1
|
Ishikawa K, Ishii M, Yaguchi T, Katada T, Ichinose K, Ohata S. epi-Aszonalenin B from Aspergillus novofumigatus inhibits NF-κB activity induced by ZFTA-RELA fusion protein that drives ependymoma. Biochem Biophys Res Commun 2022; 596:104-110. [DOI: 10.1016/j.bbrc.2022.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/02/2022]
|
2
|
Canu G, Athanasiadis E, Grandy RA, Garcia-Bernardo J, Strzelecka PM, Vallier L, Ortmann D, Cvejic A. Analysis of endothelial-to-haematopoietic transition at the single cell level identifies cell cycle regulation as a driver of differentiation. Genome Biol 2020; 21:157. [PMID: 32611441 PMCID: PMC7329542 DOI: 10.1186/s13059-020-02058-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Haematopoietic stem cells (HSCs) first arise during development in the aorta-gonad-mesonephros (AGM) region of the embryo from a population of haemogenic endothelial cells which undergo endothelial-to-haematopoietic transition (EHT). Despite the progress achieved in recent years, the molecular mechanisms driving EHT are still poorly understood, especially in human where the AGM region is not easily accessible. RESULTS In this study, we take advantage of a human pluripotent stem cell (hPSC) differentiation system and single-cell transcriptomics to recapitulate EHT in vitro and uncover mechanisms by which the haemogenic endothelium generates early haematopoietic cells. We show that most of the endothelial cells reside in a quiescent state and progress to the haematopoietic fate within a defined time window, within which they need to re-enter into the cell cycle. If cell cycle is blocked, haemogenic endothelial cells lose their EHT potential and adopt a non-haemogenic identity. Furthermore, we demonstrate that CDK4/6 and CDK1 play a key role not only in the transition but also in allowing haematopoietic progenitors to establish their full differentiation potential. CONCLUSION We propose a direct link between the molecular machineries that control cell cycle progression and EHT.
Collapse
Affiliation(s)
- Giovanni Canu
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Emmanouil Athanasiadis
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Rodrigo A Grandy
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | | - Paulina M Strzelecka
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Surgery, University of Cambridge, Cambridge, UK.
| | - Daniel Ortmann
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Surgery, University of Cambridge, Cambridge, UK.
| | - Ana Cvejic
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK.
| |
Collapse
|
3
|
Suzuki T, Kikuguchi C, Nishijima S, Nagashima T, Takahashi A, Okada M, Yamamoto T. Postnatal liver functional maturation requires Cnot complex-mediated decay of mRNAs encoding cell cycle and immature liver genes. Development 2019; 146:dev.168146. [PMID: 30733279 PMCID: PMC6398447 DOI: 10.1242/dev.168146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 01/21/2019] [Indexed: 12/22/2022]
Abstract
Liver development involves dramatic gene expression changes mediated by transcriptional and post-transcriptional control. Here, we show that the Cnot deadenylase complex plays a crucial role in liver functional maturation. The Cnot3 gene encodes an essential subunit of the Cnot complex. Mice lacking Cnot3 in liver have reduced body and liver masses, and they display anemia and severe liver damage. Histological analyses indicate that Cnot3-deficient (Cnot3−/−) hepatocytes are irregular in size and morphology, resulting in formation of abnormal sinusoids. We observe hepatocyte death, increased abundance of mitotic and mononucleate hepatocytes, and inflammation. Cnot3−/− livers show increased expression of immune response-related, cell cycle-regulating and immature liver genes, while many genes relevant to liver functions, such as oxidation-reduction, lipid metabolism and mitochondrial function, decrease, indicating impaired liver functional maturation. Highly expressed mRNAs possess elongated poly(A) tails and are stabilized in Cnot3−/− livers, concomitant with an increase of the proteins they encode. In contrast, transcription of liver function-related mRNAs was lower in Cnot3−/− livers. We detect efficient suppression of Cnot3 protein postnatally, demonstrating the crucial contribution of mRNA decay to postnatal liver functional maturation. Summary: Regulation of both mRNA transcription and stability plays a crucial role in postnatal liver development; in particular, Cnot complex-mediated mRNA decay is essential for postnatal liver functional maturation.
Collapse
Affiliation(s)
- Toru Suzuki
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, RIKEN, 1-7-22, Suehiro-cho, Yokohama 230-0045, Japan
| | - Chisato Kikuguchi
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, RIKEN, 1-7-22, Suehiro-cho, Yokohama 230-0045, Japan
| | - Saori Nishijima
- Cell Signal Unit, Okinawa Institute of Science and Technology, 1919-1 Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Takeshi Nagashima
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology, 1919-1 Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Mariko Okada
- Laboratory for Integrated Cellular Systems, Center for Integrative Medical Sciences, RIKEN, 1-7-22, Suehiro-cho, Yokohama 230-0045, Japan.,Laboratory for Cell Systems, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadashi Yamamoto
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, RIKEN, 1-7-22, Suehiro-cho, Yokohama 230-0045, Japan .,Cell Signal Unit, Okinawa Institute of Science and Technology, 1919-1 Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| |
Collapse
|
4
|
Ohata S, Uga H, Okamoto H, Katada T. Small GTPase R-Ras participates in neural tube formation in zebrafish embryonic spinal cord. Biochem Biophys Res Commun 2018; 501:786-790. [PMID: 29772239 DOI: 10.1016/j.bbrc.2018.05.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/12/2018] [Indexed: 10/16/2022]
Abstract
Ras related (R-Ras), a small GTPase, is involved in the maintenance of apico-basal polarity in neuroepithelial cells of the zebrafish hindbrain, axonal collapse in cultured murine hippocampal neurons, and maturation of blood vessels in adult mice. However, the role of R-Ras in neural tube formation remains unknown. Using antisense morpholino oligonucleotides (AMOs), we found that in the spinal cord of zebrafish embryos, the lumen was formed bilaterally in rras morphants, whereas it was formed at the midline in control embryos. As AMO can cause off-target effects, we generated rras mutant zebrafish lines using CRISPR/Cas9 technology. Although these rras mutant embryos did not have a bilateral lumen in the spinal cord, the following findings suggest that the phenotype is unlikely due to an off-target effect of rras AMO: 1) The rras morphant phenotype was rescued by an injection of AMO-resistant rras mRNA, and 2) a bilaterally segregated spinal cord was not observed in rras mutant embryos injected with rras AMO. The results suggest that the function of other ras family genes may be redundant in rras mutants. Previous research reported a bilaterally formed lumen in the spinal cord of zebrafish embryos with a mutation in a planar cell polarity (PCP) gene, van gogh-like 2 (vangl2). In the present study, in cultured cells, R-Ras was co-immunoprecipitated with Vangl2 but not with another PCP regulator, Pricke1. Interestingly, the interaction between R-Ras and Vangl2 was stronger in guanine-nucleotide free point mutants of R-Ras than in wild-type or constitutively active (GTP-bound) forms of R-Ras. R-Ras may regulate neural tube formation in cooperation with Vangl2 in the developing zebrafish spinal cord.
Collapse
Affiliation(s)
- Shinya Ohata
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan; Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan; RIKEN Center for Brain Science, Saitama, 351-0198, Japan.
| | - Hideko Uga
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan; Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | | | - Toshiaki Katada
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan; Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
5
|
Ma L, Pan Q, Sun F, Yu Y, Wang J. Cluster of differentiation 166 (CD166) regulates cluster of differentiation (CD44) via NF-κB in liver cancer cell line Bel-7402. Biochem Biophys Res Commun 2014; 451:334-8. [PMID: 25094049 DOI: 10.1016/j.bbrc.2014.07.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/28/2014] [Indexed: 02/07/2023]
Abstract
Cluster of differentiation 166 (CD166) is critical for liver cancer cell survival. Our previously study demonstrated that CD166 exerts its anti-apoptotic role through interaction with YAP in liver cancer. However, the interaction between CD166 and other cell surface molecules remains unclear in liver cancer cells. In the current study, we found that both mRNA and protein of CD44 expression was significantly inhibited by knocking-down CD166. Moreover, CD166 affected-CD44 expression is dependent of transcription via blocking NF-κB pathway. On the contrary, CD44 promoted up-regulation of CD166 mRNA and protein. And it may be through E3 ubiquitin ligases COP1 and UBC3 to regulate CD166 protein degradation. Collectively, these results suggest that CD166 and CD44 play important roles in liver cancer development. Therefore, CD166 may develop as a potential therapeutic molecule target for the treatment of liver cancer.
Collapse
Affiliation(s)
- Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, PR China.
| | - Qiuhui Pan
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, PR China.
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, PR China.
| | - Yongchun Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai TCM University, Shanghai 200071, PR China.
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, PR China.
| |
Collapse
|
6
|
Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion. J Hepatol 2013; 59:528-35. [PMID: 23665041 DOI: 10.1016/j.jhep.2013.04.033] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/02/2013] [Accepted: 04/20/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of cells associated with the suppression of immunity. However, little is known about how or where MDSCs are induced and from which cells they originate. The liver is known for its immune regulatory functions. Here, we investigated the capacity of human hepatic stellate cells (HSCs) to transform peripheral blood monocytes into MDSCs. METHODS We cultured freshly isolated human monocytes from healthy donors on primary human HSCs or an HSC cell-line and characterized the phenotype and function of resulting CD14(+)HLA-DR(-/low) monocytes by flow cytometry, quantitative PCR, and functional assays. We analyzed the molecular mechanisms underlying the induction and function of the CD14(+)HLA-DR(-/low) cells by using blocking antibodies or knock-down technology. RESULTS Mature peripheral blood monocytes co-cultured with HSCs downregulated HLA-DR and developed a phenotypic and functional profile similar to MDSCs. Only activated but not freshly isolated HSCs were capable of inducing CD14(+)HLA-DR(-/low) cells. Such CD14(+)HLA-DR(-/low) monocyte-derived MDSCs suppressed T-cell proliferation in an arginase-1 dependent fashion. HSC-induced development of CD14(+)HLA-DR(-/low) monocyte-derived MDSCs was not mediated by soluble factors, but required physical interaction and was abrogated by blocking CD44. CONCLUSIONS Our study shows that activated human HSCs convert mature peripheral blood monocytes into MDSCs. As HSCs are activated during chronic inflammation, the subsequent local induction of MDSCs may prevent ensuing excessive liver injury. HSC-induced MDSCs functionally and phenotypically resemble those isolated from liver cancer patients. Thus, our data suggest that local generation of MDSCs by liver-resident HSCs may contribute to immune suppression during inflammation and cancer in the liver.
Collapse
|
7
|
Schievenbusch S, Sauer E, Curth HM, Schulte S, Demir M, Toex U, Goeser T, Nierhoff D. Neighbor of Punc E 11: Expression Pattern of the New Hepatic Stem/Progenitor Cell Marker During Murine Liver Development. Stem Cells Dev 2012; 21:2656-66. [DOI: 10.1089/scd.2011.0579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
| | - Elisabeth Sauer
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Harald-Morten Curth
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Sigrid Schulte
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Münevver Demir
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Ulrich Toex
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Tobias Goeser
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Dirk Nierhoff
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Iwamoto T, Terai S, Mizunaga Y, Yamamoto N, Omori K, Uchida K, Yamasaki T, Fujii Y, Nishina H, Sakaida I. Splenectomy enhances the anti-fibrotic effect of bone marrow cell infusion and improves liver function in cirrhotic mice and patients. J Gastroenterol 2012; 47:300-12. [PMID: 22065159 DOI: 10.1007/s00535-011-0486-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 09/11/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUND In 2003, we initiated a clinical trial to examine autologous bone marrow cell infusion (ABMi) therapy for cirrhotic patients and reported the clinical effect of the therapy. To analyze how splenectomy may potentiate the effects of bone marrow cell infusion on cirrhosis, we performed a mouse study and a clinical trial on patients with cirrhosis. METHODS In mice, we analyzed the effect of splenectomy on bone marrow cell infusion in four experimental groups (group A, splenectomy + bone marrow cell infusion + CCl(4); group B, sham operation + bone marrow cell infusion + CCl(4); group C, splenectomy + CCl(4); group D, sham operation + CCl(4)). In clinical, we compared the effect of splenectomy on ABMi therapy. RESULTS We observed significantly increased average serum albumin levels and higher expression of green fluorescent protein (GFP), matrix metalloproteinase 9 (MMP9), and proliferating cell nuclear antigen in the livers of group A. We observed MMP9/GFP double-positive cells in the cirrhotic livers. A significant decrease in the liver fibrosis areas was observed in group A. Splenectomy enhanced the repopulation of bone marrow cells into the cirrhotic liver and improved the liver microenvironment via expression of MMP9 secreted from repopulating GFP-positive cells. Next, we performed a clinical trial to compare the effect of splenectomy on the efficacy of ABMi therapy. Cirrhotic patients who underwent splenectomy before ABMi therapy tended to have a greater improvement in liver function. CONCLUSION ABMi therapy with splenectomy may be an effective therapeutic modality for cirrhosis.
Collapse
Affiliation(s)
- Takuya Iwamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Autologous bone marrow cell infusion therapy for liver cirrhosis patients. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2011; 18:23-5. [PMID: 20632039 DOI: 10.1007/s00534-010-0305-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We developed a novel cell therapy, autologous bone marrow cell infusion (ABMi) therapy, using autologous bone marrow, for liver cirrhosis patients. Our study depends on the findings from basic studies that bone marrow cell infusion repairs liver fibrosis in the cirrhotic liver, and improves liver function and the survival rate. Beginning in November 2003, we started a clinical study and found that ABMi therapy was safe and effective for liver cirrhosis patients. Multicenter trials in Japan and Korea have also shown the effectiveness of ABMi therapy. In this review, we report the current status of ABMi therapy for liver cirrhosis patients.
Collapse
|
10
|
Abstract
The CD44 protein family spans a large group of transmembrane glycoproteins acquired by alternative splicing and post-translational modifications. The great heterogeneity in molecular structure is reflected in its various important functions: CD44 mediates (1) interaction between cell and extracellular matrix, (2) signal submission, e.g., by acting as co-receptor for membrane-spanning receptor tyrosine kinases or by association with intracellular molecules initiating several signaling pathways, and (3) anchor function connecting to the cytoskeleton via the ezrin-radixin-moesin protein family. The expression pattern of the different CD44 isoforms display strong variations dependent on cell type, state of activation, and differentiation stage. In hematopoietic cells, CD44 mediates interaction of progenitor cells and bone marrow stroma during hematopoiesis, regulates maturation, and activation-induced cell death in T cells, influences neutrophil and macrophage migration as well as cytokine production, and participates in lymphocyte extravasation and migration. CD44 is involved in development and progress of hematological neoplasias by enhancement of apoptotic resistance, invasiveness, as well as regulation of bone marrow homing, and mobilization of leukemia-initiating cells into the peripheral blood. Thereby altered CD44 expression functions as marker for worse prognosis in most hematological malignancies. Additionally, CD44 expression levels can be used to distinguish between different hematological neoplasias and subtypes. Concerning new treatment strategies, CD44 displays promising potential either by direct targeting of CD44 expressed on the malignant cells or reversing an acquired resistance to primary treatment mediated through altered CD44 expression. The former can be achieved by antibody or hyaluronan-based immunotherapy.
Collapse
|
11
|
Ohata S, Aoki R, Kinoshita S, Yamaguchi M, Tsuruoka-Kinoshita S, Tanaka H, Wada H, Watabe S, Tsuboi T, Masai I, Okamoto H. Dual Roles of Notch in Regulation of Apically Restricted Mitosis and Apicobasal Polarity of Neuroepithelial Cells. Neuron 2011; 69:215-30. [DOI: 10.1016/j.neuron.2010.12.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2010] [Indexed: 02/04/2023]
|
12
|
Affiliation(s)
- Shuji Terai
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| |
Collapse
|
13
|
Abstract
The liver is an organ with vital functions, including the processing and storage of nutrients, maintenance of serum composition, detoxification and bile production. Over the last 10 years, there have been major advances in our understanding of the molecular and cellular mechanisms underlying liver development. These advances have been achieved through the use of knockout mice as well as through forward-genetics studies employing mutant fish. The examination of many such murine and piscine mutants with defects in liver formation and/or function have pinpointed numerous factors crucial for hepatic cell differentiation and growth. In addition, these studies have permitted the identification of several important liver-specific markers that allow the contributions of variouscell types to hepatogenesis to be monitored. This review summarizes our current state of knowledge of the shared molecular mechanisms that underlie liver development in species as diverse as fish and mice. A better molecular understanding of liver formation may provide new insights into both normal liver biology and liver disease.
Collapse
Affiliation(s)
- Takashi Nakamura
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | | |
Collapse
|
14
|
Ohata S, Kinoshita S, Aoki R, Tanaka H, Wada H, Tsuruoka-Kinoshita S, Tsuboi T, Watabe S, Okamoto H. Neuroepithelial cells require fucosylated glycans to guide the migration of vagus motor neuron progenitors in the developing zebrafish hindbrain. Development 2009; 136:1653-63. [PMID: 19369395 DOI: 10.1242/dev.033290] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The molecular mechanisms by which neurons migrate and accumulate to form the neural layers and nuclei remain unclear. The formation of vagus motor nuclei in zebrafish embryos is an ideal model system in which to address this issue because of the transparency of the embryos and the availability of established genetic and molecular biological techniques. To determine the genes required for the formation of the vagus motor nuclei, we performed N-ethyl-N-nitrosourea-based mutant screening using a zebrafish line that expresses green fluorescent protein in the motor neurons. In wild-type embryos, the vagus motor neuron progenitors are born in the ventral ventricular zone, then migrate tangentially in the dorsolateral direction, forming the nuclei. However, in towhead (twd(rw685)) mutant embryos, the vagus motor neuron progenitors stray medially away from the normal migratory pathway and fail to stop in the right location. The twd(rw685) mutant has a defect in the GDP-mannose 4,6 dehydratase (gmds) gene, which encodes a key enzyme in the fucosylation pathway. Levels of fucosylated glycans were markedly and specifically reduced in twd(rw685) mutant embryos. Cell transplantation analysis revealed that GMDS is not essential in the vagus motor neuron progenitors for correct formation of the vagus motor nuclei, but is required in the neuroepithelial cells that surround the progenitors. Together, these findings suggest that fucosylated glycans expressed in neuroepithelial cells are required to guide the migration of vagus motor neuron progenitors.
Collapse
Affiliation(s)
- Shinya Ohata
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|