1
|
Aimone CD, Hoyer JS, Dye AE, Deppong DO, Duffy S, Carbone I, Hanley-Bowdoin L. An experimental strategy for preparing circular ssDNA virus genomes for next-generation sequencing. J Virol Methods 2021; 300:114405. [PMID: 34896458 DOI: 10.1016/j.jviromet.2021.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 08/26/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
The ability of begomoviruses to evolve rapidly threatens many crops and underscores the importance of detecting these viruses quickly and to understand their genome diversity. This study presents an improved protocol for the enhanced amplification and enrichment of begomovirus DNA for use in next generation sequencing of the viral genomes. An enhanced rolling circle amplification (RCA) method using EquiPhi29 polymerase was combined with size selection to generate a cost-effective, short-read sequencing method. This improved short-read sequencing produced at least 50 % of the reads mapping to the target viral reference genomes, African cassava mosaic virus and East African cassava mosaic virus. This study provided other insights into common misconceptions about RCA and lessons that could be learned from the sequencing of single-stranded DNA virus genomes. This protocol can be used to examine the viral DNA as it moves from host to vector, thus producing valuable information for viral DNA population studies, and would likely work well with other circular Rep-encoding ssDNA viruses (CRESS) DNA viruses.
Collapse
Affiliation(s)
- Catherine D Aimone
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - J Steen Hoyer
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Anna E Dye
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - David O Deppong
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Siobain Duffy
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
2
|
Salas M, Holguera I, Redrejo-Rodríguez M, de Vega M. DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication. Front Mol Biosci 2016; 3:37. [PMID: 27547754 PMCID: PMC4974454 DOI: 10.3389/fmolb.2016.00037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/20/2016] [Indexed: 01/25/2023] Open
Abstract
Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5′ ends of the DNA. This protein, called terminal protein (TP), is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB) that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP) that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3′–5′ exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding and localization of the TP at the bacterial nucleoid, where viral DNA replication takes place. The biochemical properties of the Φ29 DBP and SSB and their function in the initiation and elongation of Φ29 DNA replication, respectively, will be described.
Collapse
Affiliation(s)
- Margarita Salas
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid Madrid, Spain
| | - Isabel Holguera
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid Madrid, Spain
| | - Modesto Redrejo-Rodríguez
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid Madrid, Spain
| | - Miguel de Vega
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
3
|
Abstract
The requirement of DNA polymerases for a 3'-hydroxyl (3'-OH) group to prime DNA synthesis raised the question about how the ends of linear chromosomes could be replicated. Among the strategies that have evolved to handle the end replication problem, a group of linear phages and eukaryotic and archaeal viruses, among others, make use of a protein (terminal protein, TP) that primes DNA synthesis from the end of their genomes. The replicative DNA polymerase recognizes the OH group of a specific residue in the TP to initiate replication that is guided by an internal 3' nucleotide of the template strand. By a sliding-back mechanism or variants of it the terminal nucleotide(s) is(are) recovered and the TP becomes covalently attached to the genome ends. Bacillus subtilis phage ϕ29 is the organism in which such a mechanism has been studied more extensively, having allowed to lay the foundations of the so-called protein-primed replication mechanism. Here we focus on the main biochemical and structural features of the two main proteins responsible for the protein-primed initiation step: the DNA polymerase and the TP. Thus, we will discuss the structural determinants of the DNA polymerase responsible for its ability to use sequentially a TP and a DNA as primers, as well as for its inherent capacity to couple high processive synthesis to strand displacement. On the other hand, we will review how TP primes initiation followed by a transition step for further DNA-primed replication by the same polymerase molecule. Finally, we will review how replication is compartmentalized in vivo.
Collapse
Affiliation(s)
- M Salas
- Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | - M de Vega
- Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| |
Collapse
|
4
|
Pang Y, Lu J, Yang J, Wang Y, Cohen C, Ni X, Zhao Y. A novel method for diagnosis of smear-negative tuberculosis patients by combining a random unbiased Phi29 amplification with a specific real-time PCR. Tuberculosis (Edinb) 2015; 95:411-4. [PMID: 25957821 DOI: 10.1016/j.tube.2015.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/27/2015] [Accepted: 03/29/2015] [Indexed: 11/18/2022]
Abstract
In this study, we develop a novel method for diagnosis of smear-negative tuberculosis patients by performing a random unbiased Phi29 amplification prior to the use of a specific real-time PCR. The limit of detection (LOD) of the conventional real-time PCR was 100 colony-forming units (CFU) of MTB genome/reaction, while the REPLI real-time PCR assay could detect 0.4 CFU/reaction. In comparison with the conventional real-time PCR, REPLI real-time PCR shows better sensitivity for the detection of smear-negative tuberculosis (P = 0.015).
Collapse
Affiliation(s)
- Yu Pang
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- Shaanxi Tuberculosis Dispensary, Shaanxi, China
| | - Yufeng Wang
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chad Cohen
- McGill International TB Centre, Montreal, Quebec, Canada
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Yanlin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
5
|
Mitrović J, Siewert C, Duduk B, Hecht J, Mölling K, Broecker F, Beyerlein P, Büttner C, Bertaccini A, Kube M. Generation and analysis of draft sequences of 'stolbur' phytoplasma from multiple displacement amplification templates. J Mol Microbiol Biotechnol 2013; 24:1-11. [PMID: 24158016 DOI: 10.1159/000353904] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phytoplasma-associated diseases are reported for more than 1,000 plant species worldwide. Only a few genome sequences are available in contrast to the economical importance of these bacterial pathogens. A new strategy was used to retrieve phytoplasma strain-specific genome data. Multiple displacement amplification was performed on DNA obtained from <3 g of plant tissue from tobacco and parsley samples infected with 'stolbur' strains. Random hexamers and Phi29 polymerase were evaluated with and without supplementation by group-assigned oligonucleotides providing templates for Illumina's sequencing approach. Metagenomic drafts derived from individual and pooled strain-specific de novo assemblies were analyzed. Supplementation of the Phi29 reaction with the group-assigned oligonucleotides resulted in an about 2-fold enrichment of the percentage of phytoplasma-assigned reads and thereby improved assembly results. The obtained genomic drafts represent the largest datasets available from 'stolbur' phytoplasmas. Sequences of the two strains (558 kb, 448 proteins and 516 kb, 346 proteins, respectively) were annotated allowing the identification of prominent membrane proteins and reconstruction of core pathways. Analysis of a putative truncated sucrose phosphorylase provides hints on sugar degradation. Furthermore, it is shown that drafts obtained from repetitive-rich genomes allow only limited analysis on multicopy regions and genome completeness.
Collapse
Affiliation(s)
- Jelena Mitrović
- Laboratory of Applied Phytopathology, Institute of Pesticides and Environmental Protection, Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Marincevic-Zuniga Y, Gustavsson I, Gyllensten U. Multiply-primed rolling circle amplification of human papillomavirus using sequence-specific primers. Virology 2012; 432:57-62. [PMID: 22739442 DOI: 10.1016/j.virol.2012.05.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/15/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
Abstract
Multiply-primed rolling circle amplification (RCA) is a suitable technique for amplification of circular templates and has been used to identify novel human papillomaviruses (HPV). In this study we develop an efficient RCA for whole genome amplification of HPV using HPV-specific primers in clinical samples and establish a protocol for whole genome sequencing using the Sanger method. Amplification of cloned HPV-genomes by RCA was compared using specific primers against random hexamers. Using HPV-specific primers increased the effectiveness on average 15.2 times and the enrichment of HPV relative to human gDNA on average 62.2 times, as compared to using random hexamer. RCA products were sequenced without need for cloning, even when using low-input amounts. The technique was successfully used on 4 patient samples from FTA cards, to generate whole HPV-genome sequences. Degenerated HPV-specific primers for RCA produce DNA of sufficient quality and quantity suitable for sequencing and other potential downstream analyses.
Collapse
Affiliation(s)
- Yanara Marincevic-Zuniga
- Department of Immunology, Genetics and Pathology, SciLife Lab Uppsala, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
7
|
Improvement of φ29 DNA polymerase amplification performance by fusion of DNA binding motifs. Proc Natl Acad Sci U S A 2010; 107:16506-11. [PMID: 20823261 DOI: 10.1073/pnas.1011428107] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage ϕ29 DNA polymerase is a unique enzyme endowed with two distinctive properties, high processivity and faithful polymerization coupled to strand displacement, that have led to the development of protocols to achieve isothermal amplification of limiting amounts of both circular plasmids and genomic DNA. To enhance the amplification efficiency of ϕ29 DNA polymerase, we have constructed chimerical DNA polymerases by fusing DNA binding domains to the C terminus of the polymerase. The results show that the addition of Helix-hairpin-Helix [(HhH)(2)] domains increases DNA binding of the hybrid polymerases without hindering their replication rate. In addition, the chimerical DNA polymerases display an improved and faithful multiply primed DNA amplification proficiency on both circular plasmids and genomic DNA and are unique ϕ29 DNA polymerase variants with enhanced amplification performance. The reported chimerical DNA polymerases will contribute to make ϕ29 DNA polymerase-based amplification technologies one of the most powerful tools for genomics.
Collapse
|