1
|
CaMKK2 facilitates Golgi-associated vesicle trafficking to sustain cancer cell proliferation. Cell Death Dis 2021; 12:1040. [PMID: 34725334 PMCID: PMC8560770 DOI: 10.1038/s41419-021-04335-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) regulates cell and whole-body metabolism and supports tumorigenesis. The cellular impacts of perturbing CAMKK2 expression are, however, not yet fully characterised. By knocking down CAMKK2 levels, we have identified a number of significant subcellular changes indicative of perturbations in vesicle trafficking within the endomembrane compartment. To determine how they might contribute to effects on cell proliferation, we have used proteomics to identify Gemin4 as a direct interactor, capable of binding CAMKK2 and COPI subunits. Prompted by this, we confirmed that CAMKK2 knockdown leads to concomitant and significant reductions in δ-COP protein. Using imaging, we show that CAMKK2 knockdown leads to Golgi expansion, the induction of ER stress, abortive autophagy and impaired lysosomal acidification. All are phenotypes of COPI depletion. Based on our findings, we hypothesise that CAMKK2 sustains cell proliferation in large part through effects on organelle integrity and membrane trafficking.
Collapse
|
2
|
Sengillo JD, Cho GY, Paavo M, Lee W, White E, Jauregui R, Sparrow JR, Allikmets R, Tsang SH. Hyperautofluorescent Dots are Characteristic in Ceramide Kinase Like-associated Retinal Degeneration. Sci Rep 2019; 9:876. [PMID: 30696906 PMCID: PMC6351646 DOI: 10.1038/s41598-018-37578-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/27/2018] [Indexed: 11/17/2022] Open
Abstract
There is a lack of studies which seek to discern disease expression in patients with mutations that alter retinal ceramide metabolism, specifically in the ceramide kinase like (CERKL) gene. This cross-sectional case series reports a novel phenotypic manifestation of CERKL-associated retinopathy. Four unrelated patients with homozygous CERKL mutations underwent a complete ocular exam, spectral-domain optical coherence tomography, short-wavelength fundus autofluorescence (SW-AF), quantitative autofluorescence (qAF), and full-field electroretinogram (ffERG). Decreased visual acuity and early-onset maculopathy were present in all patients. All four patients had extensive hyperautofluorescent foci surrounding an area of central atrophy on SW-AF imaging, which has not been previously characterized. An abnormal spatial distribution of qAF signal was seen in one patient, and abnormally elevated qAF8 signal in another patient. FfERG recordings showed markedly attenuated rod and cone response in all patients. We conclude that these patients exhibit several features that, collectively, may warrant screening of CERKL as a first candidate: early-onset maculopathy, severe generalized retinal dysfunction, peripheral lacunae, intraretinal pigment migration, and hyperautofluorescent foci on SW-AF.
Collapse
Affiliation(s)
- Jesse D Sengillo
- Department of Internal Medicine, Reading Hospital, West Reading, PA, USA
| | - Galaxy Y Cho
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT, USA
| | - Maarjaliis Paavo
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Eugenia White
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | | | - Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, NY, USA.,Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, USA.,Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, New York, USA. .,Department of Ophthalmology, Columbia University, New York, NY, USA. .,Department of Pathology & Cell Biology, Columbia University, New York, NY, USA. .,Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Meier ID, Walker MP, Matera AG. Gemin4 is an essential gene in mice, and its overexpression in human cells causes relocalization of the SMN complex to the nucleoplasm. Biol Open 2018; 7:bio.032409. [PMID: 29371219 PMCID: PMC5861365 DOI: 10.1242/bio.032409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gemin4 is a member of the Survival Motor Neuron (SMN) protein complex, which is responsible for the assembly and maturation of Sm-class small nuclear ribonucleoproteins (snRNPs). In metazoa, Sm snRNPs are assembled in the cytoplasm and subsequently imported into the nucleus. We previously showed that the SMN complex is required for snRNP import in vitro, although it remains unclear which specific components direct this process. Here, we report that Gemin4 overexpression drives SMN and the other Gemin proteins from the cytoplasm into the nucleus. Moreover, it disrupts the subnuclear localization of the Cajal body marker protein, coilin, in a dose-dependent manner. We identified three putative nuclear localization signal (NLS) motifs within Gemin4, one of which is necessary and sufficient to direct nuclear import. Overexpression of Gemin4 constructs lacking this NLS sequestered Gemin3 and, to a lesser extent Gemin2, in the cytoplasm but had little effect on the nuclear accumulation of SMN. We also investigated the effects of Gemin4 depletion in the laboratory mouse, Mus musculus. Gemin4 null mice die early in embryonic development, demonstrating that Gemin4 is an essential mammalian protein. When crossed onto a severe SMA mutant background, heterozygous loss of Gemin4 failed to modify the early postnatal mortality phenotype of SMA type I (Smn−/−;SMN2+/+) mice. We conclude that Gemin4 plays an essential role in mammalian snRNP biogenesis, and may facilitate import of the SMN complex (or subunits thereof) into the nucleus. Summary:Gemin4 loss-of-function is recessive lethal in mice, whereas in cell culture its overexpression results in a dominant, gain-of-function relocalization of SMN and other Gemin proteins to the nucleus.
Collapse
Affiliation(s)
- Ingo D Meier
- Integrative Program for Biological and Genome Sciences, Departments of Biology and Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Michael P Walker
- Integrative Program for Biological and Genome Sciences, Departments of Biology and Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-3280, USA.,Department of Genetics, Case Western Reserve University, Cleveland, OH 44106-4955, USA
| | | |
Collapse
|
4
|
Patel N, Anand D, Monies D, Maddirevula S, Khan AO, Algoufi T, Alowain M, Faqeih E, Alshammari M, Qudair A, Alsharif H, Aljubran F, Alsaif HS, Ibrahim N, Abdulwahab FM, Hashem M, Alsedairy H, Aldahmesh MA, Lachke SA, Alkuraya FS. Novel phenotypes and loci identified through clinical genomics approaches to pediatric cataract. Hum Genet 2016; 136:205-225. [PMID: 27878435 DOI: 10.1007/s00439-016-1747-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/16/2016] [Indexed: 01/17/2023]
Abstract
Pediatric cataract is highly heterogeneous clinically and etiologically. While mostly isolated, cataract can be part of many multisystem disorders, further complicating the diagnostic process. In this study, we applied genomic tools in the form of a multi-gene panel as well as whole-exome sequencing on unselected cohort of pediatric cataract (166 patients from 74 families). Mutations in previously reported cataract genes were identified in 58% for a total of 43 mutations, including 15 that are novel. GEMIN4 was independently mutated in families with a syndrome of cataract, global developmental delay with or without renal involvement. We also highlight a recognizable syndrome that resembles galactosemia (a fulminant infantile liver disease with cataract) caused by biallelic mutations in CYP51A1. A founder mutation in RIC1 (KIAA1432) was identified in patients with cataract, brain atrophy, microcephaly with or without cleft lip and palate. For non-syndromic pediatric cataract, we map a novel locus in a multiplex consanguineous family on 4p15.32 where exome sequencing revealed a homozygous truncating mutation in TAPT1. We report two further candidates that are biallelically inactivated each in a single cataract family: TAF1A (cataract with global developmental delay) and WDR87 (non-syndromic cataract). In addition to positional mapping data, we use iSyTE developmental lens expression and gene-network analysis to corroborate the proposed link between the novel candidate genes and cataract. Our study expands the phenotypic, allelic and locus heterogeneity of pediatric cataract. The high diagnostic yield of clinical genomics supports the adoption of this approach in this patient group.
Collapse
Affiliation(s)
- Nisha Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Arif O Khan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Talal Algoufi
- Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohammed Alowain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatrics, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Muneera Alshammari
- Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Qudair
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hadeel Alsharif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fatimah Aljubran
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hessa S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous M Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Haifa Alsedairy
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed A Aldahmesh
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Yang J, Fuller PJ, Morgan J, Shibata H, Clyne CD, Young MJ. GEMIN4 functions as a coregulator of the mineralocorticoid receptor. J Mol Endocrinol 2015; 54:149-60. [PMID: 25555524 DOI: 10.1530/jme-14-0078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The mineralocorticoid receptor (MR) is a member of the nuclear receptor superfamily. Pathological activation of the MR causes cardiac fibrosis and heart failure, but clinical use of MR antagonists is limited by the renal side effect of hyperkalemia. Coregulator proteins are known to be critical for nuclear receptor-mediated gene expression. Identification of coregulators, which mediate MR activity in a tissue-specific manner, may allow for the development of novel tissue-selective MR modulators that confer cardiac protection without adverse renal effects. Our earlier studies identified a consensus motif among MR-interacting peptides, MPxLxxLL. Gem (nuclear organelle)-associated protein 4 (GEMIN4) is one of the proteins that contain this motif. Transient transfection experiments in HEK293 and H9c2 cells demonstrated that GEMIN4 repressed agonist-induced MR transactivation in a cell-specific manner. Furthermore, overexpression of GEMIN4 significantly decreased, while knockdown of GEMIN4 increased, the mRNA expression of specific endogenous MR target genes. A physical interaction between GEMIN4 and MR is suggested by their nuclear co-localization upon agonist treatment. These findings indicate that GEMIN4 functions as a novel coregulator of the MR.
Collapse
Affiliation(s)
- Jun Yang
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - Peter J Fuller
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - James Morgan
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - Hirotaka Shibata
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - Colin D Clyne
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - Morag J Young
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| |
Collapse
|