1
|
Chen Y, Du H, Wang X, Li B, Chen X, Yang X, Zhao C, Zhao J. ANGPTL4 May Regulate the Crosstalk Between Intervertebral Disc Degeneration and Type 2 Diabetes Mellitus: A Combined Analysis of Bioinformatics and Rat Models. J Inflamm Res 2023; 16:6361-6384. [PMID: 38161353 PMCID: PMC10757813 DOI: 10.2147/jir.s426439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The crosstalk between intervertebral disc degeneration (IVDD) and type 2 diabetes mellitus (T2DM) has been investigated. However, the common mechanism underlying this phenomenon has not been clearly elucidated. This study aimed to explore the shared gene signatures of IVDD and T2DM. Methods The expression profiles of IVDD (GSE27494) and T2DM (GSE20966) were acquired from the Gene Expression Omnibus database. Five hub genes including ANGPTL4, CCL2, CCN3, THBS2, and INHBA were preliminarily screened. GO (Gene Ontology) enrichment analysis, functional correlation analysis, immune filtration, Transcription factors (TFs)-mRNA-miRNA coregulatory network, and potential drugs prediction were performed following the identification of hub genes. RNA sequencing, in vivo and in vitro experiments on rats were further performed to validate the expression and function of the target gene. Results Five hub genes (ANGPTL4, CCL2, CCN3, THBS2, and INHBA) were identified. GO analysis demonstrated the regulation of the immune system, extracellular matrix (ECM), and SMAD protein signal transduction. There was a strong correlation between hub genes and different functions, including lipid metabolism, mitochondrial function, and ECM degradation. The immune filtration pattern grouped by disease and the expression of hub genes showed significant changes in the immune cell composition. TFs-mRNA-miRNA co-expression networks were constructed. In addition, pepstatin showed great drug-targeting relevance based on potential drugs prediction of hub genes. ANGPTL4, a gene that mediates the inhibition of lipoprotein lipase activity, was eventually determined after hub gene screening, validation by different datasets, RNA sequencing, and experiments. Discussion This study screened five hub genes and ANGPTL4 was eventually determined as a potential target for the regulation of the crosstalk in patients with IVDD and T2DM.
Collapse
Affiliation(s)
- Yan Chen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Han Du
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Xin Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Baixing Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Xuzhuo Chen
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Xiao Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Changqing Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| |
Collapse
|
2
|
Maurer A, Kalbacher H. Pepstatin pull-down at high pH is a powerful tool for detection and analysis of napsin A. Biochem Biophys Res Commun 2019; 515:145-148. [PMID: 31130231 DOI: 10.1016/j.bbrc.2019.05.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
Napsin A is an intracellular aspartic protease and biomarker of various malignancies like lung adenocarcinoma and ovarian clear cell carcinoma, but its detection is usually limited to immunohistochemical techniques gaining excellent information on its distribution but missing information about posttranslational modifications (e.g. maturation state) of the protein. We present a protocol for specific enrichment of napsin A from clinical or biological specimens, that facilitates detailed analysis of the protein. By using the exceptionally broad pH range under which napsin A binds to its inhibitor pepstatin A we achieve highly selective binding of napsin A while other aspartic proteases have negligible affinity. Using this method we demonstrate that lung napsin A in many mammals is a heterogeneous enzyme with a characteristic ladder-like appearance in SDS-PAGE that might be caused by proteolytically processed N- and/or C-termini, in contrast to the more homogeneous form found in kidneys and primary lung adenocarcinoma.
Collapse
Affiliation(s)
- Andreas Maurer
- Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Germany.
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Germany
| |
Collapse
|
3
|
Class II MHC antigen processing in immune tolerance and inflammation. Immunogenetics 2018; 71:171-187. [PMID: 30421030 DOI: 10.1007/s00251-018-1095-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
Presentation of peptide antigens by MHC-II proteins is prerequisite to effective CD4 T cell tolerance to self and to recognition of foreign antigens. Antigen uptake and processing pathways as well as expression of the peptide exchange factors HLA-DM and HLA-DO differ among the various professional and non-professional antigen-presenting cells and are modulated by cell developmental state and activation. Recent studies have highlighted the importance of these cell-specific factors in controlling the source and breadth of peptides presented by MHC-II under different conditions. During inflammation, increased presentation of selected self-peptides has implications for maintenance of peripheral tolerance and autoimmunity.
Collapse
|
4
|
Adler LN, Jiang W, Bhamidipati K, Millican M, Macaubas C, Hung SC, Mellins ED. The Other Function: Class II-Restricted Antigen Presentation by B Cells. Front Immunol 2017; 8:319. [PMID: 28386257 PMCID: PMC5362600 DOI: 10.3389/fimmu.2017.00319] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/07/2017] [Indexed: 12/31/2022] Open
Abstract
Mature B lymphocytes (B cells) recognize antigens using their B cell receptor (BCR) and are activated to become antibody-producing cells. In addition, and integral to the development of a high-affinity antibodies, B cells utilize the specialized major histocompatibility complex class II (MHCII) antigen presentation pathway to process BCR-bound and internalized protein antigens and present selected peptides in complex with MHCII to CD4+ T cells. This interaction influences the fate of both types of lymphocytes and shapes immune outcomes. Specific, effective, and optimally timed antigen presentation by B cells requires well-controlled intracellular machinery, often regulated by the combined effects of several molecular events. Here, we delineate and summarize these events in four steps along the antigen presentation pathway: (1) antigen capture and uptake by B cells; (2) intersection of internalized antigen/BCRs complexes with MHCII in peptide-loading compartments; (3) generation and regulation of MHCII/peptide complexes; and (4) exocytic transport for presentation of MHCII/peptide complexes at the surface of B cells. Finally, we discuss modulation of the MHCII presentation pathway across B cell development and maturation to effector cells, with an emphasis on the shaping of the MHCII/peptide repertoire by two key antigen presentation regulators in B cells: HLA-DM and HLA-DO.
Collapse
Affiliation(s)
- Lital N Adler
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| | - Wei Jiang
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| | | | | | - Claudia Macaubas
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| | - Shu-Chen Hung
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| | - Elizabeth D Mellins
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
O'Donoghue AJ, Ivry SL, Chaudhury C, Hostetter DR, Hanahan D, Craik CS. Procathepsin E is highly abundant but minimally active in pancreatic ductal adenocarcinoma tumors. Biol Chem 2016; 397:871-81. [PMID: 27149201 PMCID: PMC5712230 DOI: 10.1515/hsz-2016-0138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/20/2016] [Indexed: 12/31/2022]
Abstract
The cathepsin family of lysosomal proteases is increasingly being recognized for their altered expression in cancer and role in facilitating tumor progression. The aspartyl protease cathepsin E is overexpressed in several cancers and has been investigated as a biomarker for pancreatic ductal adenocarcinoma (PDAC). Here we show that cathepsin E expression in mouse PDAC tumors is increased by more than 400-fold when compared to healthy pancreatic tissue. Cathepsin E accumulates over the course of disease progression and accounts for more than 3% of the tumor protein in mice with end-stage disease. Through immunoblot analysis we determined that only procathepsin E exists in mouse PDAC tumors and cell lines derived from these tumors. By decreasing the pH, this procathepsion E is converted to the mature form, resulting in an increase in proteolytic activity. Although active site inhibitors can bind procathepsin E, treatment of PDAC mice with the aspartyl protease inhibitor ritonavir did not decrease tumor burden. Lastly, we used multiplex substrate profiling by mass spectrometry to identify two synthetic peptides that are hydrolyzed by procathepsin E near neutral pH. This work represents a comprehensive analysis of procathepsin E in PDAC and could facilitate the development of improved biomarkers for disease detection.
Collapse
|
6
|
Sadegh-Nasseri S, Kim A. MHC Class II Auto-Antigen Presentation is Unconventional. Front Immunol 2015; 6:372. [PMID: 26257739 PMCID: PMC4510428 DOI: 10.3389/fimmu.2015.00372] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/06/2015] [Indexed: 01/09/2023] Open
Abstract
Antigen presentation is highly critical in adoptive immunity. Only by interacting with antigens presented by major histocompatibility complex class II molecules, helper T cells can be stimulated to fight infections or diseases. The degradation of a full protein into small peptide fragments bound to class II molecules is a dynamic, lengthy process consisting of many steps and chaperons. Deregulation in any step of antigen processing could lead to the development of self-reactive T cells or defective immune response to pathogens. Indeed, human leukocyte antigens class II genes are the predominant contributors to susceptibility to autoimmune diseases. Conventional antigen-processing calls for internalization of extracellular antigens followed by processing and epitope selection within antigen-processing subcellular compartments, enriched with all necessary accessory molecules, processing enzymes, and proper pH and denaturing conditions. However, recent data examining the temporal relationship between antigen uptakes, processing, and epitope selection revealed unexpected characteristics for auto-antigenic epitopes, which were not shared with antigenic epitopes from pathogens. This review provides a discussion of the relevance of these findings to the mechanisms of autoimmunity.
Collapse
Affiliation(s)
| | - AeRyon Kim
- Department of Pathology, Johns Hopkins School of Medicine , Baltimore, MD , USA
| |
Collapse
|
7
|
Kim A, Sadegh-Nasseri S. Determinants of immunodominance for CD4 T cells. Curr Opin Immunol 2015; 34:9-15. [PMID: 25576665 DOI: 10.1016/j.coi.2014.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
Abstract
The term immunodominance was originally defined as a restricted T cell response to a short peptide sequence derived from a given protein. The question of what determines immunodominance has been a longstanding battle for the past two decades. Hundreds of papers have been written on different aspects of epitope selection during antigen processing documenting the complexity of the process. Antigen processing machinery involves several accessory molecules and chaperons coevolved with proteins of Major Histocompatibility Complex (MHC) molecules that each plays its part in epitope selection. These molecules are targeted to specialized vesicular compartments that also accommodate antigen processing enzymes called cathepsins. Within the antigen processing compartments, highly regulated pH gradient and reducing conditions and enzymes necessary for denaturation of the antigens are available and function to optimize processing of antigen and selection of the fittest for transport to the cell membrane and presentation to T cells. Despite the complexity, a cell free reductionist antigen processing system was recently reported that included only few purified proteins, but was shown to process and select physiologically relevant epitopes from full length protein antigens. Due to its minimalist nature the system has been quite helpful in dissecting the factors that contribute to epitope selection during antigen processing. In this review, we would summarize and highlight models that may explain how the dominant epitope may be selected for presentation to CD4(+) helper T cells.
Collapse
Affiliation(s)
- AeRyon Kim
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
8
|
van Haren SD, Wroblewska A, Herczenik E, Kaijen PH, Ruminska A, ten Brinke A, Meijer AB, Voorberg J. Limited promiscuity of HLA-DRB1 presented peptides derived of blood coagulation factor VIII. PLoS One 2013; 8:e80239. [PMID: 24244658 PMCID: PMC3828219 DOI: 10.1371/journal.pone.0080239] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/01/2013] [Indexed: 11/19/2022] Open
Abstract
The formation of inhibitory antibodies directed against coagulation factor VIII (FVIII) is a severe complication in the treatment of hemophilia A patients. The induction of anti-FVIII antibodies is a CD4+ T cell-dependent process. Activation of FVIII-specific CD4+ T cells is dependent on the presentation of FVIII-derived peptides on MHC class II by antigen-presenting cells. Previously, we have shown that FVIII-pulsed human monocyte-derived dendritic cells can present peptides from several FVIII domains. In this study we show that FVIII peptides are presented on immature as well as mature dendritic cells. In immature dendritic cells half of the FVIII-loaded MHC class II molecules are retained within the cell, whereas in LPS-matured dendritic cells the majority of MHC class II/peptide complexes is present on the plasma membrane. Time-course studies revealed that presentation of FVIII-derived peptides was optimal between 12 and 24 hours after maturation but persisted for at least 96 hours. We also show that macrophages are able to internalize FVIII as efficiently as dendritic cells, however FVIII was presented on MHC class II with a lower efficiency and with different epitopes compared to dendritic cells. In total, 48 FVIII core-peptides were identified using a DCs derived of 8 different donors. Five HLA-promiscuous FVIII peptide regions were found – these were presented by at least 4 out of 8 donors. The remaining 42 peptide core regions in FVIII were presented by DCs derived from a single (30 peptides) or two to three donors (12 peptides). Overall, our findings show that a broad repertoire of FVIII peptides can be presented on HLA-DR.
Collapse
Affiliation(s)
- Simon D. van Haren
- Department of Plasma Proteins, Sanquin-AMC Landsteiner and Van Creveld Laboratory, Amsterdam, The Netherlands
| | - Aleksandra Wroblewska
- Department of Plasma Proteins, Sanquin-AMC Landsteiner and Van Creveld Laboratory, Amsterdam, The Netherlands
| | - Eszter Herczenik
- Department of Plasma Proteins, Sanquin-AMC Landsteiner and Van Creveld Laboratory, Amsterdam, The Netherlands
| | - Paul H. Kaijen
- Department of Plasma Proteins, Sanquin-AMC Landsteiner and Van Creveld Laboratory, Amsterdam, The Netherlands
| | - Aleksandra Ruminska
- Department of Plasma Proteins, Sanquin-AMC Landsteiner and Van Creveld Laboratory, Amsterdam, The Netherlands
| | - Anja ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Alexander B. Meijer
- Department of Plasma Proteins, Sanquin-AMC Landsteiner and Van Creveld Laboratory, Amsterdam, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jan Voorberg
- Department of Plasma Proteins, Sanquin-AMC Landsteiner and Van Creveld Laboratory, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
9
|
Puizdar V, Zajc T, Žerovnik E, Renko M, Pieper U, Eswar N, Šali A, Dolenc I, Turk V. Biochemical characterization and structural modeling of human cathepsin E variant 2 in comparison to the wild-type protein. Biol Chem 2012; 393:177-86. [PMID: 22718633 PMCID: PMC4111641 DOI: 10.1515/hsz-2011-0219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/19/2011] [Indexed: 11/15/2022]
Abstract
Cathepsin E splice variant 2 appears in a number of gastric carcinomas. Here we report detecting this variant in HeLa cells using polyclonal antibodies and biotinylated inhibitor pepstatin A. An overexpression of GFP fusion proteins of cathepsin E and its splice variant within HEK-293T cells was performed to show their localization. Their distribution under a fluorescence microscope showed that they are colocalized. We also expressed variants 1 and 2 of cathepsins E, with propeptide and without it, in Escherichia coli. After refolding from the inclusion bodies, the enzymatic activity and circular dichroism spectra of the splice variant 2 were compared to those of the wild-type mature active cathepsins E. While full-length cathepsin E variant 1 is activated at acid pH, the splice variant remains inactive. In contrast to the active cathepsin E, the splice variant 2 predominantly assumes β-sheet structure, prone to oligomerization, at least under in vitro conditions, as shown by atomic force microscopy as shallow disk-like particles. A comparative structure model of splice variant 2 was computed based on its alignment to the known structure of cathepsin E intermediate (Protein Data Bank code 1TZS) and used to rationalize its conformational properties and loss of activity.
Collapse
Affiliation(s)
- Vida Puizdar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Tajana Zajc
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Miha Renko
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Ursula Pieper
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences at UCSF, Department of Pharmaceutical Chemistry, University of California, San Francisco, UCSF MC 2552, Byers Hall, 1700 4th Street, Suite 503 B, San Francisco, CA 94158, USA
| | - Narayanan Eswar
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences at UCSF, Department of Pharmaceutical Chemistry, University of California, San Francisco, UCSF MC 2552, Byers Hall, 1700 4th Street, Suite 503 B, San Francisco, CA 94158, USA
| | - Andrej Šali
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences at UCSF, Department of Pharmaceutical Chemistry, University of California, San Francisco, UCSF MC 2552, Byers Hall, 1700 4th Street, Suite 503 B, San Francisco, CA 94158, USA
| | - Iztok Dolenc
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Matthews SP, Werber I, Deussing J, Peters C, Reinheckel T, Watts C. Distinct protease requirements for antigen presentation in vitro and in vivo. THE JOURNAL OF IMMUNOLOGY 2010; 184:2423-31. [PMID: 20164435 DOI: 10.4049/jimmunol.0901486] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Asparagine endopeptidase (AEP) or legumain is a potentially important Ag-processing enzyme that introduces limited cleavages that trigger unfolding and class II MHC binding of different Ag substrates. AEP is necessary and sufficient for optimal processing and presentation of the tetanus toxin C fragment (TTCF) Ag in vitro, but its importance has not been tested in vivo. Surprisingly, virtually normal T cell and Ab responses to TTCF were mounted in AEP-deficient mice when examined 10 d after immunization. This was the case when TTCF was emulsified with CFA, adsorbed onto alum, or expressed within live Salmonella typhimurium. In addition, the dominant Ab and T cell determinants recognized in TTCF were essentially unchanged in AEP-deficient mice. These data are explained, at least in part, by the much lower levels of AEP expressed in primary murine APCs compared with immortalized B cell lines. Even so, the initial in vivo kinetics of TTCF presentation were slower in AEP-deficient mice and, as expected, boosting AEP levels in primary APCs enhanced and accelerated TTCF processing and presentation in vitro. Thus, AEP remains the protease of choice for TTCF processing; however, in its absence, other enzymes can substitute to enable slower, but equally robust, adaptive immune responses. Moreover, clear relationships between Ags and processing proteases identified from short-term in vitro processing and presentation studies do not necessarily predict an absolute in vivo dependency on those processing enzymes, not least because they may be expressed at strikingly different levels in vitro versus in vivo.
Collapse
Affiliation(s)
- Stephen P Matthews
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | |
Collapse
|
11
|
Colbert JD, Matthews SP, Miller G, Watts C. Diverse regulatory roles for lysosomal proteases in the immune response. Eur J Immunol 2010; 39:2955-65. [PMID: 19637232 DOI: 10.1002/eji.200939650] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The innate and adaptive immune system utilise endocytic protease activity to promote functional immune responses. Cysteine and aspartic proteases (cathepsins) constitute a subset of endocytic proteases, the immune function of which has been described extensively. Although historically these studies have focused on their role in processes such as antigen presentation and zymogen processing within the endocytic compartment, recent discoveries have demonstrated a critical role for these proteases in other intracellular compartments, and within the extracellular milieu. It has also become clear that their pattern of expression and substrate specificities are more diverse than was first envisaged. Here, we discuss recent advances addressing the role of lysosomal proteases in various aspects of the immune response. We pay attention to reports demonstrating cathepsin activity outside of its canonical endosome/lysosome microenvironment.
Collapse
Affiliation(s)
- Jeff D Colbert
- Division of Cell biology & Immunology, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | |
Collapse
|
12
|
Reich M, Spindler KD, Burret M, Kalbacher H, Boehm BO, Burster T. Cathepsin A is expressed in primary human antigen-presenting cells. Immunol Lett 2009; 128:143-7. [PMID: 19954752 DOI: 10.1016/j.imlet.2009.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 11/13/2009] [Accepted: 11/25/2009] [Indexed: 11/25/2022]
Abstract
Cathepsins are expressed in antigen-presenting cells (APC). These cathepsins are known to regulate antigen processing and degradation of the invariant chain (Ii) into the class II-associated Ii peptide (CLIP), which occupies the peptide-binding groove of the major histocompatibility complex (MHC) class II molecule. Previous studies have identified the serine carboxypeptidase cathepsin A (CatA) in various tissues and cells; however, it is not clear whether CatA is also expressed in primary human APC. We demonstrate the expression of CatA in B lymphoblastoid cells (BLC), primary human B cells, both subsets of myeloid dendritic cells (mDC1 and mDC2), as well as in plasmacytoid DC. PMSF or lactacystin-mediated inhibition of serine proteases in BLC-derived lysosomal proteases resulted in the inhibition of amino acid release from the C-terminal end of two model peptides. This inhibition did not occur by using a proline rich peptide. Our data suggest that CatA is involved in the C-terminal fine-tuning of antigenic T cell epitopes in human APC.
Collapse
Affiliation(s)
- Michael Reich
- Division of Endocrinology and Diabetes, Center for Internal Medicine, University Medical Center Ulm, Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Burster T, Macmillan H, Hou T, Boehm BO, Mellins ED. Cathepsin G: roles in antigen presentation and beyond. Mol Immunol 2009; 47:658-65. [PMID: 19910052 DOI: 10.1016/j.molimm.2009.10.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/02/2009] [Accepted: 10/06/2009] [Indexed: 12/19/2022]
Abstract
Contributions from multiple cathepsins within endosomal antigen processing compartments are necessary to process antigenic proteins into antigenic peptides. Cysteine and aspartyl cathepsins have been known to digest antigenic proteins. A role for the serine protease, cathepsin G (CatG), in this process has been described only recently, although CatG has long been known to be a granule-associated proteolytic enzyme of neutrophils. In line with a role for this enzyme in antigen presentation, CatG is found in endocytic compartments of a variety of antigen presenting cells. CatG is found in primary human monocytes, B cells, myeloid dendritic cells 1 (mDC1), mDC2, plasmacytoid DC (pDC), and murine microglia, but is not expressed in B cell lines or monocyte-derived DC. Purified CatG can be internalized into endocytic compartments in CatG non-expressing cells, widening the range of cells where this enzyme may play a role in antigen processing. Functional assays have implicated CatG as a critical enzyme in processing of several antigens and autoantigens. In this review, historical and recent data on CatG expression, distribution, function and involvement in disease will be summarized and discussed, with a focus on its role in antigen presentation and immune-related events.
Collapse
Affiliation(s)
- Timo Burster
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, Ulm University, Ulm, Germany.
| | | | | | | | | |
Collapse
|
14
|
Kwan JC, Eksioglu EA, Liu C, Paul VJ, Luesch H. Grassystatins A-C from marine cyanobacteria, potent cathepsin E inhibitors that reduce antigen presentation. J Med Chem 2009; 52:5732-47. [PMID: 19715320 DOI: 10.1021/jm9009394] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In our efforts to explore marine cyanobacteria as a source of novel bioactive compounds, we discovered a statine unit-containing linear decadepsipeptide, grassystatin A (1), which we screened against a diverse set of 59 proteases. We describe the structure determination of 1 and two natural analogues, grassystatins B (2) and C (3), using NMR, MS, and chiral HPLC techniques. Compound 1 selectively inhibited cathepsins D and E with IC(50)s of 26.5 nM and 886 pM, respectively. Compound 2 showed similar potency and selectivity against cathepsins D and E (IC(50)s of 7.27 nM and 354 pM, respectively), whereas the truncated peptide analogue grassystatin C (3), which consists of two fewer residues than 1 and 2, was less potent against both but still selective for cathepsin E. The selectivity of compounds 1-3 for cathepsin E over D (20-38-fold) suggests that these natural products may be useful tools to probe cathepsin E function. We investigated the structural basis of this selectivity using molecular docking. We also show that 1 can reduce antigen presentation by dendritic cells, a process thought to rely on cathepsin E.
Collapse
Affiliation(s)
- Jason C Kwan
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
15
|
Reich M, Lesner A, Legowska A, Sieńczyk M, Oleksyszyn J, Boehm BO, Burster T. Application of specific cell permeable cathepsin G inhibitors resulted in reduced antigen processing in primary dendritic cells. Mol Immunol 2009; 46:2994-9. [PMID: 19615749 DOI: 10.1016/j.molimm.2009.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 06/16/2009] [Indexed: 11/15/2022]
Abstract
The serine protease cathepsin G (CatG) is expressed in primary antigen-presenting cells and regulates autoantigen processing in CatG pre-loaded fibroblasts. To further investigate the function of CatG in the major histocompatibility complex (MHC) class II loading compartments, a specific, cell permeable CatG-inhibitor is needed. In this study, several CatG-inhibitors were tested for their ability to penetrate the cell membrane of peripheral blood mononuclear cells (PBMC). We find that the commercially available reversible CatG-specific inhibitor I (CatG inhibitor) and the irreversible Suc-Val-Pro-Phe(P) (OPh)(2) (Suc-VPF) are both cell permeable and specifically inhibit intracellular CatG in the PBMC. Furthermore, selective inhibition of CatG resulted in reduced tetanus toxin C-fragment (TTC) and hemagglutinin (HA) processing and presentation to CD4(+) T cells. We conclude that these CatG inhibitors can be used for both antigen-processing studies and for modulation of T cell response in situ and in vivo.
Collapse
Affiliation(s)
- Michael Reich
- Catheomics, Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Reich M, Wieczerzak E, Jankowska E, Palesch D, Boehm BO, Burster T. Specific cathepsin B inhibitor is cell-permeable and activates presentation of TTC in primary human dendritic cells. Immunol Lett 2009; 123:155-9. [PMID: 19428564 DOI: 10.1016/j.imlet.2009.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/10/2009] [Accepted: 03/10/2009] [Indexed: 10/21/2022]
Abstract
Cathepsins of the cysteine, aspartyl, and serine classes are involved in antigen processing in the class II major histocompatibility complex (MHC) loading compartment. Investigation of these proteases in living cells is difficult to perform due to the lack of highly specific cell-permeable inhibitors. Recently, a highly selective cathepsin B (CatB) inhibitor, Z-Arg-Leu-Arg-alpha-aza-glycyl-Ile-Val-OMe (ZRLR), was described. We found that ZRLR is cell-permeable and specifically inhibits CatB, in contrast to the CatB inhibitor, CA074-OMe, which blocks cysteine cathepsins in addition to CatB in primary human antigen-presenting cells (APC). Furthermore, we compared both CA074-OMe and ZRLR in the ability to alter tetanus toxin C-fragment (TTC) presentation to T cells by different APC. As a result, we found enhanced presentation of TTC in the presence of ZRLR, as determined by detection of pro-inflammatory cytokines. We conclude that ZRLR is a specific, cell-permeable CatB inhibitor which can be used for antigen presenting studies in situ.
Collapse
Affiliation(s)
- Michael Reich
- Catheomics, Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|