Tian L, Wu A, Cao Y, Dong X, Hu Y, Jiang T. NCACO-score: an effective main-chain dependent scoring function for structure modeling.
BMC Bioinformatics 2011;
12:208. [PMID:
21612673 PMCID:
PMC3123610 DOI:
10.1186/1471-2105-12-208]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 05/26/2011] [Indexed: 11/10/2022] Open
Abstract
Background
Development of effective scoring functions is a critical component to the success of protein structure modeling. Previously, many efforts have been dedicated to the development of scoring functions. Despite these efforts, development of an effective scoring function that can achieve both good accuracy and fast speed still presents a grand challenge.
Results
Based on a coarse-grained representation of a protein structure by using only four main-chain atoms: N, Cα, C and O, we develop a knowledge-based scoring function, called NCACO-score, that integrates different structural information to rapidly model protein structure from sequence. In testing on the Decoys'R'Us sets, we found that NCACO-score can effectively recognize native conformers from their decoys. Furthermore, we demonstrate that NCACO-score can effectively guide fragment assembly for protein structure prediction, which has achieved a good performance in building the structure models for hard targets from CASP8 in terms of both accuracy and speed.
Conclusions
Although NCACO-score is developed based on a coarse-grained model, it is able to discriminate native conformers from decoy conformers with high accuracy. NCACO is a very effective scoring function for structure modeling.
Collapse