1
|
Rakhe N, Bhatt LK. Valosin-containing protein: A potential therapeutic target for cardiovascular diseases. Ageing Res Rev 2024; 101:102511. [PMID: 39313037 DOI: 10.1016/j.arr.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Valosin-containing protein (VCP), also known as p97, plays a crucial role in various cellular processes, including protein degradation, endoplasmic reticulum-associated degradation, and cell cycle regulation. While extensive research has been focused on VCP's involvement in protein homeostasis and its implications in neurodegenerative diseases, emerging evidence suggests a potential link between VCP and cardiovascular health. VCP is a key regulator of mitochondrial function, and its overexpression or mutations lead to pathogenic diseases and cellular stress responses. The present review explores VCP's roles in numerous cardiovascular disorders including myocardial ischemia/reperfusion injury, cardiac hypertrophy, and heart failure. The review dwells on the roles of VCP in modifying mitochondrial activity, promoting S-nitrosylation, regulating mTOR signalling and demonstrating cardioprotective effects. Further research into VCP might lead to novel interventions for cardiovascular disease, particularly those involving ischemia/reperfusion injury and hypertrophy.
Collapse
Affiliation(s)
- Nameerah Rakhe
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
2
|
Inès D, Courty PE, Wendehenne D, Rosnoblet C. CDC48 in plants and its emerging function in plant immunity. TRENDS IN PLANT SCIENCE 2024; 29:786-798. [PMID: 38218650 DOI: 10.1016/j.tplants.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Protein homeostasis, namely the balance between protein synthesis and degradation, must be finely controlled to ensure cell survival, notably through the ubiquitin-proteasome system (UPS). In all species, including plants, homeostasis is disrupted by biotic and abiotic stresses. A key player in the maintenance of protein balance, the protein CDC48, shows emerging functions in plants, particularly in response to biotic stress. In this review on CDC48 in plants, we detail its highly conserved structure, describe a gene expansion that is only present in Viridiplantae, discuss its various functions and regulations, and finally highlight its recruitment, still not clear, during the plant immune response.
Collapse
Affiliation(s)
- Damien Inès
- Agroécologie, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Université de Bourgogne, Université Bourgogne-Franche-Comté, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Université de Bourgogne, Université Bourgogne-Franche-Comté, Dijon, France
| | - David Wendehenne
- Agroécologie, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Université de Bourgogne, Université Bourgogne-Franche-Comté, Dijon, France
| | - Claire Rosnoblet
- Agroécologie, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Université de Bourgogne, Université Bourgogne-Franche-Comté, Dijon, France.
| |
Collapse
|
3
|
Bai Y, Yu G, Zhou HM, Amarasinghe O, Zhou Y, Zhu P, Li Q, Zhang L, Nguele Meke F, Miao Y, Chapman E, Tao WA, Zhang ZY. PTP4A2 promotes lysophagy by dephosphorylation of VCP/p97 at Tyr805. Autophagy 2023; 19:1562-1581. [PMID: 36300783 PMCID: PMC10240998 DOI: 10.1080/15548627.2022.2140558] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/02/2022] Open
Abstract
Overexpression of PTP4A phosphatases are associated with advanced cancers, but their biological functions are far from fully understood due to limited knowledge about their physiological substrates. VCP is implicated in lysophagy via collaboration with specific cofactors in the ELDR complex. However, how the ELDR complex assembly is regulated has not been determined. Moreover, the functional significance of the penultimate and conserved Tyr805 phosphorylation in VCP has not been established. Here, we use an unbiased substrate trapping and mass spectrometry approach and identify VCP/p97 as a bona fide substrate of PTP4A2. Biochemical studies show that PTP4A2 dephosphorylates VCP at Tyr805, enabling the association of VCP with its C-terminal cofactors UBXN6/UBXD1 and PLAA, which are components of the ELDR complex responsible for lysophagy, the autophagic clearance of damaged lysosomes. Functionally, PTP4A2 is required for cellular homeostasis by promoting lysophagy through facilitating ELDR-mediated K48-linked ubiquitin conjugate removal and autophagosome formation on the damaged lysosomes. Deletion of Ptp4a2 in vivo compromises the recovery of glycerol-injection induced acute kidney injury due to impaired lysophagy and sustained lysosomal damage. Taken together, our data establish PTP4A2 as a critical regulator of VCP and uncover an important role for PTP4A2 in maintaining lysosomal homeostasis through dephosphorylation of VCP at Tyr805. Our study suggests that PTP4A2 targeting could be a potential therapeutic approach to treat cancers and other degenerative diseases by modulating lysosomal homeostasis and macroautophagy/autophagy.Abbreviations: AAA+: ATPases associated with diverse cellular activities; AKI: acute kidney injury; CBB: Coomassie Brilliant Blue; CRISPR: clustered regularly interspaced short palindromic repeats; ELDR: endo-lysosomal damage response; GFP: green fluorescent protein; GST: glutathione S-transferase; IHC: immunohistochemistry; IP: immunoprecipitation; LAMP1: lysosomal-associated membrane protein 1; LC-MS: liquid chromatography-mass spectrometry; LGALS3/Gal3: galectin 3; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; PLAA: phospholipase A2, activating protein; PTP4A2: protein tyrosine phosphatase 4a2; PUB: NGLY1/PNGase/UBA- or UBX-containing protein; PUL: PLAP, Ufd3, and Lub1; TFEB: transcription factor EB; UBXN6/UBXD1: UBX domain protein 6; UPS: ubiquitin-proteasome system; VCP/p97: valosin containing protein; VCPIP1: valosin containing protein interacting protein 1; YOD1: YOD1 deubiquitinase.
Collapse
Affiliation(s)
- Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Guimei Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Hong-Ming Zhou
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Yuan Zhou
- Department of Biochemistry, Purdue University, West Lafayette, USA
| | - Peipei Zhu
- Department of Chemistry, Purdue University, West Lafayette, USA
| | - Qinglin Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Lujuan Zhang
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Yiming Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, A, USA
| | - W. Andy Tao
- Department of Chemistry, Purdue University, West Lafayette, USA
- Department of Biochemistry, Purdue University, West Lafayette, USA
- Center for Cancer Research
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
- Department of Chemistry, Purdue University, West Lafayette, USA
- Center for Cancer Research
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
4
|
Nandi P, Li S, Columbres RCA, Wang F, Williams DR, Poh YP, Chou TF, Chiu PL. Structural and Functional Analysis of Disease-Linked p97 ATPase Mutant Complexes. Int J Mol Sci 2021; 22:ijms22158079. [PMID: 34360842 PMCID: PMC8347982 DOI: 10.3390/ijms22158079] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 01/14/2023] Open
Abstract
IBMPFD/ALS is a genetic disorder caused by a single amino acid mutation on the p97 ATPase, promoting ATPase activity and cofactor dysregulation. The disease mechanism underlying p97 ATPase malfunction remains unclear. To understand how the mutation alters the ATPase regulation, we assembled a full-length p97R155H with its p47 cofactor and first visualized their structures using single-particle cryo-EM. More than one-third of the population was the dodecameric form. Nucleotide presence dissociates the dodecamer into two hexamers for its highly elevated function. The N-domains of the p97R155H mutant all show up configurations in ADP- or ATPγS-bound states. Our functional and structural analyses showed that the p47 binding is likely to impact the p97R155H ATPase activities via changing the conformations of arginine fingers. These functional and structural analyses underline the ATPase dysregulation with the miscommunication between the functional modules of the p97R155H.
Collapse
Affiliation(s)
- Purbasha Nandi
- Biodesign Center for Applied Structural Discovery, School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
| | - Rod Carlo A. Columbres
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
| | - Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
| | | | - Yu-Ping Poh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
- Correspondence: (T.-F.C.); (P.-L.C.)
| | - Po-Lin Chiu
- Biodesign Center for Applied Structural Discovery, School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA;
- Correspondence: (T.-F.C.); (P.-L.C.)
| |
Collapse
|
5
|
Mishra S, Dunkerly-Eyring BL, Keceli G, Ranek MJ. Phosphorylation Modifications Regulating Cardiac Protein Quality Control Mechanisms. Front Physiol 2020; 11:593585. [PMID: 33281625 PMCID: PMC7689282 DOI: 10.3389/fphys.2020.593585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Many forms of cardiac disease, including heart failure, present with inadequate protein quality control (PQC). Pathological conditions often involve impaired removal of terminally misfolded proteins. This results in the formation of large protein aggregates, which further reduce cellular viability and cardiac function. Cardiomyocytes have an intricately collaborative PQC system to minimize cellular proteotoxicity. Increased expression of chaperones or enhanced clearance of misfolded proteins either by the proteasome or lysosome has been demonstrated to attenuate disease pathogenesis, whereas reduced PQC exacerbates pathogenesis. Recent studies have revealed that phosphorylation of key proteins has a potent regulatory role, both promoting and hindering the PQC machinery. This review highlights the recent advances in phosphorylations regulating PQC, the impact in cardiac pathology, and the therapeutic opportunities presented by harnessing these modifications.
Collapse
Affiliation(s)
- Sumita Mishra
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brittany L Dunkerly-Eyring
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Sui X, Pan M, Li YM. Insights into the Design of p97-targeting Small Molecules from Structural Studies on p97 Functional Mechanism. Curr Med Chem 2020; 27:298-316. [PMID: 31584361 DOI: 10.2174/0929867326666191004162411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
p97, also known as valosin-containing protein or CDC48, is a member of the AAA+ protein family that is highly conserved in eukaryotes. It binds to various cofactors in the body to perform its protein-unfolding function and participates in DNA repair, degradation of subcellular membrane proteins, and protein quality control pathways, among other processes. Its malfunction can lead to many diseases, such as inclusion body myopathy, associated with Paget's disease of bone and/or frontotemporal dementia, amyotrophic lateral sclerosis disease, and others. In recent years, many small-molecule inhibitors have been deployed against p97, including bis (diethyldithiocarbamate)- copper and CB-5083, which entered the first phase of clinical tests but failed. One bottleneck in the design of p97 drugs is that its molecular mechanism remains unclear. This paper summarizes recent studies on the molecular mechanisms of p97, which may lead to insight into how the next generation of small molecules targeting p97 can be designed.
Collapse
Affiliation(s)
- Xin Sui
- Department of Chemistry, Tsinghua University, Beijing 100086, China
| | - Man Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Yi-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
7
|
Abstract
p97 belongs to the functional diverse superfamily of AAA+ (ATPases Associated with diverse cellular Activities) ATPases and is characterized by an N-terminal regulatory domain and two stacked hexameric ATPase domains forming a central protein conducting channel. p97 is highly versatile and has key functions in maintaining protein homeostasis including protein quality control mechanisms like the ubiquitin proteasome system (UPS) and autophagy to disassemble polyubiquitylated proteins from chromatin, membranes, macromolecular protein complexes and aggregates which are either degraded by the proteasome or recycled. p97 can use energy derived from ATP hydrolysis to catalyze substrate unfolding and threading through its central channel. The function of p97 in a large variety of different cellular contexts is reflected by its simultaneous association with different cofactors, which are involved in substrate recognition and processing, thus leading to the formation of transient multi-protein complexes. Dysregulation in protein homeostasis and proteotoxic stress are often involved in the development of cancer and neurological diseases and targeting the UPS including p97 in cancer is a well-established pharmacological strategy. In this chapter we will describe structural and functional aspects of the p97 interactome in regulating diverse cellular processes and will discuss the role of p97 in targeted cancer therapy.
Collapse
|
8
|
Shi W, Ding R, Zhou PP, Fang Y, Wan R, Chen Y, Jin J. Coordinated Actions Between p97 and Cullin-RING Ubiquitin Ligases for Protein Degradation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:61-78. [PMID: 31898222 DOI: 10.1007/978-981-15-1025-0_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cullin-RING ubiquitin ligases comprise the largest subfamily of ubiquitin ligases. They control ubiquitylation and degradation of a large number of protein substrates in eukaryotes. p97 is an ATPase domain-containing protein segregase. It plays essential roles in post-ubiquitylational events in the ubiquitin-proteasome pathway. Together with its cofactors, p97 collaborates with ubiquitin ligases to extract ubiquitylated substrates and deliver them to the proteasome for proteolysis. Here we review the structure, functions, and mechanisms of p97 in cellular protein degradation in coordination with its cofactors and the cullin-RING ubiquitin ligases.
Collapse
Affiliation(s)
- Wenbo Shi
- Life Science Institute, Zhejiang University, HangZhou, China
| | - Ran Ding
- Life Science Institute, Zhejiang University, HangZhou, China
| | - Pei Pei Zhou
- Life Science Institute, Zhejiang University, HangZhou, China
| | - Yuan Fang
- Life Science Institute, Zhejiang University, HangZhou, China
| | - Ruixi Wan
- Life Science Institute, Zhejiang University, HangZhou, China
| | - Yilin Chen
- Life Science Institute, Zhejiang University, HangZhou, China
| | - Jianping Jin
- Life Science Institute, Zhejiang University, HangZhou, China.
| |
Collapse
|
9
|
Structure of the PUB Domain from Ubiquitin Regulatory X Domain Protein 1 (UBXD1) and Its Interaction with the p97 AAA+ ATPase. Biomolecules 2019; 9:biom9120876. [PMID: 31847414 PMCID: PMC6995525 DOI: 10.3390/biom9120876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 01/19/2023] Open
Abstract
AAA+ ATPase p97/valosin-containing protein (VCP)/Cdc48 is a key player in various cellular stress responses in which it unfolds ubiquitinated proteins to facilitate their degradation by the proteasome. P97 works in different cellular processes using alternative sets of cofactors and is implicated in multiple degenerative diseases. Ubiquitin regulatory X domain protein 1 (UBXD1) has been linked to pathogenesis and is unique amongst p97 cofactors because it interacts with both termini of p97. Its N-domain binds to the N-domain and N/D1 interface of p97 and regulates its ATPase activity. The PUB (peptide:N-glycanase and UBA or UBX-containing proteins) domain binds the p97 C-terminus, but how it controls p97 function is still unknown. Here we present the NMR structure of UBXD1-PUB together with binding studies, mutational analysis, and a model of UBXD1-PUB in complex with the p97 C-terminus. While the binding pocket is conserved among PUB domains, UBXD1-PUB features a unique loop and turn regions suggesting a role in coordinating interaction with downstream regulators and substrate processing
Collapse
|
10
|
Chen Z, Morales JE, Guerrero PA, Sun H, McCarty JH. PTPN12/PTP-PEST Regulates Phosphorylation-Dependent Ubiquitination and Stability of Focal Adhesion Substrates in Invasive Glioblastoma Cells. Cancer Res 2018; 78:3809-3822. [PMID: 29743287 DOI: 10.1158/0008-5472.can-18-0085] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/03/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is an invasive brain cancer with tumor cells that disperse from the primary mass, escaping surgical resection and invariably giving rise to lethal recurrent lesions. Here we report that PTP-PEST, a cytoplasmic protein tyrosine phosphatase, controls GBM cell invasion by physically bridging the focal adhesion protein Crk-associated substrate (Cas) to valosin-containing protein (Vcp), an ATP-dependent protein segregase that selectively extracts ubiquitinated proteins from multiprotein complexes and targets them for degradation via the ubiquitin proteasome system. Both Cas and Vcp are substrates for PTP-PEST, with the phosphorylation status of tyrosine 805 (Y805) in Vcp impacting affinity for Cas in focal adhesions and controlling ubiquitination levels and protein stability. Perturbing PTP-PEST-mediated phosphorylation of Cas and Vcp led to alterations in GBM cell-invasive growth in vitro and in preclinical mouse models. Collectively, these data reveal a novel regulatory mechanism involving PTP-PEST, Vcp, and Cas that dynamically balances phosphorylation-dependent ubiquitination of key focal proteins involved in GBM cell invasion.Significance: PTP-PEST balances GBM cell growth and invasion by interacting with the ATP-dependent ubiquitin segregase Vcp/p97 and regulating phosphorylation and stability of the focal adhesion protein p130Cas.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/14/3809/F1.large.jpg Cancer Res; 78(14); 3809-22. ©2018 AACR.
Collapse
Affiliation(s)
- Zhihua Chen
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John E Morales
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paola A Guerrero
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huandong Sun
- Institute for Applied Cancer Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph H McCarty
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
11
|
The AAA+ ATPase p97, a cellular multitool. Biochem J 2017; 474:2953-2976. [PMID: 28819009 PMCID: PMC5559722 DOI: 10.1042/bcj20160783] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/17/2022]
Abstract
The AAA+ (ATPases associated with diverse cellular activities) ATPase p97 is essential to a wide range of cellular functions, including endoplasmic reticulum-associated degradation, membrane fusion, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation and chromatin-associated processes, which are regulated by ubiquitination. p97 acts downstream from ubiquitin signaling events and utilizes the energy from ATP hydrolysis to extract its substrate proteins from cellular structures or multiprotein complexes. A multitude of p97 cofactors have evolved which are essential to p97 function. Ubiquitin-interacting domains and p97-binding domains combine to form bi-functional cofactors, whose complexes with p97 enable the enzyme to interact with a wide range of ubiquitinated substrates. A set of mutations in p97 have been shown to cause the multisystem proteinopathy inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia. In addition, p97 inhibition has been identified as a promising approach to provoke proteotoxic stress in tumors. In this review, we will describe the cellular processes governed by p97, how the cofactors interact with both p97 and its ubiquitinated substrates, p97 enzymology and the current status in developing p97 inhibitors for cancer therapy.
Collapse
|
12
|
Hänzelmann P, Schindelin H. The Interplay of Cofactor Interactions and Post-translational Modifications in the Regulation of the AAA+ ATPase p97. Front Mol Biosci 2017; 4:21. [PMID: 28451587 PMCID: PMC5389986 DOI: 10.3389/fmolb.2017.00021] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/24/2017] [Indexed: 12/18/2022] Open
Abstract
The hexameric type II AAA ATPase (ATPase associated with various activities) p97 (also referred to as VCP, Cdc48, and Ter94) is critically involved in a variety of cellular activities including pathways such as DNA replication and repair which both involve chromatin remodeling, and is a key player in various protein quality control pathways mediated by the ubiquitin proteasome system as well as autophagy. Correspondingly, p97 has been linked to various pathophysiological states including cancer, neurodegeneration, and premature aging. p97 encompasses an N-terminal domain, two highly conserved ATPase domains and an unstructured C-terminal tail. This enzyme hydrolyzes ATP and utilizes the resulting energy to extract or disassemble protein targets modified with ubiquitin from stable protein assemblies, chromatin and membranes. p97 participates in highly diverse cellular processes and hence its activity is tightly controlled. This is achieved by multiple regulatory cofactors, which either associate with the N-terminal domain or interact with the extreme C-terminus via distinct binding elements and target p97 to specific cellular pathways, sometimes requiring the simultaneous association with more than one cofactor. Most cofactors are recruited to p97 through conserved binding motifs/domains and assist in substrate recognition or processing by providing additional molecular properties. A tight control of p97 cofactor specificity and diversity as well as the assembly of higher-order p97-cofactor complexes is accomplished by various regulatory mechanisms, which include bipartite binding, binding site competition, changes in oligomeric assemblies, and nucleotide-induced conformational changes. Furthermore, post-translational modifications (PTMs) like acetylation, palmitoylation, phosphorylation, SUMOylation, and ubiquitylation of p97 have been reported which further modulate its diverse molecular activities. In this review, we will describe the molecular basis of p97-cofactor specificity/diversity and will discuss how PTMs can modulate p97-cofactor interactions and affect the physiological and patho-physiological functions of p97.
Collapse
Affiliation(s)
- Petra Hänzelmann
- Rudolf Virchow Center for Experimental Biomedicine, University of WürzburgWürzburg, Germany
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine, University of WürzburgWürzburg, Germany
| |
Collapse
|
13
|
Kienle N, Kloepper TH, Fasshauer D. Shedding light on the expansion and diversification of the Cdc48 protein family during the rise of the eukaryotic cell. BMC Evol Biol 2016; 16:215. [PMID: 27756227 PMCID: PMC5070193 DOI: 10.1186/s12862-016-0790-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 10/04/2016] [Indexed: 11/22/2022] Open
Abstract
Background A defining feature of eukaryotic cells is the presence of various distinct membrane-bound compartments with different metabolic roles. Material exchange between most compartments occurs via a sophisticated vesicle trafficking system. This intricate cellular architecture of eukaryotes appears to have emerged suddenly, about 2 billion years ago, from much less complex ancestors. How the eukaryotic cell acquired its internal complexity is poorly understood, partly because no prokaryotic precursors have been found for many key factors involved in compartmentalization. One exception is the Cdc48 protein family, which consists of several distinct classical ATPases associated with various cellular activities (AAA+) proteins with two consecutive AAA domains. Results Here, we have classified the Cdc48 family through iterative use of hidden Markov models and tree building. We found only one type, Cdc48, in prokaryotes, although a set of eight diverged members that function at distinct subcellular compartments were retrieved from eukaryotes and were probably present in the last eukaryotic common ancestor (LECA). Pronounced changes in sequence and domain structure during the radiation into the LECA set are delineated. Moreover, our analysis brings to light lineage-specific losses and duplications that often reflect important biological changes. Remarkably, we also found evidence for internal duplications within the LECA set that probably occurred during the rise of the eukaryotic cell. Conclusions Our analysis corroborates the idea that the diversification of the Cdc48 family is closely intertwined with the development of the compartments of the eukaryotic cell. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0790-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nickias Kienle
- Département des neurosciences fondamentales, Université de Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Tobias H Kloepper
- Sir William Dunn School of Pathology, Research Group Cell Biology of Intercellular Signaling, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Dirk Fasshauer
- Département des neurosciences fondamentales, Université de Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland.
| |
Collapse
|
14
|
Maheshwari R, Pushpa K, Subramaniam K. A role for post-transcriptional control of endoplasmic reticulum dynamics and function in C. elegans germline stem cell maintenance. Development 2016; 143:3097-108. [PMID: 27510976 DOI: 10.1242/dev.134056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/21/2016] [Indexed: 01/02/2023]
Abstract
Membrane-bound receptors, which are crucial for mediating several key developmental signals, are synthesized on endoplasmic reticulum (ER). The functional integrity of ER must therefore be important for the regulation of at least some developmental programs. However, the developmental control of ER function is not well understood. Here, we identify the C. elegans protein FARL-11, an ortholog of the mammalian STRIPAK complex component STRIP1/2 (FAM40A/B), as an ER protein. In the C. elegans embryo, we find that FARL-11 is essential for the cell cycle-dependent morphological changes of ER and for embryonic viability. In the germline, FARL-11 is required for normal ER morphology and for membrane localization of the GLP-1/Notch receptor involved in germline stem cell (GSC) maintenance. Furthermore, we provide evidence that PUF-8, a key translational regulator in the germline, promotes the translation of farl-11 mRNA. These findings reveal that ER form and function in the C. elegans germline are post-transcriptionally regulated and essential for the niche-GSC signaling mediated by GLP-1.
Collapse
Affiliation(s)
- Richa Maheshwari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Kumari Pushpa
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Kuppuswamy Subramaniam
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India Department of Biotechnology, Indian Institute of Technology - Madras, Chennai 600036, India
| |
Collapse
|
15
|
Abstract
Cdc48 (alias p97, VCP) is an important motor and regulator for the turnover of ubiquitylated proteins, both in proteasomal degradation and in nonproteolytic pathways. The diverse cellular tasks of Cdc48 are controlled by a large number of cofactors. Substrate-recruiting cofactors mediate the specific recognition of ubiquitylated target proteins, whereas substrate-processing cofactors often exhibit ubiquitin ligase or deubiquitylating activities that enable them to modulate the ubiquitylation state of substrates. This chapter introduces the major groups of Cdc48 cofactors and discusses the versatile options of substrate-processing cofactors to control the fate of Cdc48 substrates.
Collapse
Affiliation(s)
- Alexander Buchberger
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany,
| |
Collapse
|
16
|
Triplett JC, Swomley AM, Cai J, Klein JB, Butterfield DA. Quantitative phosphoproteomic analyses of the inferior parietal lobule from three different pathological stages of Alzheimer's disease. J Alzheimers Dis 2016; 49:45-62. [PMID: 26444780 DOI: 10.3233/jad-150417] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD), the most common age-related neurodegenerative disorder, is clinically characterized by progressive neuronal loss resulting in loss of memory and dementia. AD is histopathologically characterized by the extensive distribution of senile plaques and neurofibrillary tangles, and synapse loss. Amnestic mild cognitive impairment (MCI) is generally accepted to be an early stage of AD. MCI subjects have pathology and symptoms that fall on the scale intermediately between 'normal' cognition with little or no pathology and AD. A rare number of individuals, who exhibit normal cognition on psychometric tests but whose brains show widespread postmortem AD pathology, are classified as 'asymptomatic' or 'preclinical' AD (PCAD). In this study, we evaluated changes in protein phosphorylation states in the inferior parietal lobule of subjects with AD, MCI, PCAD, and control brain using a 2-D PAGE proteomics approach in conjunction with Pro-Q Diamond phosphoprotein staining. Statistically significant changes in phosphorylation levels were found in 19 proteins involved in energy metabolism, neuronal plasticity, signal transduction, and oxidative stress response. Changes in the disease state phosphoproteome may provide insights into underlying mechanisms for the preservation of memory with expansive AD pathology in PCAD and the progressive memory loss in amnestic MCI that escalates to the dementia and the characteristic pathology of AD brain.
Collapse
Affiliation(s)
- Judy C Triplett
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Aaron M Swomley
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Jian Cai
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, KY, USA
| | - Jon B Klein
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, KY, USA
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
17
|
Barthelme D, Sauer RT. Origin and Functional Evolution of the Cdc48/p97/VCP AAA+ Protein Unfolding and Remodeling Machine. J Mol Biol 2015; 428:1861-9. [PMID: 26608813 DOI: 10.1016/j.jmb.2015.11.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/03/2015] [Accepted: 11/16/2015] [Indexed: 01/25/2023]
Abstract
The AAA+ Cdc48 ATPase (alias p97 or VCP) is a key player in multiple ubiquitin-dependent cell signaling, degradation, and quality control pathways. Central to these broad biological functions is the ability of Cdc48 to interact with a large number of adaptor proteins and to remodel macromolecular proteins and their complexes. Different models have been proposed to explain how Cdc48 might couple ATP hydrolysis to forcible unfolding, dissociation, or remodeling of cellular clients. In this review, we provide an overview of possible mechanisms for substrate unfolding/remodeling by this conserved and essential AAA+ protein machine and their adaption and possible biological function throughout evolution.
Collapse
Affiliation(s)
- Dominik Barthelme
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Control of p97 function by cofactor binding. FEBS Lett 2015; 589:2578-89. [PMID: 26320413 DOI: 10.1016/j.febslet.2015.08.028] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/18/2015] [Accepted: 08/18/2015] [Indexed: 12/14/2022]
Abstract
p97 (also known as Cdc48, Ter94, and VCP) is an essential, abundant and highly conserved ATPase driving the turnover of ubiquitylated proteins in eukaryotes. Even though p97 is involved in highly diverse cellular pathways and processes, it exhibits hardly any substrate specificity on its own. Instead, it relies on a large number of regulatory cofactors controlling substrate specificity and turnover. The complexity as well as temporal and spatial regulation of the interactions between p97 and its cofactors is only beginning to be understood at the molecular level. Here, we give an overview on the structural framework of p97 interactions with its cofactors, the emerging principles underlying the assembly of complexes with different cofactors, and the pathogenic effects of disease-associated p97 mutations on cofactor binding.
Collapse
|
19
|
Elliott PR, Nielsen SV, Marco-Casanova P, Fiil BK, Keusekotten K, Mailand N, Freund SMV, Gyrd-Hansen M, Komander D. Molecular basis and regulation of OTULIN-LUBAC interaction. Mol Cell 2014; 54:335-48. [PMID: 24726323 PMCID: PMC4017264 DOI: 10.1016/j.molcel.2014.03.018] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/23/2014] [Accepted: 02/25/2014] [Indexed: 01/08/2023]
Abstract
The linear ubiquitin (Ub) chain assembly complex (LUBAC) generates Met1-linked “linear” Ub chains that regulate the activation of the nuclear factor κB (NFκB) transcription factor and other processes. We recently discovered OTULIN as a deubiquitinase that specifically cleaves Met1-linked polyUb. Now, we show that OTULIN binds via a conserved PUB-interacting motif (PIM) to the PUB domain of the LUBAC component HOIP. Crystal structures and nuclear magnetic resonance experiments reveal the molecular basis for the high-affinity interaction and explain why OTULIN binds the HOIP PUB domain specifically. Analysis of LUBAC-induced NFκB signaling suggests that OTULIN needs to be present on LUBAC in order to restrict Met1-polyUb signaling. Moreover, LUBAC-OTULIN complex formation is regulated by OTULIN phosphorylation in the PIM. Phosphorylation of OTULIN prevents HOIP binding, whereas unphosphorylated OTULIN is part of the endogenous LUBAC complex. Our work exemplifies how coordination of ubiquitin assembly and disassembly activities in protein complexes regulates individual Ub linkage types. OTULIN binds the HOIP PUB domain via a conserved N-terminal PUB-interacting motif Structural studies reveal specificity determinants for the binary interaction Loss of HOIP-OTULIN interaction causes deregulated accumulation of Met1-polyUb OTULIN binding to LUBAC is regulated by phosphorylation
Collapse
Affiliation(s)
- Paul R Elliott
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sofie V Nielsen
- Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Paola Marco-Casanova
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Berthe Katrine Fiil
- Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kirstin Keusekotten
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Niels Mailand
- Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Stefan M V Freund
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Mads Gyrd-Hansen
- Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
20
|
Schaeffer V, Akutsu M, Olma MH, Gomes LC, Kawasaki M, Dikic I. Binding of OTULIN to the PUB domain of HOIP controls NF-κB signaling. Mol Cell 2014; 54:349-61. [PMID: 24726327 DOI: 10.1016/j.molcel.2014.03.016] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/24/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
Abstract
Linear ubiquitin chains are implicated in the regulation of the NF-κB pathway, immunity, and inflammation. They are synthesized by the LUBAC complex containing the catalytic subunit HOIL-1-interacting protein (HOIP) and are disassembled by the linear ubiquitin-specific deubiquitinase OTULIN. Little is known about the regulation of these opposing activities. Here we demonstrate that HOIP and OTULIN interact and act as a bimolecular editing pair for linear ubiquitin signals in vivo. The HOIP PUB domain binds to the PUB interacting motif (PIM) of OTULIN and the chaperone VCP/p97. Structural studies revealed the basis of high-affinity interaction with the OTULIN PIM. The conserved Tyr56 of OTULIN makes critical contacts with the HOIP PUB domain, and its phosphorylation negatively regulates this interaction. Functionally, HOIP binding to OTULIN is required for the recruitment of OTULIN to the TNF receptor complex and to counteract HOIP-dependent activation of the NF-κB pathway.
Collapse
Affiliation(s)
- Veronique Schaeffer
- Institute of Biochemistry II, Goethe University Faculty of Medicine, 60590 Frankfurt am Main, Germany
| | - Masato Akutsu
- Institute of Biochemistry II, Goethe University Faculty of Medicine, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Michael H Olma
- Institute of Biochemistry II, Goethe University Faculty of Medicine, 60590 Frankfurt am Main, Germany
| | - Ligia C Gomes
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Masato Kawasaki
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Faculty of Medicine, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Ecdysone-induced receptor tyrosine phosphatase PTP52F regulates Drosophila midgut histolysis by enhancement of autophagy and apoptosis. Mol Cell Biol 2014; 34:1594-606. [PMID: 24550005 DOI: 10.1128/mcb.01391-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid removal of larval midgut is a critical developmental process directed by molting hormone ecdysone during Drosophila metamorphosis. To date, it remains unclear how the stepwise events can link the onset of ecdysone signaling to the destruction of larval midgut. This study investigated whether ecdysone-induced expression of receptor protein tyrosine phosphatase PTP52F regulates this process. The mutation of the Ptp52F gene caused significant delay in larval midgut degradation. Transitional endoplasmic reticulum ATPase (TER94), a regulator of ubiquitin proteasome system, was identified as a substrate and downstream effector of PTP52F in the ecdysone signaling. The inducible expression of PTP52F at the puparium formation stage resulted in dephosphorylation of TER94 on its Y800 residue, ensuring the rapid degradation of ubiquitylated proteins. One of the proteins targeted by dephosphorylated TER94 was found to be Drosophila inhibitor of apoptosis 1 (DIAP1), which was rapidly proteolyzed in cells with significant expression of PTP52F. Importantly, the reduced level of DIAP1 in response to inducible PTP52F was essential not only for the onset of apoptosis but also for the initiation of autophagy. This study demonstrates a novel function of PTP52F in regulating ecdysone-directed metamorphosis via enhancement of autophagic and apoptotic cell death in doomed Drosophila midguts.
Collapse
|
22
|
Cdc48: a swiss army knife of cell biology. JOURNAL OF AMINO ACIDS 2013; 2013:183421. [PMID: 24167726 PMCID: PMC3791797 DOI: 10.1155/2013/183421] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/29/2013] [Accepted: 08/12/2013] [Indexed: 12/13/2022]
Abstract
Cdc48 (also called VCP and p97) is an abundant protein that plays essential regulatory functions in a broad array of cellular processes. Working with various cofactors, Cdc48 utilizes its ATPase activity to promote the assembly and disassembly of protein complexes. Here, we review key biological functions and regulation of Cdc48 in ubiquitin-related events. Given the broad employment of Cdc48 in cell biology and its intimate ties to human diseases (e.g., amyotrophic lateral sclerosis), studies of Cdc48 will bring significant insights into the mechanism and function of ubiquitin in health and diseases.
Collapse
|
23
|
Cloutier P, Lavallée-Adam M, Faubert D, Blanchette M, Coulombe B. A newly uncovered group of distantly related lysine methyltransferases preferentially interact with molecular chaperones to regulate their activity. PLoS Genet 2013; 9:e1003210. [PMID: 23349634 PMCID: PMC3547847 DOI: 10.1371/journal.pgen.1003210] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/14/2012] [Indexed: 01/01/2023] Open
Abstract
Methylation is a post-translational modification that can affect numerous features of proteins, notably cellular localization, turnover, activity, and molecular interactions. Recent genome-wide analyses have considerably extended the list of human genes encoding putative methyltransferases. Studies on protein methyltransferases have revealed that the regulatory function of methylation is not limited to epigenetics, with many non-histone substrates now being discovered. We present here our findings on a novel family of distantly related putative methyltransferases. Affinity purification coupled to mass spectrometry shows a marked preference for these proteins to associate with various chaperones. Based on the spectral data, we were able to identify methylation sites in substrates, notably trimethylation of K135 of KIN/Kin17, K561 of HSPA8/Hsc70 as well as corresponding lysine residues in other Hsp70 isoforms, and K315 of VCP/p97. All modification sites were subsequently confirmed in vitro. In the case of VCP, methylation by METTL21D was stimulated by the addition of the UBX cofactor ASPSCR1, which we show directly interacts with the methyltransferase. This stimulatory effect was lost when we used VCP mutants (R155H, R159G, and R191Q) known to cause Inclusion Body Myopathy with Paget's disease of bone and Fronto-temporal Dementia (IBMPFD) and/or familial Amyotrophic Lateral Sclerosis (ALS). Lysine 315 falls in proximity to the Walker B motif of VCP's first ATPase/D1 domain. Our results indicate that methylation of this site negatively impacts its ATPase activity. Overall, this report uncovers a new role for protein methylation as a regulatory pathway for molecular chaperones and defines a novel regulatory mechanism for the chaperone VCP, whose deregulation is causative of degenerative neuromuscular diseases. Methylation, or transfer of a single or multiple methyl groups (CH3), is one of many post-translational modifications that occur on proteins. Such modifications can, in turn, affect numerous aspects of a protein, notably cellular localization, turnover, activity, and molecular interactions. In addition to post-translational modifications, the structural organization of a protein or protein complex can also have a significant impact on its function and stability. A group of factors known as “molecular chaperones” aid newly synthesized proteins in reaching their native conformation or alternating between physiologically relevant states. We present here a new family of factors that promote methylation of chaperones and show that, at least in one case, this modification translates into a modulation in the activity of the substrate chaperone. Our results not only characterize the function of previously unknown gene products, uncover a new role for protein methylation as a regulatory pathway for chaperones, and define a novel regulatory mechanism for the chaperone VCP, whose deregulation is causative of neuromuscular diseases, but also suggest the existence of a post-translational modification code that regulates molecular chaperones. Further decrypting this “chaperone code” will help understanding how the functional organization of the proteome is orchestrated.
Collapse
Affiliation(s)
- Philippe Cloutier
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Mathieu Lavallée-Adam
- McGill Centre for Bioinformatics and School of Computer Science, McGill University, Montréal, Québec, Canada
| | - Denis Faubert
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Mathieu Blanchette
- McGill Centre for Bioinformatics and School of Computer Science, McGill University, Montréal, Québec, Canada
| | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
24
|
Kamiya Y, Uekusa Y, Sumiyoshi A, Sasakawa H, Hirao T, Suzuki T, Kato K. NMR characterization of the interaction between the PUB domain of peptide:N-glycanase and ubiquitin-like domain of HR23. FEBS Lett 2012; 586:1141-6. [PMID: 22575648 DOI: 10.1016/j.febslet.2012.03.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 03/09/2012] [Indexed: 01/09/2023]
Abstract
PUB domains are identified in several proteins functioning in the ubiquitin (Ub)-proteasome system and considered as p97-binding modules. To address the further functional roles of these domains, we herein characterized the interactions of the PUB domain of peptide:N-glycanase (PNGase) with Ub and Ub-like domain (UBL) of the proteasome shuttle factor HR23. NMR data indicated that PNGase-PUB exerts an acceptor preferentially for HR23-UBL, electrostatically interacting with the UBL surface employed for binding to other Ub/UBL motifs. Our findings imply that PNGase-PUB serves not only as p97-binding module but also as a possible activator of HR23 in endoplasmic reticulum-associated degradation mechanisms.
Collapse
Affiliation(s)
- Yukiko Kamiya
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Kamiya Y, Satoh T, Kato K. Molecular and structural basis for N-glycan-dependent determination of glycoprotein fates in cells. Biochim Biophys Acta Gen Subj 2012; 1820:1327-37. [PMID: 22240168 DOI: 10.1016/j.bbagen.2011.12.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 12/27/2011] [Accepted: 12/27/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND N-linked oligosaccharides operate as tags for protein quality control, consigning glycoproteins to different fates, i.e. folding in the endoplasmic reticulum (ER), vesicular transport between the ER and the Golgi complex, and ER-associated degradation of glycoproteins, by interacting with a panel of intracellular lectins in the early secretory pathway. SCOPE OF REVIEW This review summarizes the current state of knowledge regarding the molecular and structural basis for glycoprotein-fate determination in cells that is achieved through the actions of the intracellular lectins and its partner proteins. MAJOR CONCLUSIONS Cumulative frontal affinity chromatography (FAC) data demonstrated that the intracellular lectins exhibit distinct sugar-binding specificity profiles. The glycotopes recognized by these lectins as fate determinants are embedded in the triantennary structures of the high-mannose-type oligosaccharides and are exposed upon trimming of the outer glucose and mannose residues during the N-glycan processing pathway. Furthermore, recently emerged 3D structural data offer mechanistic insights into functional interplay between an intracellular lectin and its binding partner in the early secretory pathway. GENERAL SIGNIFICANCE Structural biology approaches in conjunction with FAC methods provide atomic pictures of the mechanisms behind the glycoprotein-fate determination in cells. This article is a part of a Special issue entitled: Glycoproteomics.
Collapse
Affiliation(s)
- Yukiko Kamiya
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | | | | |
Collapse
|
26
|
Wolf DH, Stolz A. The Cdc48 machine in endoplasmic reticulum associated protein degradation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:117-24. [PMID: 21945179 DOI: 10.1016/j.bbamcr.2011.09.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 10/17/2022]
Abstract
The AAA-type ATPase Cdc48 (named p97/VCP in mammals) is a molecular machine in all eukaryotic cells that transforms ATP hydrolysis into mechanic power to unfold and pull proteins against physical forces, which make up a protein's structure and hold it in place. From the many cellular processes, Cdc48 is involved in, its function in endoplasmic reticulum associated protein degradation (ERAD) is understood best. This quality control process for proteins of the secretory pathway scans protein folding and discovers misfolded proteins in the endoplasmic reticulum (ER), the organelle, destined for folding of these proteins and their further delivery to their site of action. Misfolded lumenal and membrane proteins of the ER are detected by chaperones and lectins and retro-translocated out of the ER for degradation. Here the Cdc48 machinery, recruited to the ER membrane, takes over. After polyubiquitylation of the protein substrate, Cdc48 together with its dimeric co-factor complex Ufd1-Npl4 pulls the misfolded protein out and away from the ER membrane and delivers it to down-stream components for degradation by a cytosolic proteinase machine, the proteasome. The known details of the Cdc48-Ufd1-Npl4 motor complex triggered process are subject of this review article.
Collapse
Affiliation(s)
- Dieter H Wolf
- Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | | |
Collapse
|
27
|
Dargemont C, Ossareh-Nazari B. Cdc48/p97, a key actor in the interplay between autophagy and ubiquitin/proteasome catabolic pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:138-44. [PMID: 21807033 DOI: 10.1016/j.bbamcr.2011.07.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/11/2011] [Accepted: 07/18/2011] [Indexed: 01/12/2023]
Abstract
The AAA-ATPase Cdc48/p97 controls a large array of cellular functions including protein degradation, cell division, membrane fusion through its ability to interact with and control the fate of ubiquitylated proteins. More recently, Cdc48/p97 also appeared to be involved in autophagy, a catabolic cell response that has long been viewed as completely distinct from the Ubiquitine/Proteasome System. In particular, conjugation by ubiquitin or ubiquitin-like proteins as well as ubiquitin binding proteins such as Cdc48/p97 and its cofactors can target degradation by both catabolic pathways. This review will focus on the recently described functions of Cdc48/p97 in autophagosome biogenesis as well as selective autophagy.
Collapse
Affiliation(s)
- Catherine Dargemont
- CNRS, UMR7592, Institut Jacques Monod, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | | |
Collapse
|
28
|
Cdc48: a power machine in protein degradation. Trends Biochem Sci 2011; 36:515-23. [PMID: 21741246 DOI: 10.1016/j.tibs.2011.06.001] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/27/2011] [Accepted: 06/01/2011] [Indexed: 11/24/2022]
Abstract
Cdc48 is an essential, highly prominent ATP driven machine in eukaryotic cells. Physiological function of Cdc48 has been found in a multitude of cellular processes, for instance cell cycle progression, homotypic membrane fusion, chromatin remodeling, transcriptional and metabolic regulation, and many others. The molecular function of Cdc48 is arguably best understood in endoplasmic reticulum-associated protein degradation by the ubiquitin proteasome system. In this review, we summarize the general characteristics of Cdc48/p97 and the most recent results on the molecular function of Cdc48 in some of the above processes, which were found to finally end in proteolysis-connected pathways, either involving the proteasome or autophagocytosis-mediated lysosomal degradation.
Collapse
|
29
|
Cellular functions of Ufd2 and Ufd3 in proteasomal protein degradation depend on Cdc48 binding. Mol Cell Biol 2011; 31:1528-39. [PMID: 21282470 DOI: 10.1128/mcb.00962-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chaperone-related AAA ATPase Cdc48 (p97/VCP in higher eukaryotes) segregates ubiquitylated proteins for subsequent degradation by the 26S proteasome or for nonproteolytic fates. The specific outcome of Cdc48 activity is controlled by the evolutionary conserved cofactors Ufd2 and Ufd3, which antagonistically regulate the substrates' ubiquitylation states. In contrast to the interaction of Ufd3 and Cdc48, the interaction between the ubiquitin chain elongating enzyme Ufd2 and Cdc48 has not been precisely mapped. Consequently, it is still unknown whether physiological functions of Ufd2 in fact require Cdc48 binding. Here, we show that Ufd2 binds to the C-terminal tail of Cdc48, unlike the human Ufd2 homologue E4B, which interacts with the N domain of p97. The binding sites for Ufd2 and Ufd3 on Cdc48 overlap and depend critically on the conserved residue Y834 but are not identical. Saccharomyces cerevisiae cdc48 mutants altered in residue Y834 or lacking the C-terminal tail are viable and exhibit normal growth. Importantly, however, loss of Ufd2 and Ufd3 binding in these mutants phenocopies defects of Δufd2 and Δufd3 mutants in the ubiquitin fusion degradation (UFD) and Ole1 fatty acid desaturase activation (OLE) pathways. These results indicate that key cellular functions of Ufd2 and Ufd3 in proteasomal protein degradation require their interaction with Cdc48.
Collapse
|
30
|
Haines DS. p97-containing complexes in proliferation control and cancer: emerging culprits or guilt by association? Genes Cancer 2010; 1:753-763. [PMID: 21103003 DOI: 10.1177/1947601910381381] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
p97 (also called VCP in metazoans and CDC48 in yeast) is a highly conserved, abundant and essential type II ATPase that functions in numerous ubiquitin signaling dependent processes. p97/Cd48 activities require a growing number of adaptor or accessory proteins that promote interactions with ubiquitinated proteins. p97 has human disease relevance as it is mutated in familial cases of inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia (IBMPFD). There is also increasing evidence suggesting that p97 and/or some of its adaptors play a role in cancer. This review will summarize our existing knowledge of the biochemical, molecular and cellular activities of p97-containing complexes, with an ending focus on their potential role in malignancy.
Collapse
Affiliation(s)
- Dale S Haines
- Fels Institute for Cancer Research and Molecular Biology and Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140, USA
| |
Collapse
|
31
|
Ewens CA, Kloppsteck P, Förster A, Zhang X, Freemont PS. Structural and functional implications of phosphorylation and acetylation in the regulation of the AAA+ protein p97. Biochem Cell Biol 2010; 88:41-8. [PMID: 20130678 DOI: 10.1139/o09-128] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
p97, also known as VCP (valosin-containing protein), is a hexameric AAA+ ATPase that participates in a variety of cellular processes. It is believed that p97 mediates these processes through the binding of various adaptor proteins. Many factors govern adaptor binding and the regulatory mechanisms are not yet well understood. Sites of phosphorylation and acetylation on p97 have been identified and such post-translational modifications may be involved in regulating p97 function. Phosphorylation and, to a lesser extent, acetylation of p97 have been shown to modify its properties - for example, by modulating adaptor binding and directing subcellular localization. These modifications have been implicated in a number of p97-mediated processes, including misfolded protein degradation, membrane fusion, and transcription factor activation. This review describes the known phosphorylation and acetylation sites on p97 and discusses their possible structural and functional implications.
Collapse
Affiliation(s)
- Caroline A Ewens
- Division of Molecular Biosciences, Centre for Structural Biology, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Qiu L, Pashkova N, Walker JR, Winistorfer S, Allali-Hassani A, Akutsu M, Piper R, Dhe-Paganon S. Structure and function of the PLAA/Ufd3-p97/Cdc48 complex. J Biol Chem 2009; 285:365-72. [PMID: 19887378 PMCID: PMC2804184 DOI: 10.1074/jbc.m109.044685] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PLAA (ortholog of yeast Doa1/Ufd3, also know as human PLAP or phospholipase A2-activating protein) has been implicated in a variety of disparate biological processes that involve the ubiquitin system. It is linked to the maintenance of ubiquitin levels, but the mechanism by which it accomplishes this is unclear. The C-terminal PUL (PLAP, Ufd3p, and Lub1p) domain of PLAA binds p97, an AAA ATPase, which among other functions helps transfer ubiquitinated proteins to the proteasome for degradation. In yeast, loss of Doa1 is suppressed by altering p97/Cdc48 function indicating that physical interaction between PLAA and p97 is functionally important. Although the overall regions of interaction between these proteins are known, the structural basis has been unavailable. We solved the high resolution crystal structure of the p97-PLAA complex showing that the PUL domain forms a 6-mer Armadillo-containing domain. Its N-terminal extension folds back onto the inner curvature forming a deep ridge that is positively charged with residues that are phylogenetically conserved. The C terminus of p97 binds in this ridge, where the side chain of p97-Tyr805, implicated in phosphorylation-dependent regulation, is buried. Expressed in doa1Δ null cells, point mutants of the yeast ortholog Doa1 that disrupt this interaction display slightly reduced ubiquitin levels, but unlike doa1Δ null cells, showed only some of the growth phenotypes. These data suggest that the p97-PLAA interaction is important for a subset of PLAA-dependent biological processes and provides a framework to better understand the role of these complex molecules in the ubiquitin system.
Collapse
Affiliation(s)
- Liyan Qiu
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7,Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Identification of c-Src tyrosine kinase substrates in platelet-derived growth factor receptor signaling. Mol Oncol 2009; 3:439-50. [PMID: 19632164 DOI: 10.1016/j.molonc.2009.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 06/17/2009] [Accepted: 07/04/2009] [Indexed: 11/20/2022] Open
Abstract
c-Src non-receptor tyrosine kinase is an important component of the platelet-derived growth factor (PDGF) receptor signaling pathway. c-Src has been shown to mediate the mitogenic response to PDGF in fibroblasts. However, the exact components of PDGF receptor signaling pathway mediated by c-Src remain unclear. Here, we used stable isotope labeling with amino acids in cell culture (SILAC) coupled with mass spectrometry to identify Src-family kinase substrates involved in PDGF signaling. Using SILAC, we were able to detect changes in tyrosine phosphorylation patterns of 43 potential c-Src kinase substrates in PDGF receptor signaling. This included 23 known c-Src kinase substrates, of which 16 proteins have known roles in PDGF signaling while the remaining 7 proteins have not previously been implicated in PDGF receptor signaling. Importantly, our analysis also led to identification of 20 novel Src-family kinase substrates, of which 5 proteins were previously reported as PDGF receptor signaling pathway intermediates while the remaining 15 proteins represent novel signaling intermediates in PDGF receptor signaling. In validation experiments, we demonstrated that PDGF indeed induced the phosphorylation of a subset of candidate Src-family kinase substrates - Calpain 2, Eps15 and Trim28 - in a c-Src-dependent fashion.
Collapse
|
34
|
New ATPase regulators--p97 goes to the PUB. Int J Biochem Cell Biol 2009; 41:2380-8. [PMID: 19497384 DOI: 10.1016/j.biocel.2009.05.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/26/2009] [Accepted: 05/26/2009] [Indexed: 01/10/2023]
Abstract
The conserved eukaryotic AAA-type ATPase complex, known as p97 or VCP in mammals and Cdc48 in yeast, is involved in a number of cellular pathways, including fusion of homotypic membranes, protein degradation, and activation of membrane-bound transcription factors. Most likely, p97 is directed to this broad spectrum of cellular functions through its binding to specific cofactors. More than 20 different p97 cofactors have been described to date and our understanding of their cellular functions is rapidly expanding. Common to these proteins is their intimate connection with the ubiquitin system. Recently, a small, conserved family of proteins, containing PUB domains, was found to function as p97 adaptors. Intriguingly, their association with p97 is regulated by tyrosine phosphorylation, suggesting that they act as a relay between signalling pathways and p97 functions. Here we give an overview of the currently known PUB-domain proteins and other p97-interacting proteins.
Collapse
|
35
|
Humphreys D, Hume PJ, Koronakis V. The Salmonella effector SptP dephosphorylates host AAA+ ATPase VCP to promote development of its intracellular replicative niche. Cell Host Microbe 2009; 5:225-33. [PMID: 19286132 PMCID: PMC2724103 DOI: 10.1016/j.chom.2009.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/14/2008] [Accepted: 01/20/2009] [Indexed: 11/24/2022]
Abstract
Virulence effectors delivered into intestinal epithelial cells by Salmonella trigger actin remodeling to direct pathogen internalization and intracellular replication in Salmonella-containing vacuoles (SCVs). One such effector, SptP, functions early during pathogen entry to deactivate Rho GTPases and reverse pathogen-induced cytoskeletal changes following uptake. SptP also harbors a C-terminal protein tyrosine phosphatase (PTPase) domain with no clear host substrates. Investigating SptP's longevity in infected cells, we uncover a late function of SptP, showing that it associates with SCVs, and its PTPase activity increases pathogen replication. Direct SptP binding and specific dephosphorylation of the AAA+ ATPase valosin-containing protein (VCP/p97), a facilitator of cellular membrane fusion and protein degradation, enhanced pathogen replication in SCVs. VCP and its adaptors p47 and Ufd1 were necessary for generating Salmonella-induced filaments on SCVs, a membrane fusion event characteristic of the pathogen replicative phase. Thus, Salmonella regulates the biogenesis of an intracellular niche through SptP-mediated dephosphorylation of VCP.
Collapse
Affiliation(s)
- Daniel Humphreys
- Cambridge University Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Peter J. Hume
- Cambridge University Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Vassilis Koronakis
- Cambridge University Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
36
|
Cavalier-Smith T. Predation and eukaryote cell origins: a coevolutionary perspective. Int J Biochem Cell Biol 2008; 41:307-22. [PMID: 18935970 DOI: 10.1016/j.biocel.2008.10.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/06/2008] [Accepted: 10/08/2008] [Indexed: 12/23/2022]
Abstract
Cells are of only two kinds: bacteria, with DNA segregated by surface membrane motors, dating back approximately 3.5Gy; and eukaryotes, which evolved from bacteria, possibly as recently as 800-850My ago. The last common ancestor of eukaryotes was a sexual phagotrophic protozoan with mitochondria, one or two centrioles and cilia. Conversion of bacteria (=prokaryotes) into a eukaryote involved approximately 60 major innovations. Numerous contradictory ideas about eukaryogenesis fail to explain fundamental features of eukaryotic cell biology or conflict with phylogeny. Data are best explained by the intracellular coevolutionary theory, with three basic tenets: (1) the eukaryotic cytoskeleton and endomembrane system originated through cooperatively enabling the evolution of phagotrophy; (2) phagocytosis internalised DNA-membrane attachments, unavoidably disrupting bacterial division; recovery entailed the evolution of the nucleus and mitotic cycle; (3) the symbiogenetic origin of mitochondria immediately followed the perfection of phagotrophy and intracellular digestion, contributing greater energy efficiency and group II introns as precursors of spliceosomal introns. Eukaryotes plus their archaebacterial sisters form the clade neomura, which evolved from a radically modified derivative of an actinobacterial posibacterium that had replaced the ancestral eubacterial murein peptidoglycan by N-linked glycoproteins, radically modified its DNA-handling enzymes, and evolved cotranslational protein secretion, but not the isoprenoid-ether lipids of archaebacteria. I focus on this phylogenetic background and on explaining how in response to novel phagotrophic selective pressures and ensuing genome internalisation this prekaryote evolved efficient digestion of prey proteins by retrotranslocation and 26S proteasomes, then internal digestion by phagocytosis, lysosomes, and peroxisomes, and eukaryotic vesicle trafficking and intracellular compartmentation.
Collapse
Affiliation(s)
- T Cavalier-Smith
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|