B cells derived from the iGB cells. Further analysis in IgG1+ cell-specific SpiB conditional knockout (cKO) mice showed that function of SpiB is critical for the generation of late memory B cells but not early memory B cells or GC B cells. Gene expression analysis suggested that SpiB-dependent suppression of plasma cell differentiation is independent of the expression of Bach2. We further revealed that SpiB upregulates anti-apoptosis and autophagy genes to control the survival of memory B cells. These findings indicate the function of SpiB in the generation of long-lasting memory B cells to maintain humoral memory.
Collapse
Affiliation(s)
- Shu Horiuchi
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Takuya Koike
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Hirofumi Takebuchi
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Katsuaki Hoshino
- Department of Immunology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Izumi Sasaki
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuri Fukuda-Ohta
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Tsuneyasu Kaisho
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Daisuke Kitamura
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
6
|
Comprehensive Comparison of Novel Bovine Leukemia Virus (BLV) Integration Sites between B-Cell Lymphoma Lines BLSC-KU1 and BLSC-KU17 Using the Viral DNA Capture High-Throughput Sequencing Method. Viruses 2022; 14:v14050995. [PMID: 35632737 PMCID: PMC9143949 DOI: 10.3390/v14050995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Bovine leukemia virus (BLV) infects cattle and integrates into host DNA, causing enzootic bovine leukosis (EBL), an aggressive B-cell lymphoma. Here, we developed a novel proviral DNA-capture sequencing (proviral DNA-capture-seq) method investigating BLV proviral integration in two B-cell lymphoma lines, BLSC-KU1 and BLSC-KU17, derived from BLV-infected cattle with EBL. We designed BLV-specific biotinylated probes to capture the provirus genome and enrich libraries for next-generation sequencing. Validation showed high specificity and efficient enrichment of target sequence reads as well as identification of three BLV proviral integration sites on BLV persistently infected FLK-BLV cells as a positive control. We successfully detected a single BLV proviral integration site on chromosome 19 of BLSC-KU1 and chromosome 9 of BLSC-KU17, which were confirmed by standard PCR and Sanger sequencing. Further, a defective provirus in BLSC-KU1 and complete BLV proviral sequence in BLSC-KU17 were confirmed using long PCR and sequencing. This is the first study to provide comprehensive information on BLV proviral structure and viral integration in BLSC-KU1 and BLSC-KU17. Moreover, the proposed method can facilitate understanding of the detailed mechanisms underlying BLV-induced leukemogenesis and may be used as an innovative tool to screen BLV-infected cattle at risk at an earlier stage than those that have already developed lymphoma.
Collapse
|
7
|
He C, Wang S, Zhou C, He M, Wang J, Ladds M, Lianoudaki D, Sedimbi SK, Lane DP, Westerberg LS, Li S, Karlsson MC. CD36 and LC3B initiated autophagy in B cells regulates the humoral immune response. Autophagy 2021; 17:3577-3591. [PMID: 33535890 PMCID: PMC8632284 DOI: 10.1080/15548627.2021.1885183] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/29/2021] [Indexed: 12/31/2022] Open
Abstract
Scavenger receptors are pattern recognition receptors that recognize both foreign and self-ligands, and initiate different mechanisms of cellular activation, often as co-receptors. The function of scavenger receptor CD36 in the immune system has mostly been studied in macrophages but it is also highly expressed by innate type B cells where its function is less explored. Here we report that CD36 is involved in macro-autophagy/autophagy in B cells, and in its absence, the humoral immune response is impaired. We found that CD36-deficient B cells exhibit a significantly reduced plasma cell formation, proliferation, mitochondrial mobilization and oxidative phosphorylation. These changes were accompanied by impaired initiation of autophagy, and we found that CD36 regulated autophagy and colocalized with autophagosome membrane protein MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3). When we investigated T-cell-dependent immune responses, we found that mice with CD36 deficiency, specifically in B cells, exhibited attenuated germinal center responses, class switching, and antibody production as well as autophagosome formation. These findings establish a critical role for CD36 in B cell responses and may also contribute to our understanding of CD36-mediated autophagy in other cells as well as in B cell lymphomas that have been shown to express the receptor.Abbreviations: AICDA/AID: activation-induced cytidine deaminase; ATG5: autophagy related 5; ATP: adenosine triphosphate; BCR: B-cell receptor; CPG: unmethylated cytosine-guanosine; CQ: chloroquine; DC: dendritic cells; FOB: follicular B cells; GC: germinal center; Ig: immunoglobulin; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MFI: mean fluorescence intensity; MZB: marginal zone B cells; NP-CGG: 4-hydroxy-3-nitrophenylacetyl-chicken gamma globulin; OCR: oxygen consumption rate; oxLDL: oxidized low-density lipoprotein; PC: plasma cells; Rapa: rapamycin; SQSTM1/p62: sequestosome 1; SRBC: sheep red blood cells; Tfh: follicular helper T cells; TLR: toll-like receptor.
Collapse
Affiliation(s)
- Chenfei He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shan Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Minghui He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jin Wang
- Department of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, P.R. China
| | - Marcus Ladds
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Danai Lianoudaki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Saikiran K. Sedimbi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - David P. Lane
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S. Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shuijie Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael C.I. Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Abstract
B cells are central to the pathogenesis of multiple autoimmune diseases, through antigen presentation, cytokine secretion, and the production of autoantibodies. During development and differentiation, B cells undergo drastic changes in their physiology. It is emerging that these are accompanied by equally significant shifts in metabolic phenotype, which may themselves also drive and enforce the functional properties of the cell. The dysfunction of B cells during autoimmunity is characterised by the breaching of tolerogenic checkpoints, and there is developing evidence that the metabolic state of B cells may contribute to this. Determining the metabolic phenotype of B cells in autoimmunity is an area of active study, and is important because intervention by metabolism-altering therapeutic approaches may represent an attractive treatment target.
Collapse
Affiliation(s)
- Iwan G. A. Raza
- Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Alexander J. Clarke
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Abstract
Across all branches of the immune system, the process of autophagy is fundamentally important in cellular development, function and homeostasis. Strikingly, this evolutionarily ancient pathway for intracellular recycling has been adapted to enable a high degree of functional complexity and specialization. However, although the requirement for autophagy in normal immune cell function is clear, the mechanisms involved are much less so and encompass control of metabolism, selective degradation of substrates and organelles and participation in cell survival decisions. We review here the crucial functions of autophagy in controlling the differentiation and homeostasis of multiple immune cell types and discuss the potential mechanisms involved.
Collapse
|
10
|
Santarelli R, Granato M, Pentassuglia G, Lacconi V, Gilardini Montani MS, Gonnella R, Tafani M, Torrisi MR, Faggioni A, Cirone M. KSHV reduces autophagy in THP-1 cells and in differentiating monocytes by decreasing CAST/calpastatin and ATG5 expression. Autophagy 2016; 12:2311-2325. [PMID: 27715410 DOI: 10.1080/15548627.2016.1235122] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have previously shown that Kaposi sarcoma-associated herpesvirus (KSHV) impairs monocyte differentiation into dendritic cells (DCs). Macroautophagy/autophagy has been reported to be essential in such a differentiating process. Here we extended these studies and found that the impairment of DC formation by KSHV occurs through autophagy inhibition. KSHV indeed reduces CAST (calpastatin) and consequently decreases ATG5 expression in both THP-1 monocytoid cells and primary monocytes. We unveiled a new mechanism put in place by KSHV to escape from immune control. The discovery of viral immune suppressive strategies that contribute to the onset and progression of viral-associated malignancies is of fundamental importance for finding new therapeutic approaches against them.
Collapse
Affiliation(s)
- R Santarelli
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - M Granato
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - G Pentassuglia
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - V Lacconi
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | | | - R Gonnella
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - M Tafani
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - M R Torrisi
- b Istituto Pasteur-Fondazione Cenci Bolognetti , Department of Clinical and Molecular Medicine , Sapienza University of Rome , Rome , Italy.,c Azienda Ospedaliera Sant'Andrea , Rome , Italy
| | - A Faggioni
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - M Cirone
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
11
|
Shan NN, Dong LL, Zhang XM, Liu X, Li Y. Targeting autophagy as a potential therapeutic approach for immune thrombocytopenia therapy. Crit Rev Oncol Hematol 2016; 100:11-5. [PMID: 26830007 DOI: 10.1016/j.critrevonc.2016.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 12/09/2015] [Accepted: 01/14/2016] [Indexed: 01/01/2023] Open
Abstract
Autophagy involves the sequestration and lysosomal degradation of various cytoplasmic structures, including damaged organelles and invading microorganisms. Autophagy is not only an essential cell-intrinsic mechanism for protecting against internal and external stress conditions but is also key in the cellular response against microbes, in antigen processing for major histocompatibility complex (MHC) presentation, and in lymphocyte development, survival, and proliferation. In recent years, perturbations in autophagy have been implicated in a number of diseases, including autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). Immune thrombocytopenia (ITP) is a multifactorial disease characterized by autoimmune responses to self-platelet membrane proteins. Recently, our unpublished original data demonstrated aberrant expression of molecules in the autophagy pathway in ITP patients compared with controls, and we found a close correlation between the pathogenesis of ITP and the autophagy pathway. The potential of targeting the autophagy pathway in ITP as a novel therapeutic approach has been discussed.
Collapse
Affiliation(s)
- Ning-Ning Shan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China.
| | - Li-Li Dong
- Department of Pediatric surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Xiao-Mei Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Xin Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| |
Collapse
|
12
|
Dong G, You M, Fan H, Ding L, Sun L, Hou Y. STS-1 promotes IFN-α induced autophagy by activating the JAK1-STAT1 signaling pathway in B cells. Eur J Immunol 2015; 45:2377-88. [PMID: 25959715 DOI: 10.1002/eji.201445349] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/30/2015] [Accepted: 05/07/2015] [Indexed: 11/08/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the overexpression of IFN-α. IFN-α induces autophagy via the JAK1-STAT1 signaling pathway, contributing to the pathogenesis of SLE. Recent studies reported that B cells from patients with SLE and NZB/W F1 mice had enhanced autophagy activity; however, the mechanism still remains unknown. Here, we show that the protein tyrosine phosphatase STS-1 (suppressor of T-cell receptor signaling 1) was significantly overexpressed in B cells from patients with SLE and MRL/lpr mice. Notably, STS-1 promoted IFN-α-induced autophagy in B cells by enhancing the JAK1-STAT1 signaling activation. STS-1 inhibited the phosphorylation of the E3 ubiquitin protein ligase c-cbl, and subsequently promoted IFN-α-induced phosphorylation of tyrosine kinase 2, leading to JAK1-STAT1 signaling activation. Furthermore, STAT1 and JAK1 inhibitors blocked the IFN-α-induced autophagy promoted by STS-1, indicating that STS-1 promotes IFN-α-induced autophagy via the JAK1-STAT1 signaling. Our results demonstrate the importance of STS-1 in regulating IFN-α-induced autophagy in B cells, and this could be used as a therapeutic approach to treat SLE.
Collapse
Affiliation(s)
- Guanjun Dong
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Ming You
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Hongye Fan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Liang Ding
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Lingyun Sun
- Department of Immunology and Rheumatology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| |
Collapse
|
13
|
Pone EJ, Lam T, Lou Z, Wang R, Chen Y, Liu D, Edinger AL, Xu Z, Casali P. B cell Rab7 mediates induction of activation-induced cytidine deaminase expression and class-switching in T-dependent and T-independent antibody responses. THE JOURNAL OF IMMUNOLOGY 2015; 194:3065-78. [PMID: 25740947 DOI: 10.4049/jimmunol.1401896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Class switch DNA recombination (CSR) is central to the maturation of the Ab response because it diversifies Ab effector functions. Like somatic hypermutation, CSR requires activation-induced cytidine deaminase (AID), whose expression is restricted to B cells, as induced by CD40 engagement or dual TLR-BCR engagement (primary CSR-inducing stimuli). By constructing conditional knockout Igh(+/C)γ(1-cre)Rab7(fl/fl) mice, we identified a B cell-intrinsic role for Rab7, a small GTPase involved in intracellular membrane functions, in mediating AID induction and CSR. Igh(+/C)γ(1-cre)Rab7(fl/fl) mice displayed normal B and T cell development and were deficient in Rab7 only in B cells undergoing Igh(C)γ(1-cre) Iγ1-Sγ1-Cγ1-cre transcription, as induced--like Igh germline Iγ1-Sγ1-Cγ1 and Iε-Sε-Cε transcription--by IL-4 in conjunction with a primary CSR-inducing stimulus. These mice could not mount T-independent or T-dependent class-switched IgG1 or IgE responses while maintaining normal IgM levels. Igh(+/C)γ(1-cre)Rab7(fl/fl) B cells showed, in vivo and in vitro, normal proliferation and survival, normal Blimp-1 expression and plasma cell differentiation, as well as intact activation of the noncanonical NF-κB, p38 kinase, and ERK1/2 kinase pathways. They, however, were defective in AID expression and CSR in vivo and in vitro, as induced by CD40 engagement or dual TLR1/2-, TLR4-, TLR7-, or TLR9-BCR engagement. In Igh(+/C)γ(1-cre)Rab7(fl/fl) B cells, CSR was rescued by enforced AID expression. These findings, together with our demonstration that Rab7-mediated canonical NF-κB activation, as critical to AID induction, outline a novel role of Rab7 in signaling pathways that lead to AID expression and CSR, likely by promoting assembly of signaling complexes along intracellular membranes.
Collapse
Affiliation(s)
- Egest J Pone
- Department of Microbiology and Immunology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229
| | - Tonika Lam
- Department of Microbiology and Immunology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Zheng Lou
- Department of Microbiology and Immunology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229
| | - Rui Wang
- Department of Microbiology and Immunology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229; Xiangya Medical School, Central South University of China, 410000 Changsha, Hunan Province, China
| | - Yuhui Chen
- Center for Human Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030; and
| | - Dongfang Liu
- Center for Human Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030; and
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697
| | - Zhenming Xu
- Department of Microbiology and Immunology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229;
| | - Paolo Casali
- Department of Microbiology and Immunology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229;
| |
Collapse
|
14
|
Bhattacharya A, Eissa NT. Autophagy as a Stress Response Pathway in the Immune System. Int Rev Immunol 2015; 34:382-402. [DOI: 10.3109/08830185.2014.999156] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Cai PP, Wang HX, Zhuang JC, Liu QB, Zhao GX, Li ZX, Wu ZY. Variants of autophagy-related gene 5 are associated with neuromyelitis optica in the Southern Han Chinese population. Autoimmunity 2014; 47:563-6. [PMID: 24953774 DOI: 10.3109/08916934.2014.929668] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Neuromyelitis optica (NMO) and multiple sclerosis (MS) are autoimmune demyelinating diseases of the central nervous system. The discovery of NMO immunoglobulin G (NMO-IgG) antibody has improved the clinical definition of NMO. Recently, the autophagy-related genes (ATGs) have been proved to be associated with several autoimmune and inflammation diseases. Increased T cell expression of ATG5 may be correlated with the pathogenesis of inflammatory demyelination in MS. However, the association of ATG5 variants with MS and NMO patients has not been well studied. In this study, five ATG5 variants were genotyped in 144 MS patients, 109 NMO patients and 288 controls in the Han Chinese population. In the cohort of NMO patients, we observed that the CC genotype of rs548234 increased susceptibility to NMO (p = 0.016), while the allele T of rs548234 (p = 0.003) and the allele A of rs6937876 (p = 0.009) acted as protective factors for NMO-IgG positive NMO patients. However, no association was found between ATG5 variants and MS patients. These results indicated that ATG5 variants are associated with NMO but not MS patients, which may provide a clue for further clarifying the autoimmune mechanisms of autophagy-related pathogenesis in NMO.
Collapse
Affiliation(s)
- Ping-Ping Cai
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai , China
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
A gammaherpesvirus Bcl-2 ortholog blocks B cell receptor-mediated apoptosis and promotes the survival of developing B cells in vivo. PLoS Pathog 2014; 10:e1003916. [PMID: 24516386 PMCID: PMC3916410 DOI: 10.1371/journal.ppat.1003916] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/23/2013] [Indexed: 11/19/2022] Open
Abstract
Gammaherpesviruses such as Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV, HHV-8) establish lifelong latency in their hosts and are associated with the development of several types of malignancies, including a subset of B cell lymphomas. These viruses are thought to co-opt the process of B cell differentiation to latently infect a fraction of circulating memory B cells, resulting in the establishment of a stable latency setpoint. However, little is known about how this infected memory B cell compartment is maintained throughout the life of the host. We have previously demonstrated that immature and transitional B cells are long-term latency reservoirs for murine gammaherpesvirus 68 (MHV68), suggesting that infection of developing B cells contributes to the maintenance of lifelong latency. During hematopoiesis, immature and transitional B cells are subject to B cell receptor (BCR)-mediated negative selection, which results in the clonal deletion of autoreactive B cells. Interestingly, numerous gammaherpesviruses encode homologs of the anti-apoptotic protein Bcl-2, suggesting that virus inhibition of apoptosis could subvert clonal deletion. To test this, we quantified latency establishment in mice inoculated with MHV68 vBcl-2 mutants. vBcl-2 mutant viruses displayed a marked decrease in the frequency of immature and transitional B cells harboring viral genome, but this attenuation could be rescued by increased host Bcl-2 expression. Conversely, vBcl-2 mutant virus latency in early B cells and mature B cells, which are not targets of negative selection, was remarkably similar to wild-type virus. Finally, in vivo depletion of developing B cells during chronic infection resulted in decreased mature B cell latency, demonstrating a key role for developing B cells in the maintenance of lifelong latency. Collectively, these findings support a model in which gammaherpesvirus latency in circulating mature B cells is sustained in part through the recurrent infection and vBcl-2-mediated survival of developing B cells.
Collapse
|
18
|
Nakahira K, Cloonan SM, Mizumura K, Choi AMK, Ryter SW. Autophagy: a crucial moderator of redox balance, inflammation, and apoptosis in lung disease. Antioxid Redox Signal 2014; 20:474-94. [PMID: 23879400 PMCID: PMC3894710 DOI: 10.1089/ars.2013.5373] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Autophagy is a fundamental cellular process that functions in the turnover of subcellular organelles and protein. Activation of autophagy may represent a cellular defense against oxidative stress, or related conditions that cause accumulation of damaged proteins or organelles. Selective forms of autophagy can maintain organelle populations or remove aggregated proteins. Autophagy can increase survival during nutrient deficiency and play a multifunctional role in host defense, by promoting pathogen clearance and modulating innate and adaptive immune responses. RECENT ADVANCES Autophagy has been described as an inducible response to oxidative stress. Once believed to represent a random process, recent studies have defined selective mechanisms for cargo assimilation into autophagosomes. Such mechanisms may provide for protein aggregate detoxification and mitochondrial homeostasis during oxidative stress. Although long studied as a cellular phenomenon, recent advances implicate autophagy as a component of human diseases. Altered autophagy phenotypes have been observed in various human diseases, including lung diseases such as chronic obstructive lung disease, cystic fibrosis, pulmonary hypertension, and idiopathic pulmonary fibrosis. CRITICAL ISSUES Although autophagy can represent a pro-survival process, in particular, during nutrient starvation, its role in disease pathogenesis may be multifunctional and complex. The relationship of autophagy to programmed cell death pathways is incompletely defined and varies with model system. FUTURE DIRECTIONS Activation or inhibition of autophagy may be used to alter the progression of human diseases. Further resolution of the mechanisms by which autophagy impacts the initiation and progression of diseases may lead to the development of therapeutics specifically targeting this pathway.
Collapse
Affiliation(s)
- Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital , Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
19
|
Clarke AJ, Ellinghaus U, Cortini A, Stranks A, Simon AK, Botto M, Vyse TJ. Autophagy is activated in systemic lupus erythematosus and required for plasmablast development. Ann Rheum Dis 2014; 74:912-20. [PMID: 24419333 PMCID: PMC4152192 DOI: 10.1136/annrheumdis-2013-204343] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/15/2013] [Indexed: 12/19/2022]
Abstract
Background Autophagy has emerged as a critical homeostatic mechanism in T lymphocytes, influencing proliferation and differentiation. Autophagy in B cells has been less studied, but genetic deficiency causes impairment of early and late developmental stages Objectives To explore the role of autophagy in the pathogenesis of human and murine lupus, a disease in which B cells are critical effectors of pathology. Methods Autophagy was assessed using multiple techniques in NZB/W and control mice, and in patients with systemic lupus erythematosus (SLE) compared to healthy controls. We evaluated the phenotype of the B cell compartment in Vav-Atg7−/− mice in vivo, and examined human and murine plasmablast formation following inhibition of autophagy. Results We found activation of autophagy in early developmental and transitional stages of B cell development in a lupus mouse model even before disease onset, and which progressively increased with age. In human disease, again autophagy was activated compared with healthy controls, principally in naïve B cells. B cells isolated from Vav-Atg7F/F mice failed to effectively differentiate into plasma cells following stimulation in vitro. Similarly, human B cells stimulated in the presence of autophagy inhibition did not differentiate into plasmablasts. Conclusions Our data suggest activation of autophagy is a mechanism for survival of autoreactive B cells, and also demonstrate that it is required for plasmablast differentiation, processes that induce significant cellular stress. The implication of autophagy in two major pathogenic pathways in SLE suggests the potential to use inhibition of autophagy as a novel treatment target in this frequently severe autoimmune disease.
Collapse
Affiliation(s)
- Alexander J Clarke
- Medical and Molecular Genetics and Division of Immunology, Infection, and Inflammatory Disease, King's College London, London, UK
| | - Ursula Ellinghaus
- Medical and Molecular Genetics and Division of Immunology, Infection, and Inflammatory Disease, King's College London, London, UK
| | - Andrea Cortini
- Medical and Molecular Genetics and Division of Immunology, Infection, and Inflammatory Disease, King's College London, London, UK
| | - Amanda Stranks
- Nuffield Department of Clinical Medicine and Translational Immunology Laboratory, NIHR BRC, University of Oxford, Oxford, UK
| | - Anna Katharina Simon
- Nuffield Department of Clinical Medicine and Translational Immunology Laboratory, NIHR BRC, University of Oxford, Oxford, UK
| | - Marina Botto
- Department of Medicine, Centre for Complement and Inflammation Research, Imperial College London, London, UK
| | - Timothy J Vyse
- Medical and Molecular Genetics and Division of Immunology, Infection, and Inflammatory Disease, King's College London, London, UK
| |
Collapse
|
20
|
Luštrek M, Lorenz P, Kreutzer M, Qian Z, Steinbeck F, Wu D, Born N, Ziems B, Hecker M, Blank M, Shoenfeld Y, Cao Z, Glocker MO, Li Y, Fuellen G, Thiesen HJ. Epitope predictions indicate the presence of two distinct types of epitope-antibody-reactivities determined by epitope profiling of intravenous immunoglobulins. PLoS One 2013; 8:e78605. [PMID: 24244326 PMCID: PMC3823795 DOI: 10.1371/journal.pone.0078605] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/20/2013] [Indexed: 01/23/2023] Open
Abstract
Epitope-antibody-reactivities (EAR) of intravenous immunoglobulins (IVIGs) determined for 75,534 peptides by microarray analysis demonstrate that roughly 9% of peptides derived from 870 different human protein sequences react with antibodies present in IVIG. Computational prediction of linear B cell epitopes was conducted using machine learning with an ensemble of classifiers in combination with position weight matrix (PWM) analysis. Machine learning slightly outperformed PWM with area under the curve (AUC) of 0.884 vs. 0.849. Two different types of epitope-antibody recognition-modes (Type I EAR and Type II EAR) were found. Peptides of Type I EAR are high in tyrosine, tryptophan and phenylalanine, and low in asparagine, glutamine and glutamic acid residues, whereas for peptides of Type II EAR it is the other way around. Representative crystal structures present in the Protein Data Bank (PDB) of Type I EAR are PDB 1TZI and PDB 2DD8, while PDB 2FD6 and 2J4W are typical for Type II EAR. Type I EAR peptides share predicted propensities for being presented by MHC class I and class II complexes. The latter interaction possibly favors T cell-dependent antibody responses including IgG class switching. Peptides of Type II EAR are predicted not to be preferentially presented by MHC complexes, thus implying the involvement of T cell-independent IgG class switch mechanisms. The high extent of IgG immunoglobulin reactivity with human peptides implies that circulating IgG molecules are prone to bind to human protein/peptide structures under non-pathological, non-inflammatory conditions. A webserver for predicting EAR of peptide sequences is available at www.sysmed-immun.eu/EAR.
Collapse
Affiliation(s)
- Mitja Luštrek
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Universitätsmedizin, University of Rostock, Rostock, Germany
- Department of Intelligent Systems, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Peter Lorenz
- Institute of Immunology, Universitätsmedizin Rostock, University of Rostock, Rostock, Germany
| | - Michael Kreutzer
- Institute of Immunology, Universitätsmedizin Rostock, University of Rostock, Rostock, Germany
| | - Zilliang Qian
- Institute of Immunology, Universitätsmedizin Rostock, University of Rostock, Rostock, Germany
- Shanghai Institute for Biological Sciences, Shanghai, China
| | - Felix Steinbeck
- Institute of Immunology, Universitätsmedizin Rostock, University of Rostock, Rostock, Germany
| | - Di Wu
- Institute of Immunology, Universitätsmedizin Rostock, University of Rostock, Rostock, Germany
- Shanghai Institute for Biological Sciences, Shanghai, China
| | - Nadine Born
- Institute of Immunology, Universitätsmedizin Rostock, University of Rostock, Rostock, Germany
| | - Bjoern Ziems
- Gesellschaft für Individualisierte Medizin GmbH, Rostock, Germany
| | - Michael Hecker
- Steinbeis Transfer Center for Proteome Analysis, Rostock, Germany
| | - Miri Blank
- The Zabludovicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat-Gan, Israel
| | - Yehuda Shoenfeld
- The Zabludovicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat-Gan, Israel
| | - Zhiwei Cao
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | | | - Yixue Li
- Shanghai Institute for Biological Sciences, Shanghai, China
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Universitätsmedizin, University of Rostock, Rostock, Germany
| | - Hans-Jürgen Thiesen
- Institute of Immunology, Universitätsmedizin Rostock, University of Rostock, Rostock, Germany
- * E-mail:
| |
Collapse
|
21
|
Qi XF, Kim DH, Lee KJ, Kim CS, Song SB, Cai DQ, Kim SK. Autophagy contributes to apoptosis in A20 and EL4 lymphoma cells treated with fluvastatin. Cancer Cell Int 2013; 13:111. [PMID: 24209962 PMCID: PMC3832223 DOI: 10.1186/1475-2867-13-111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 10/31/2013] [Indexed: 11/22/2022] Open
Abstract
Convincing evidence indicates that statins stimulate apoptotic cell death in several types of proliferating tumor cells in a cholesterol-lowering-independent manner. However, the relationship between apoptosis and autophagy in lymphoma cells exposed to statins remains unclear. The objective of this study was to elucidate the potential involvement of autophagy in fluvastatin-induced cell death of lymphoma cells. We found that fluvastatin treatment enhanced the activation of pro-apoptotic members such as caspase-3 and Bax, but suppressed the activation of anti-apoptotic molecule Bcl-2 in lymphoma cells including A20 and EL4 cells. The process was accompanied by increases in numbers of annexin V alone or annexin V/PI double positive cells. Furthermore, both autophagosomes and increases in levels of LC3-II were also observed in fluvastatin-treated lymphoma cells. However, apoptosis in fluvastatin-treated lymphoma cells could be blocked by the addition of 3-methyladenine (3-MA), the specific inhibitor of autophagy. Fluvastatin-induced activation of caspase-3, DNA fragmentation, and activation of LC3-II were blocked by metabolic products of the HMG-CoA reductase reaction, such as mevalonate, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). These results suggest that autophagy contributes to fluvastatin-induced apoptosis in lymphoma cells, and that these regulating processes require inhibition of metabolic products of the HMG-CoA reductase reaction including mevalonate, FPP and GGPP.
Collapse
Affiliation(s)
- Xu-Feng Qi
- Key Laboratory for Regenerative Medicine of Ministry of Education, Ji Nan University School of Life Science and Technology, Guangzhou, 510632, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Pierdominici M, Barbati C, Vomero M, Locatelli SL, Carlo-Stella C, Ortona E, Malorni W. Autophagy as a pathogenic mechanism and drug target in lymphoproliferative disorders. FASEB J 2013; 28:524-35. [PMID: 24196588 DOI: 10.1096/fj.13-235655] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Autophagy represents a key mechanism of cytoprotection that can be activated by a variety of extracellular and intracellular stresses and allows the cell to sequester cytoplasmic components and damaged organelles, delivering them to lysosomes for degradation and recycling. However, the autophagy process has also been associated with the death of the cell. It has been demonstrated to be constitutive in some instances and inducible in others, and the idea that it could represent a pathogenetic determinant as well as a possible prognostic tool and a therapeutic target in a plethora of human diseases has recently been considered. Among these, cancer represents a major one. In this review, we recapitulate the critical implications of autophagy in the pathogenesis, progression, and treatment of lymphoproliferative disorders. Leukemias and lymphomas, in fact, represent paradigmatic human diseases in which advances have recently been made in this respect.
Collapse
Affiliation(s)
- Marina Pierdominici
- 2Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Bertolo C, Roa S, Sagardoy A, Mena-Varas M, Robles EF, Martinez-Ferrandis JI, Sagaert X, Tousseyn T, Orta A, Lossos IS, Amar S, Natkunam Y, Briones J, Melnick A, Malumbres R, Martinez-Climent JA. LITAF, a BCL6 target gene, regulates autophagy in mature B-cell lymphomas. Br J Haematol 2013; 162:621-30. [PMID: 23795761 DOI: 10.1111/bjh.12440] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/17/2013] [Indexed: 02/03/2023]
Abstract
We have previously reported that LITAF is silenced by promoter hypermethylation in germinal centre-derived B-cell lymphomas, but beyond these data the regulation and function of lipopolysaccharide-induced tumour necrosis factor (TNF) factor (LITAF) in B cells are unknown. Gene expression and immunohistochemical studies revealed that LITAF and BCL6 show opposite expression in tonsil B-cell subpopulations and B-cell lymphomas, suggesting that BCL6 may regulate LITAF expression. Accordingly, BCL6 silencing increased LITAF expression, and chromatin immunoprecipitation and luciferase reporter assays demonstrated a direct transcriptional repression of LITAF by BCL6. Gain- and loss-of-function experiments in different B-cell lymphoma cell lines revealed that, in contrast to its function in monocytes, LITAF does not induce lipopolysaccharide-mediated TNF secretion in B cells. However, gene expression microarrays defined a LITAF-related transcriptional signature containing genes regulating autophagy, including MAP1LC3B (LC3B). In addition, immunofluorescence analysis co-localized LITAF with autophagosomes, further suggesting a possible role in autophagy modulation. Accordingly, ectopic LITAF expression in B-cell lymphoma cells enhanced autophagy responses to starvation, which were impaired upon LITAF silencing. Our results indicate that the BCL6-mediated transcriptional repression of LITAF may inhibit autophagy in B cells during the germinal centre reaction, and suggest that the constitutive repression of autophagy responses in BCL6-driven lymphomas may contribute to lymphomagenesis.
Collapse
Affiliation(s)
- Cristina Bertolo
- Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bhattacharya A, Eissa NT. Autophagy and autoimmunity crosstalks. Front Immunol 2013; 4:88. [PMID: 23596443 PMCID: PMC3625920 DOI: 10.3389/fimmu.2013.00088] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/01/2013] [Indexed: 01/03/2023] Open
Abstract
Autophagy, initially viewed as a conserved bulk-degradation mechanism, has emerged as a central player in a multitude of immune functions. Autophagy is important in host defense against intracellular and extracellular pathogens, metabolic syndromes, immune cell homeostasis, antigen processing and presentation, and maintenance of tolerance. The observation that the above processes are implicated in triggering or exacerbating autoimmunity raises the possibility that autophagy is involved in mediating autoimmune processes, either directly or as a consequence of innate or adaptive functions mediated by the pathway. Genome-wide association studies have shown association between single nucleotide polymorphisms (SNPs) in autophagy related gene 5 (Atg5), and Atg16l1 with susceptibility to systemic lupus erythematosus (SLE) and Crohn’s disease, respectively. Enhanced expression of Atg5 was also reported in blood of mice with experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), and in T cells isolated from blood or brain tissues from patients with active relapse of MS. This review explores the roles of autophagy pathway in the innate and adaptive immune systems on regulating or mediating the onset, progression, or exacerbation of autoimmune processes.
Collapse
|
25
|
Overexpression of LC3A autophagy protein in follicular and diffuse large B-cell lymphomas. Hematol Oncol Stem Cell Ther 2013; 6:20-5. [DOI: 10.1016/j.hemonc.2013.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2013] [Indexed: 12/19/2022] Open
|
26
|
McLeod IX, Jia W, He YW. The contribution of autophagy to lymphocyte survival and homeostasis. Immunol Rev 2013; 249:195-204. [PMID: 22889223 DOI: 10.1111/j.1600-065x.2012.01143.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Over the life span of a T lymphocyte, from thymic development to death, it is subjected to a variety of stresses and stimuli. Upon receipt of each stress or stimulus, a potentially life-changing fate decision must be made, namely, whether to commit to a form of programmed cell death or to make the necessary adaptations to effectively deal with the changing environment. In our laboratory, we have identified several stresses that a T lymphocyte will encounter during a normal life span. Our studies have focused on how T cells utilize autophagy to get a grasp on the situation, or in cases in which survival is untenable, how T cells use autophagy to hasten their demise. This review focuses on the functions of T-cell autophagy in maintaining homeostasis, eliminating excess or dangerous levels of mitochondria, trimming levels of endoplasmic reticulum, and promoting a healthy metabolic level to allow cells to perform as productive components of the immune system. In addition, the use of autophagy signaling molecules to perform autophagy-independent tasks involved in the maintenance of immune homeostasis is discussed.
Collapse
Affiliation(s)
- Ian X McLeod
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
27
|
|
28
|
Valdor R, Macian F. Autophagy and the regulation of the immune response. Pharmacol Res 2012; 66:475-83. [PMID: 23063674 DOI: 10.1016/j.phrs.2012.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 10/03/2012] [Indexed: 12/23/2022]
Abstract
Autophagy is a highly conserved mechanism of lysosomal-mediated protein degradation that plays a crucial role in maintaining cellular homeostasis by recycling amino acids, reducing the amount of damaged proteins and regulating protein levels in response to extracellular signals. In the last few years specific functions for different forms of autophagy have been identified in many tissues and organs. In the Immune System, autophagy functions range from the elimination infectious agents and the modulation of the inflammatory response, to the selection of antigens for presentation and the regulation of T cell homeostasis and activation. Here, we review the recent advances that have allowed us to better understand why autophagy is a crucial process in the regulation of the innate and adaptive immune responses.
Collapse
Affiliation(s)
- Rut Valdor
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
29
|
Alers S, Löffler AS, Wesselborg S, Stork B. The incredible ULKs. Cell Commun Signal 2012; 10:7. [PMID: 22413737 PMCID: PMC3330011 DOI: 10.1186/1478-811x-10-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/13/2012] [Indexed: 01/14/2023] Open
Abstract
Macroautophagy (commonly abbreviated as autophagy) is an evolutionary conserved lysosome-directed vesicular trafficking pathway in eukaryotic cells that mediates the lysosomal degradation of intracellular components. The cytoplasmic cargo is initially enclosed by a specific double membrane vesicle, termed the autophagosome. By this means, autophagy either helps to remove damaged organelles, long-lived proteins and protein aggregates, or serves as a recycling mechanism for molecular building blocks. Autophagy was once invented by unicellular organisms to compensate the fluctuating external supply of nutrients. In higher eukaryotes, it is strongly enhanced under various stress conditions, such as nutrient and growth factor deprivation or DNA damage. The serine/threonine kinase Atg1 was the first identified autophagy-related gene (ATG) product in yeast. The corresponding nematode homolog UNC-51, however, has additional neuronal functions. Vertebrate genomes finally encode five closely related kinases, of which UNC-51-like kinase 1 (Ulk1) and Ulk2 are both involved in the regulation of autophagy and further neuron-specific vesicular trafficking processes. This review will mainly focus on the vertebrate Ulk1/2-Atg13-FIP200 protein complex, its function in autophagy initiation, its evolutionary descent from the yeast Atg1-Atg13-Atg17 complex, as well as the additional non-autophagic functions of its components. Since the rapid nutrient- and stress-dependent cellular responses are mainly mediated by serine/threonine phosphorylation, it will summarize our current knowledge about the relevant upstream signaling pathways and the altering phosphorylation status within this complex during autophagy induction.
Collapse
Affiliation(s)
- Sebastian Alers
- Department of Internal Medicine I, University Hospital of Tübingen, Otfried-Müller-Str, 10, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
30
|
The latent membrane protein 1 (LMP1) oncogene of Epstein-Barr virus can simultaneously induce and inhibit apoptosis in B cells. J Virol 2012; 86:4380-93. [PMID: 22318153 DOI: 10.1128/jvi.06966-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) regulates its own expression and the expression of human genes via its two functional moieties; the transmembrane domains of LMP1 are required to regulate its expression via the unfolded protein response (UPR) and autophagy in B cells, and the carboxy-terminal domain of LMP1 activates cellular signaling pathways that affect cellular proliferation and survival. An apparent anomaly in the complex regulation of the UPR and autophagy by LMP1 is that the induction of either pathway can lead to cellular death, yet neither EBV-infected B cells nor B cells expressing only LMP1 die. Thus, we sought to understand how B cells that express LMP1 survive. The transmembrane domains of LMP1 activated apoptosis in B cells, the apoptosis required the UPR, and the carboxy-terminal domain of LMP1 blocked this apoptosis. The expression of the mRNA of Bcl2a1, encoding an antiapoptotic homolog of BCL2, correlated directly with the expression of LMP1 in EBV-positive B-cell strains, and its expression inhibited the apoptosis induced by the transmembrane domains of LMP1. These findings illustrate how the carboxy-terminal domain of LMP1 supports survival of B cells in the presence of the deleterious effects of the complex regulation of this viral oncogene.
Collapse
|
31
|
Pierdominici M, Vomero M, Barbati C, Colasanti T, Maselli A, Vacirca D, Giovannetti A, Malorni W, Ortona E. Role of autophagy in immunity and autoimmunity, with a special focus on systemic lupus erythematosus. FASEB J 2012; 26:1400-12. [PMID: 22247332 DOI: 10.1096/fj.11-194175] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Autophagy is a lysosome-mediated catabolic process that allows cells to degrade unwanted cytoplasmic constituents and to recycle nutrients. Autophagy is also involved in innate and adaptive immune responses, playing a key role in interactions against microbes, in antigen processing for major histocompatibility complex (MHC) presentation, and in lymphocyte development, survival, and proliferation. Over recent years, perturbations in autophagy have been implicated in a number of diseases, including autoimmunity. Systemic lupus erythematosus (SLE) is a multifactorial disease characterized by autoimmune responses against self-antigens generated by dying cells. Genome-wide association studies have linked several single-nucleotide polymorphisms (SNPs) in the autophagy-related gene Atg5 to SLE susceptibility. Loss of Atg5-dependent effects, including clearance of dying cells and cell antigen presentation, might contribute to the autoimmunity and inflammation associated with SLE. Moreover, activation of the mammalian target of rapamycin (mTOR), a key player in the autophagy regulation, has recently been demonstrated in SLE, confirming an altered autophagy pathway in this disease. In the present review, we summarize the autophagy mechanisms, their molecular regulation, and their relevance in immunity and autoimmunity. The potential of targeting autophagy pathway in SLE, by developing innovative therapeutic approaches, has finally been discussed.
Collapse
Affiliation(s)
- Marina Pierdominici
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ishdorj G, Li L, Gibson SB. Regulation of autophagy in hematological malignancies: role of reactive oxygen species. Leuk Lymphoma 2011; 53:26-33. [DOI: 10.3109/10428194.2011.604752] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Nguyen YH, Lee KY, Kim TJ, Kim SJ, Kang TM. CD40 Co-stimulation Inhibits Sustained BCR-induced Ca Signaling in Response to Long-term Antigenic Stimulation of Immature B Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:179-87. [PMID: 21860597 DOI: 10.4196/kjpp.2011.15.3.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 01/05/2023]
Abstract
Regulation of B cell receptor (BCR)-induced Ca(2+) signaling by CD40 co-stimulation was compared in long-term BCR-stimulated immature (WEHI-231) and mature (Bal-17) B cells. In response to long-term pre-stimulation of immature WEHI-231 cells to α-IgM antibody (0.5~48 hr), the initial transient decrease in BCR-induced [Ca(2+)](i) was followed by spontaneous recovery to control level within 24 hr. The recovery of Ca(2+) signaling in WEHI-231 cells was not due to restoration of internalized receptor but instead to an increase in the levels of PLCγ2 and IP(3)R-3. CD40 co-stimulation of WEHI-231 cells prevented BCR-induced cell cycle arrest and apoptosis, and it strongly inhibited the recovery of BCR-induced Ca(2+) signaling. CD40 co-stimulation also enhanced BCR internalization and reduced expression of PLCγ2 and IP(3)R-3. Pre-treatment of WEHI-231 cells with the antioxidant N-acetyl-L-cysteine (NAC) strongly inhibited CD40-mediated prevention of the recovery of Ca(2+) signaling. In contrast to immature WEHI-231 cells, identical long-term α-IgM pre-stimulation of mature Bal-17 cells abolished the increase in BCR-induced [Ca(2+)](i), regardless of CD40 co-stimulation. These results suggest that CD40-mediated signaling prevents antigen-induced cell cycle arrest and apoptosis of immature B cells through inhibition of sustained BCR-induced Ca(2+) signaling.
Collapse
Affiliation(s)
- Yen Hoang Nguyen
- Department of Physiology, SBRI, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | | | | | | | | |
Collapse
|
34
|
Steeves MA, Dorsey FC, Cleveland JL. Targeting the autophagy pathway for cancer chemoprevention. Curr Opin Cell Biol 2010; 22:218-25. [PMID: 20096553 PMCID: PMC2854265 DOI: 10.1016/j.ceb.2009.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 12/21/2009] [Indexed: 12/19/2022]
Abstract
Autophagy is crucial for maintaining cellular homeostasis, coping with metabolic stress, and limiting oxidative damage. Several autophagy-deficient or knockout models show increased tumor incidence, implicating autophagy as a tumor suppressor. Autophagy is involved in multiple processes that may curb transformation, including the control of oncogene-induced senescence (OIS), which can limit progression to full malignancy, and efficient antigen presentation, which is crucial for immune cell recognition and elimination of nascent cancer cells. Activation of the autophagy pathway may therefore hold promise as a chemoprevention strategy. Caloric restriction, bioactive dietary compounds, or specific pharmacological activators of the autophagy pathway are all possible avenues to explore in harnessing the autophagy pathway in cancer prevention.
Collapse
Affiliation(s)
- Meredith A Steeves
- Department of Cancer Biology, The Scripps Research Institute-Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | | | | |
Collapse
|
35
|
Abstract
Recent studies have revealed that autophagy, a fundamental intracellular process, plays many different roles in lymphocyte development and function. Autophagy regulates naive T-lymphocyte homeostasis, specifically by regulating mitochondrial quality and turnover, and is necessary for the proliferation of mature T cells. Autophagy also acts as a cellular death pathway in lymphocytes, both upon prolonged cytokine withdrawal and during acute antigen-receptor stimulation if improperly regulated. Furthermore, during HIV infection, hyperinduction of autophagy leads to massive T-cell death in uninfected CD4(+) T cells, and is rescued by inhibiting autophagic initiation. Constitutively high levels of autophagy in thymic epithelial cells are necessary for optimal processing and presentation of endogenous antigens, and required for proper positive and negative selection of developing thymocytes. Autophagy also promotes the survival of B lymphocytes, as well as the development of early B-cell progenitors. In B cells, autophagy is an alternative death pathway, as antigen-receptor stimulation in the absence of costimulation induces a potent autophagic death. Thus, autophagy plays a complex role in lymphocytes and is regulated during their lifespan to ensure a healthy immune system.
Collapse
Affiliation(s)
- Ian X McLeod
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Youwen He
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
36
|
Abstract
Lymphocyte homeostasis is tightly regulated in vivo by various factors including cytokines, antigens, and costimulatory signals. Central to this regulation is the intricate balance between survival and apoptosis determined by pro- and antiapoptotic factors, including Bcl-2/Bcl-xL of the Bcl-2 family in the intrinsic death pathway and Fas/FADD of the TNF death receptor superfamily in the extrinsic death pathway. Recent studies have identified a critical role for autophagy, a well-conserved catabolic process in eukaryotic cells, in T and B lymphocyte homeostasis. Autophagy is essential for mature T lymphocyte survival and proliferation. In addition, autophagy can promote T cell death in defined physiologic or pathologic conditions. Autophagy also contributes to the survival of subsets of B lymphocytes, including developing pre-B cells as well as B1 B cells in vivo. Thus, autophagy represents a novel pathway regulating both developing and mature lymphocytes. Future studies are required to investigate the role of autophagy in regulating T and B cell homeostasis during immune responses to pathogens, as well as to define the mechanisms by which autophagy regulates lymphocyte death and survival.
Collapse
|