1
|
Naeem A, Utro F, Wang Q, Cha J, Vihinen M, Martindale S, Zhou Y, Ren Y, Tyekucheva S, Kim AS, Fernandes SM, Saksena G, Rhrissorrakrai K, Levovitz C, Danysh BP, Slowik K, Jacobs RA, Davids MS, Lederer JA, Zain R, Smith CIE, Leshchiner I, Parida L, Getz G, Brown JR. Pirtobrutinib targets BTK C481S in ibrutinib-resistant CLL but second-site BTK mutations lead to resistance. Blood Adv 2023; 7:1929-1943. [PMID: 36287227 PMCID: PMC10202739 DOI: 10.1182/bloodadvances.2022008447] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/26/2022] [Accepted: 10/09/2022] [Indexed: 11/20/2022] Open
Abstract
Covalent inhibitors of Bruton tyrosine kinase (BTK) have transformed the therapy of chronic lymphocytic leukemia (CLL), but continuous therapy has been complicated by the development of resistance. The most common resistance mechanism in patients whose disease progresses on covalent BTK inhibitors (BTKis) is a mutation in the BTK 481 cysteine residue to which the inhibitors bind covalently. Pirtobrutinib is a highly selective, noncovalent BTKi with substantial clinical activity in patients whose disease has progressed on covalent BTKi, regardless of BTK mutation status. Using in vitro ibrutinib-resistant models and cells from patients with CLL, we show that pirtobrutinib potently inhibits BTK-mediated functions including B-cell receptor (BCR) signaling, cell viability, and CCL3/CCL4 chemokine production in both BTK wild-type and C481S mutant CLL cells. We demonstrate that primary CLL cells from responding patients on the pirtobrutinib trial show reduced BCR signaling, cell survival, and CCL3/CCL4 chemokine secretion. At time of progression, these primary CLL cells show increasing resistance to pirtobrutinib in signaling inhibition, cell viability, and cytokine production. We employed longitudinal whole-exome sequencing on 2 patients whose disease progressed on pirtobrutinib and identified selection of alternative-site BTK mutations, providing clinical evidence that secondary BTK mutations lead to resistance to noncovalent BTKis.
Collapse
MESH Headings
- Humans
- Agammaglobulinaemia Tyrosine Kinase
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Chemokine CCL4/genetics
- Chemokine CCL4/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Mutation
Collapse
Affiliation(s)
- Aishath Naeem
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | | | - Qing Wang
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Huddinge, Sweden
| | - Justin Cha
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Mauno Vihinen
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Stephen Martindale
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yinglu Zhou
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Yue Ren
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Svitlana Tyekucheva
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Annette S. Kim
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Stacey M. Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Gordon Saksena
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | | | | | - Brian P. Danysh
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Kara Slowik
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Raquel A. Jacobs
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | | | - Rula Zain
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Huddinge, Sweden
- Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - C. I. Edvard Smith
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Huddinge, Sweden
| | - Ignaty Leshchiner
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | | | - Gad Getz
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Pathology, Harvard Medical School, Boston, MA
- Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Jennifer R. Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
2
|
Estupiñán HY, Wang Q, Berglöf A, Schaafsma GCP, Shi Y, Zhou L, Mohammad DK, Yu L, Vihinen M, Zain R, Smith CIE. BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib. Leukemia 2021; 35:1317-1329. [PMID: 33526860 PMCID: PMC8102192 DOI: 10.1038/s41375-021-01123-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/11/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
Irreversible inhibitors of Bruton tyrosine kinase (BTK), pioneered by ibrutinib, have become breakthrough drugs in the treatment of leukemias and lymphomas. Resistance variants (mutations) occur, but in contrast to those identified for many other tyrosine kinase inhibitors, they affect less frequently the "gatekeeper" residue in the catalytic domain. In this study we carried out variation scanning by creating 11 substitutions at the gatekeeper amino acid, threonine 474 (T474). These variants were subsequently combined with replacement of the cysteine 481 residue to which irreversible inhibitors, such as ibrutinib, acalabrutinib and zanubrutinib, bind. We found that certain double mutants, such as threonine 474 to isoleucine (T474I) or methionine (T474M) combined with catalytically active cysteine 481 to serine (C481S), are insensitive to ≥16-fold the pharmacological serum concentration, and therefore defined as super-resistant to irreversible inhibitors. Conversely, reversible inhibitors showed a variable pattern, from resistance to no resistance, collectively demonstrating the structural constraints for different classes of inhibitors, which may affect their clinical application.
Collapse
Affiliation(s)
- H. Yesid Estupiñán
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden ,grid.411595.d0000 0001 2105 7207Departamento de Ciencias Básicas, Universidad Industrial de Santander, 680002 Bucaramanga, Colombia
| | - Qing Wang
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden
| | - Anna Berglöf
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden
| | - Gerard C. P. Schaafsma
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Yuye Shi
- Department of Hematology, Huai’an First People’s Hospital, Nanjing Medical University, Nanjing, 223300 Jiangsu Republic of China
| | - Litao Zhou
- Department of Hematology, Huai’an First People’s Hospital, Nanjing Medical University, Nanjing, 223300 Jiangsu Republic of China
| | - Dara K. Mohammad
- grid.4714.60000 0004 1937 0626Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, 17177 Stockholm, Sweden ,grid.444950.8College of Agricultural Engineering Sciences, Salahaddin University-Erbil, 44002 Erbil, Kurdistan Region Iraq
| | - Liang Yu
- Department of Hematology, Huai’an First People’s Hospital, Nanjing Medical University, Nanjing, 223300 Jiangsu Republic of China
| | - Mauno Vihinen
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Rula Zain
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden ,grid.24381.3c0000 0000 9241 5705Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - C. I. Edvard Smith
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden
| |
Collapse
|
3
|
Substitution scanning identifies a novel, catalytically active ibrutinib-resistant BTK cysteine 481 to threonine (C481T) variant. Leukemia 2016; 31:177-185. [PMID: 27282255 PMCID: PMC5220130 DOI: 10.1038/leu.2016.153] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 01/01/2023]
Abstract
Irreversible Bruton tyrosine kinase (BTK) inhibitors, ibrutinib and acalabrutinib have demonstrated remarkable clinical responses in multiple B-cell malignancies. Acquired resistance has been identified in a sub-population of patients in which mutations affecting BTK predominantly substitute cysteine 481 in the kinase domain for catalytically active serine, thereby ablating covalent binding of inhibitors. Activating substitutions in the BTK substrate phospholipase Cγ2 (PLCγ2) instead confers resistance independent of BTK. Herein, we generated all six possible amino acid substitutions due to single nucleotide alterations for the cysteine 481 codon, in addition to threonine, requiring two nucleotide substitutions, and performed functional analysis. Replacement by arginine, phenylalanine, tryptophan or tyrosine completely inactivated the catalytic activity, whereas substitution with glycine caused severe impairment. BTK with threonine replacement was catalytically active, similar to substitution with serine. We identify three potential ibrutinib resistance scenarios for cysteine 481 replacement: (1) Serine, being catalytically active and therefore predominating among patients. (2) Threonine, also being catalytically active, but predicted to be scarce, because two nucleotide changes are needed. (3) As BTK variants replaced with other residues are catalytically inactive, they presumably need compensatory mutations, therefore being very scarce. Glycine and tryptophan variants were not yet reported but likely also provide resistance.
Collapse
|
4
|
Mohamed AJ, Yu L, Bäckesjö CM, Vargas L, Faryal R, Aints A, Christensson B, Berglöf A, Vihinen M, Nore BF, Smith CIE. Bruton's tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 2009; 228:58-73. [PMID: 19290921 DOI: 10.1111/j.1600-065x.2008.00741.x] [Citation(s) in RCA: 360] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bruton's agammaglobulinemia tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase important in B-lymphocyte development, differentiation, and signaling. Btk is a member of the Tec family of kinases. Mutations in the Btk gene lead to X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Activation of Btk triggers a cascade of signaling events that culminates in the generation of calcium mobilization and fluxes, cytoskeletal rearrangements, and transcriptional regulation involving nuclear factor-kappaB (NF-kappaB) and nuclear factor of activated T cells (NFAT). In B cells, NF-kappaB was shown to bind to the Btk promoter and induce transcription, whereas the B-cell receptor-dependent NF-kappaB signaling pathway requires functional Btk. Moreover, Btk activation is tightly regulated by a plethora of other signaling proteins including protein kinase C (PKC), Sab/SH3BP5, and caveolin-1. For example, the prolyl isomerase Pin1 negatively regulates Btk by decreasing tyrosine phosphorylation and steady state levels of Btk. It is intriguing that PKC and Pin1, both of which are negative regulators, bind to the pleckstrin homology domain of Btk. To this end, we describe here novel mutations in the pleckstrin homology domain investigated for their transforming capacity. In particular, we show that the mutant D43R behaves similar to E41K, already known to possess such activity.
Collapse
Affiliation(s)
- Abdalla J Mohamed
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Huddinge University Hospital, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|