1
|
Mason S, Vornhagen J, Smith SN, Mike LA, Mobley HLT, Bachman MA. The Klebsiella pneumoniae ter Operon Enhances Stress Tolerance. Infect Immun 2023; 91:e0055922. [PMID: 36651775 PMCID: PMC9933665 DOI: 10.1128/iai.00559-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Healthcare-acquired infections are a leading cause of disease in patients that are hospitalized or in long-term-care facilities. Klebsiella pneumoniae (Kp) is a leading cause of bacteremia, pneumonia, and urinary tract infections in these settings. Previous studies have established that the ter operon, a genetic locus that confers tellurite oxide (K2TeO3) resistance, is associated with infection in colonized patients. Rather than enhancing fitness during infection, the ter operon increases Kp fitness during gut colonization; however, the biologically relevant function of this operon is unknown. First, using a murine model of urinary tract infection, we demonstrate a novel role for the ter operon protein TerC as a bladder fitness factor. To further characterize TerC, we explored a variety of functions, including resistance to metal-induced stress, resistance to radical oxygen species-induced stress, and growth on specific sugars, all of which were independent of TerC. Then, using well-defined experimental guidelines, we determined that TerC is necessary for tolerance to ofloxacin, polymyxin B, and cetylpyridinium chloride. We used an ordered transposon library constructed in a Kp strain lacking the ter operon to identify the genes that are required to resist K2TeO3-induced and polymyxin B-induced stress, which suggested that K2TeO3-induced stress is experienced at the bacterial cell envelope. Finally, we confirmed that K2TeO3 disrupts the Kp cell envelope, though these effects are independent of ter. Collectively, the results from these studies indicate a novel role for the ter operon as a stress tolerance factor, thereby explaining its role in enhancing fitness in the gut and bladder.
Collapse
Affiliation(s)
- Sophia Mason
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jay Vornhagen
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sara N. Smith
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura A. Mike
- Department of Medical Microbiology & Immunology, University of Toledo, Toledo, Ohio, USA
| | - Harry L. T. Mobley
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A. Bachman
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Kumar SB, Arnipalli SR, Ziouzenkova O. Antibiotics in Food Chain: The Consequences for Antibiotic Resistance. Antibiotics (Basel) 2020; 9:antibiotics9100688. [PMID: 33066005 PMCID: PMC7600537 DOI: 10.3390/antibiotics9100688] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Antibiotics have been used as essential therapeutics for nearly 100 years and, increasingly, as a preventive agent in the agricultural and animal industry. Continuous use and misuse of antibiotics have provoked the development of antibiotic resistant bacteria that progressively increased mortality from multidrug-resistant bacterial infections, thereby posing a tremendous threat to public health. The goal of our review is to advance the understanding of mechanisms of dissemination and the development of antibiotic resistance genes in the context of nutrition and related clinical, agricultural, veterinary, and environmental settings. We conclude with an overview of alternative strategies, including probiotics, essential oils, vaccines, and antibodies, as primary or adjunct preventive antimicrobial measures or therapies against multidrug-resistant bacterial infections. The solution for antibiotic resistance will require comprehensive and incessant efforts of policymakers in agriculture along with the development of alternative therapeutics by experts in diverse fields of microbiology, biochemistry, clinical research, genetic, and computational engineering.
Collapse
|
3
|
Fei YY, Bhat JA, Gai JY, Zhao TJ. Global Transcriptome Profiling of Enterobacter Strain NRS-1 in Response to Hydrogen Peroxide Stress Treatment. Appl Biochem Biotechnol 2020; 191:1638-1652. [PMID: 32198600 DOI: 10.1007/s12010-020-03313-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
Abstract
Microbes are often subjected to oxidative stress in nature that badly affects their growth rate and viability. Although the response of microbes against oxidative stress has been characterized at the chemical, physiological, and molecular levels, the mechanism of gene-regulation network adaptations of bacteria in response to oxidative stress remains largely unknown. In this study, transcriptomic profiling of glyphosate-tolerant Enterobacter strain NRS-1 was analyzed under 9 mM H2O2 stress using RNA-seq and qRT-PCR. The lag period in the growth of NRS-1 was very short compared with wild-type strain under H2O2 treatment. A total of 113 genes are identified as differentially expressed genes (DEGs) under H2O2 that include 38 upregulated and 75 downregulated transcripts. But not any genes regulated by major oxidative regulons, viz., oxyR, soxR, rpoS, perR, ohrR, and σв, have been reported in DEGs, hence potentially reflecting that specific changes have occurred in NRS-1 for adaptation to oxidative stress. Based on the functions of the DEGs, six elements namely formate dehydrogenase, processes associated with iron ions, repair programs, multidrug resistance, antioxidant defense, and energy generation (mqo, sdhC) might have contributed for stress tolerance in NRS-1. These elements are proposed to form a molecular network explaining gene response of NRS-1 to stress, and ensure global cell protection and growth recovery of NRS-1. These findings enrich the view of gene regulation in bacteria in response to H2O2 oxidative stress.
Collapse
Affiliation(s)
- Yun-Yan Fei
- Soybean Research Institute, Nanjing Agricultural University, Weigang 1 Hao, Xuanwu District, Nanjing, 210095, Jiangsu, People's Republic of China
- National Center for Soybean Improvement, Nanjing Agricultural University, Weigang 1 Hao, Xuanwu District, Nanjing, 210095, Jiangsu Province, People's Republic of China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing, 210095, People's Republic of China
| | - Javaid Akhter Bhat
- Soybean Research Institute, Nanjing Agricultural University, Weigang 1 Hao, Xuanwu District, Nanjing, 210095, Jiangsu, People's Republic of China
- National Center for Soybean Improvement, Nanjing Agricultural University, Weigang 1 Hao, Xuanwu District, Nanjing, 210095, Jiangsu Province, People's Republic of China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing, 210095, People's Republic of China
| | - Jun-Yi Gai
- Soybean Research Institute, Nanjing Agricultural University, Weigang 1 Hao, Xuanwu District, Nanjing, 210095, Jiangsu, People's Republic of China
- National Center for Soybean Improvement, Nanjing Agricultural University, Weigang 1 Hao, Xuanwu District, Nanjing, 210095, Jiangsu Province, People's Republic of China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing, 210095, People's Republic of China
| | - Tuan-Jie Zhao
- Soybean Research Institute, Nanjing Agricultural University, Weigang 1 Hao, Xuanwu District, Nanjing, 210095, Jiangsu, People's Republic of China.
- National Center for Soybean Improvement, Nanjing Agricultural University, Weigang 1 Hao, Xuanwu District, Nanjing, 210095, Jiangsu Province, People's Republic of China.
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, People's Republic of China.
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
4
|
Stincone P, Miyamoto KN, Timbe PPR, Lieske I, Brandelli A. Nisin influence on the expression of Listeria monocytogenes surface proteins. J Proteomics 2020; 226:103906. [DOI: 10.1016/j.jprot.2020.103906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022]
|
5
|
Proteomic Study of the Survival and Resuscitation Mechanisms of Filamentous Persisters in an Evolved Escherichia coli Population from Cyclic Ampicillin Treatment. mSystems 2020; 5:5/4/e00462-20. [PMID: 32723793 PMCID: PMC7394356 DOI: 10.1128/msystems.00462-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Through adaptive laboratory evolution (ALE) experiments, it was recently found that when a bacterial population was repetitively treated with antibiotics, they will adapt to the treatment conditions and become tolerant to the drug. In this study, we utilized an ampicillin-tolerant Escherichia coli population isolated from an ALE experiment to study the mechanisms of persistence during ampicillin treatment and resuscitation. Interestingly, the persisters of this population exhibit filamentous morphology upon ampicillin treatment, and the filaments are getting longer over time. Proteomics analysis showed that proteins involved in carbohydrate metabolism are upregulated during antibiotic treatment, in addition to those involved in the oxidative stress response. Bacterial SOS response, which is associated with filamentation, was found to be induced on account of the increasing expression of RecA. Measurement of endogenous reactive oxygen species (ROS) revealed that the population have ∼100-fold less ROS generation under ampicillin treatment than the wild type, leading to a lower mutagenesis rate. Single-cell observations through time-lapse microscopy show that resuscitation of the filaments is stochastic. During resuscitation, proteins involved in the tricarboxylic acid (TCA) cycle, glyoxylate cycle and glycolytic processes, and ATP generation are downregulated, while ribosomal proteins and porins are upregulated in the filaments. One particular protein, ElaB, was upregulated by over 7-fold in the filaments after 3 h of resuspension in fresh medium, but its expression went down after the filaments divided. Knockout of elaB increased persistence on wild-type E. coli, and upon resumption of growth, mutants lacking elaB have a higher fraction of small colony variants (SCVs) than the wild type.IMPORTANCE Persisters are a subpopulation of cells with enhanced survival toward antibiotic treatment and have the ability to resume normal growth when the antibiotic stress is lifted. Although proteomics is the most suitable tool to study them from a system-level perspective, the number of persisters that present naturally is too few for proteomics analysis, and thus the complex mechanisms through which they are able to survive antibiotic stresses and resuscitate in fresh medium remain poorly understood. To overcome that challenge, we studied an evolved Escherichia coli population with elevated persister fraction under ampicillin treatment and obtained its proteome profiles during antibiotic treatment and resuscitation. We discovered that during treatment with ampicillin, this tolerant population employs an active oxidative stress response and exhibits lower ROS levels than the wild type. Moreover, an inner membrane protein which has implications in various stress responses, ElaB, was found to be highly upregulated in the persisters during resuscitation, and its knockout caused increased formation of small colony variants after ampicillin treatment, suggesting that ElaB is important for persisters to resume normal growth.
Collapse
|
6
|
Arenas-Salinas M, Vargas-Pérez JI, Morales W, Pinto C, Muñoz-Díaz P, Cornejo FA, Pugin B, Sandoval JM, Díaz-Vásquez WA, Muñoz-Villagrán C, Rodríguez-Rojas F, Morales EH, Vásquez CC, Arenas FA. Flavoprotein-Mediated Tellurite Reduction: Structural Basis and Applications to the Synthesis of Tellurium-Containing Nanostructures. Front Microbiol 2016; 7:1160. [PMID: 27507969 PMCID: PMC4960239 DOI: 10.3389/fmicb.2016.01160] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/12/2016] [Indexed: 01/24/2023] Open
Abstract
The tellurium oxyanion tellurite (TeO32-) is extremely harmful for most organisms. It has been suggested that a potential bacterial tellurite resistance mechanism would consist of an enzymatic, NAD(P)H-dependent, reduction to the less toxic form elemental tellurium (Te0). To date, a number of enzymes such as catalase, type II NADH dehydrogenase and terminal oxidases from the electron transport chain, nitrate reductases, and dihydrolipoamide dehydrogenase (E3), among others, have been shown to display tellurite-reducing activity. This activity is generically referred to as tellurite reductase (TR). Bioinformatic data resting on some of the abovementioned enzymes enabled the identification of common structures involved in tellurite reduction including vicinal catalytic cysteine residues and the FAD/NAD(P)+-binding domain, which is characteristic of some flavoproteins. Along this line, thioredoxin reductase (TrxB), alkyl hydroperoxide reductase (AhpF), glutathione reductase (GorA), mercuric reductase (MerA), NADH: flavorubredoxin reductase (NorW), dihydrolipoamide dehydrogenase, and the putative oxidoreductase YkgC from Escherichia coli or environmental bacteria were purified and assessed for TR activity. All of them displayed in vitro TR activity at the expense of NADH or NADPH oxidation. In general, optimal reducing conditions occurred around pH 9–10 and 37°C. Enzymes exhibiting strong TR activity produced Te-containing nanostructures (TeNS). While GorA and AhpF generated TeNS of 75 nm average diameter, E3 and YkgC produced larger structures (>100 nm). Electron-dense structures were observed in cells over-expressing genes encoding TrxB, GorA, and YkgC.
Collapse
Affiliation(s)
| | - Joaquín I Vargas-Pérez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Wladimir Morales
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca Talca, Chile
| | - Camilo Pinto
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Pablo Muñoz-Díaz
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Fabián A Cornejo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Benoit Pugin
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Juan M Sandoval
- Facultad de Ciencias de la Salud e Instituto de Etnofarmacología, Universidad Arturo Prat Iquique, Chile
| | - Waldo A Díaz-Vásquez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de ChileSantiago, Chile; Facultad de Ciencias de la Salud, Universidad San SebastiánSantiago, Chile
| | - Claudia Muñoz-Villagrán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Fernanda Rodríguez-Rojas
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Eduardo H Morales
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Claudio C Vásquez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Felipe A Arenas
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| |
Collapse
|
7
|
Elías A, Díaz-Vásquez W, Abarca-Lagunas MJ, Chasteen TG, Arenas F, Vásquez CC. The ActP acetate transporter acts prior to the PitA phosphate carrier in tellurite uptake by Escherichia coli. Microbiol Res 2015. [DOI: 10.1016/j.micres.2015.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Sandoval JM, Arenas FA, García JA, Díaz-Vásquez WA, Valdivia-González M, Sabotier M, Vásquez CC. Escherichia coli 6-phosphogluconate dehydrogenase aids in tellurite resistance by reducing the toxicant in a NADPH-dependent manner. Microbiol Res 2015. [PMID: 26211962 DOI: 10.1016/j.micres.2015.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Exposure to the tellurium oxyanion tellurite (TeO3(2-)) results in the establishment of an oxidative stress status in most microorganisms. Usually, bacteria growing in the presence of the toxicant turn black because of the reduction of tellurite (Te(4+)) to the less-toxic elemental tellurium (Te(0)). In vitro, at least part of tellurite reduction occurs enzymatically in a nicotinamide dinucleotide-dependent reaction. In this work, we show that TeO3(2-) reduction by crude extracts of Escherichia coli overexpressing the zwf gene (encoding glucose-6-phosphate dehydrogenase) takes place preferentially in the presence of NADPH instead of NADH. The enzyme responsible for toxicant reduction was identified as 6-phosphogluconate dehydrogenase (Gnd). The gnd gene showed a subtle induction at short times after toxicant exposure while strains lacking gnd were more susceptible to the toxicant. These results suggest that both NADPH-generating enzymes from the pentose phosphate shunt may be involved in tellurite detoxification and resistance in E. coli.
Collapse
Affiliation(s)
- J M Sandoval
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - F A Arenas
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - J A García
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - W A Díaz-Vásquez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile; Facultad de Ciencias de la Salud, Universidad San Sebastián, Santiago, Chile
| | - M Valdivia-González
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - M Sabotier
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - C C Vásquez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
9
|
Tellurite-mediated damage to the Escherichia coli NDH-dehydrogenases and terminal oxidases in aerobic conditions. Arch Biochem Biophys 2015; 566:67-75. [DOI: 10.1016/j.abb.2014.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/27/2014] [Accepted: 10/19/2014] [Indexed: 11/20/2022]
|
10
|
Global transcriptomic analysis uncovers a switch to anaerobic metabolism in tellurite-exposed Escherichia coli. Res Microbiol 2014; 165:566-70. [DOI: 10.1016/j.resmic.2014.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 11/20/2022]
|
11
|
Arenas FA, Leal CA, Pinto CA, Arenas-Salinas MA, Morales WA, Cornejo FA, Díaz-Vásquez WA, Vásquez CC. On the mechanism underlying tellurite reduction by Aeromonas caviae ST dihydrolipoamide dehydrogenase. Biochimie 2014; 102:174-82. [PMID: 24680738 DOI: 10.1016/j.biochi.2014.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
The dihydrolipoamide dehydrogenase (LpdA) from the tellurite-resistant bacterium Aeromonas caviae ST reduces tellurite to elemental tellurium. To characterize this NADH-dependent activity, the A. caviae lpdA gene was subjected to site-directed mutagenesis and genes containing C45A, H322Y and E354K substitutions were individually transformed into Escherichia coli Δlpd. Cells expressing the modified genes exhibited decreased pyruvate dehydrogenase, dihydrolipoamide dehydrogenase and TR activity regarding that observed with the wild type A. caviae lpdA gene. In addition, cells expressing the altered lpdA genes showed increased oxidative stress levels and tellurite sensitivity than those carrying the wild type counterpart. The involvement of Cys residues in LpdA's TR activity was analyzed using specific inhibitors that interact with catalytic cysteines and/or disulfide bridges such as aurothiomalate, zinc or nickel. TR activity of purified LpdA was drastically affected by these compounds. Since LpdA belongs to the flavoprotein family, the involvement of the FAD/NAD(P)(+)-binding domain in TR activity was determined. FAD removal from purified LpdA results in loss of TR activity, which was restored with exogenously added FAD. Substitutions in E354, involved in FAD/NADH binding, resulted in low TR activity because of flavin loss. Finally, changing H322 (involved in NAD(+)/NADH binding) by tyrosine also resulted in altered TR activity.
Collapse
Affiliation(s)
- F A Arenas
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - C A Leal
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - C A Pinto
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - M A Arenas-Salinas
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile
| | - W A Morales
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile
| | - F A Cornejo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - W A Díaz-Vásquez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile; Facultad de Ciencia, Universidad San Sebastián, Santiago, Chile
| | - C C Vásquez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
12
|
Tellurite reduction by Escherichia coli NDH-II dehydrogenase results in superoxide production in membranes of toxicant-exposed cells. Biometals 2014; 27:237-46. [DOI: 10.1007/s10534-013-9701-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/29/2013] [Indexed: 02/05/2023]
|
13
|
Molina-Quiroz RC, Loyola DE, Muñoz-Villagrán CM, Quatrini R, Vásquez CC, Pérez-Donoso JM. DNA, cell wall and general oxidative damage underlie the tellurite/cefotaxime synergistic effect in Escherichia coli. PLoS One 2013; 8:e79499. [PMID: 24260236 PMCID: PMC3832599 DOI: 10.1371/journal.pone.0079499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/21/2013] [Indexed: 01/25/2023] Open
Abstract
The constant emergence of antibiotic multi-resistant pathogens is a concern worldwide. An alternative for bacterial treatment using nM concentrations of tellurite was recently proposed to boost antibiotic-toxicity and a synergistic effect of tellurite/cefotaxime (CTX) was described. In this work, the molecular mechanism underlying this phenomenon is proposed. Global changes of the transcriptional profile of Escherichia coli exposed to tellurite/CTX were determined by DNA microarrays. Induction of a number of stress regulators (as SoxS), genes related to oxidative damage and membrane transporters was observed. Accordingly, increased tellurite adsorption/uptake and oxidative injuries to proteins and DNA were determined in cells exposed to the mixture of toxicants, suggesting that the tellurite-mediated CTX-potentiating effect is dependent, at least in part, on oxidative stress. Thus, the synergistic tellurite-mediated CTX-potentiating effect depends on increased tellurite uptake/adsorption which results in damage to proteins, DNA and probably other macromolecules. Our findings represent a contribution to the current knowledge of bacterial physiology under antibiotic stress and can be of great interest in the development of new antibiotic-potentiating strategies.
Collapse
Affiliation(s)
- Roberto C. Molina-Quiroz
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - David E. Loyola
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudia M. Muñoz-Villagrán
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Raquel Quatrini
- Laboratorio de Ecofisiología Microbiana, Fundación Ciencia y Vida, Santiago, Chile
| | - Claudio C. Vásquez
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- * E-mail: (CCV); (JMP)
| | - José M. Pérez-Donoso
- Microbiology and Bionanotechnology Research Group, Laboratorio de Bioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Universidad Andres Bello, Facultad de Ciencias Biológicas, Center for Bioinformatics and Integrative Biology (CBIB), Bionanotechnology and Microbiology Lab, Santiago, Chile
- * E-mail: (CCV); (JMP)
| |
Collapse
|
14
|
Genetic evidence for a molybdopterin-containing tellurate reductase. Appl Environ Microbiol 2013; 79:3171-5. [PMID: 23475618 DOI: 10.1128/aem.03996-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic identity and cofactor composition of the bacterial tellurate reductase are currently unknown. In this study, we examined the requirement of molybdopterin biosynthesis and molybdate transporter genes for tellurate reduction in Escherichia coli K-12. The results show that mutants deleted of the moaA, moaB, moaE, or mog gene in the molybdopterin biosynthesis pathway lost the ability to reduce tellurate. Deletion of the modB or modC gene in the molybdate transport pathway also resulted in complete loss of tellurate reduction activity. Genetic complementation by the wild-type sequences restored tellurate reduction activity in the mutant strains. These findings provide genetic evidence that tellurate reduction in E. coli involves a molybdoenzyme.
Collapse
|
15
|
Monrás JP, Díaz V, Bravo D, Montes RA, Chasteen TG, Osorio-Román IO, Vásquez CC, Pérez-Donoso JM. Enhanced glutathione content allows the in vivo synthesis of fluorescent CdTe nanoparticles by Escherichia coli. PLoS One 2012. [PMID: 23185270 PMCID: PMC3504078 DOI: 10.1371/journal.pone.0048657] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The vast application of fluorescent semiconductor nanoparticles (NPs) or quantum dots (QDs) has prompted the development of new, cheap and safer methods that allow generating QDs with improved biocompatibility. In this context, green or biological QDs production represents a still unexplored area. This work reports the intracellular CdTe QDs biosynthesis in bacteria. Escherichia coli overexpressing the gshA gene, involved in glutathione (GSH) biosynthesis, was used to produce CdTe QDs. Cells exhibited higher reduced thiols, GSH and Cd/Te contents that allow generating fluorescent intracellular NP-like structures when exposed to CdCl(2) and K(2)TeO(3). Fluorescence microscopy revealed that QDs-producing cells accumulate defined structures of various colors, suggesting the production of differently-sized NPs. Purified fluorescent NPs exhibited structural and spectroscopic properties characteristic of CdTe QDs, as size and absorption/emission spectra. Elemental analysis confirmed that biosynthesized QDs were formed by Cd and Te with Cd/Te ratios expected for CdTe QDs. Finally, fluorescent properties of QDs-producing cells, such as color and intensity, were improved by temperature control and the use of reducing buffers.
Collapse
Affiliation(s)
- Juan P. Monrás
- Microbiology and Bionanotechnology Research Group, Laboratorio de Bioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Laboratorio de Microbiología Molecular, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
- Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Víctor Díaz
- Microbiology and Bionanotechnology Research Group, Laboratorio de Bioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Laboratorio de Microbiología Molecular, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Denisse Bravo
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Rebecca A. Montes
- Department of Chemistry, Sam Houston State University, Huntsville, Texas, United States of America
| | - Thomas G. Chasteen
- Department of Chemistry, Sam Houston State University, Huntsville, Texas, United States of America
| | - Igor O. Osorio-Román
- Departamento de Química Inorgánica, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio C. Vásquez
- Laboratorio de Microbiología Molecular, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - José M. Pérez-Donoso
- Microbiology and Bionanotechnology Research Group, Laboratorio de Bioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Laboratorio de Microbiología Molecular, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
16
|
Tiwari V, Vashistt J, Kapil A, Moganty RR. Comparative proteomics of inner membrane fraction from carbapenem-resistant Acinetobacter baumannii with a reference strain. PLoS One 2012; 7:e39451. [PMID: 22761799 PMCID: PMC3383706 DOI: 10.1371/journal.pone.0039451] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/21/2012] [Indexed: 12/31/2022] Open
Abstract
Acinetobacter baumannii has been identified by the Infectious Diseases Society of America as one of the six pathogens that cause majority of hospital infections. Increased resistance of A.baumannii even to the latest generation of β-lactams like carbapenem is an immediate threat to mankind. As inner-membrane fraction plays a significant role in survival of A.baumannii, we investigated the inner-membrane fraction proteome of carbapenem-resistant strain of A.baumannii using Differential In-Gel Electrophoresis (DIGE) followed by DeCyder, Progenesis and LC-MS/MS analysis. We identified 19 over-expressed and 4 down-regulated proteins (fold change>2, p<0.05) in resistant strain as compared to reference strain. Some of the upregulated proteins in resistant strain and their association with carbapenem resistance in A.baumannii are: i) β-lactamases, AmpC and OXA-51: cleave and inactivate carbapenem ii) metabolic enzymes, ATP synthase, malate dehydrogenase and 2-oxoglutarate dehydrogenase: help in increased energy production for the survival and iii) elongation factor Tu and ribosomal proteins: help in the overall protein production. Further, entry of carbapenem perhaps is limited by controlled production of OmpW and low levels of surface antigen help to evade host defence mechanism in developing resistance in A.baumannii. Present results support a model for the importance of proteins of inner-membrane fraction and their synergistic effect in the mediation of resistance of A.baumannii to carbapenem.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Jitendraa Vashistt
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rajeswari R. Moganty
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
- * E-mail:
| |
Collapse
|
17
|
Molina-Quiroz RC, Muñoz-Villagrán CM, de la Torre E, Tantaleán JC, Vásquez CC, Pérez-Donoso JM. Enhancing the antibiotic antibacterial effect by sub lethal tellurite concentrations: tellurite and cefotaxime act synergistically in Escherichia coli. PLoS One 2012; 7:e35452. [PMID: 22536386 PMCID: PMC3334966 DOI: 10.1371/journal.pone.0035452] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/16/2012] [Indexed: 12/28/2022] Open
Abstract
The emergence of antibiotic-resistant pathogenic bacteria during the last decades has become a public health concern worldwide. Aiming to explore new alternatives to treat antibiotic-resistant bacteria and given that the tellurium oxyanion tellurite is highly toxic for most microorganisms, we evaluated the ability of sub lethal tellurite concentrations to strengthen the effect of several antibiotics. Tellurite, at nM or µM concentrations, increased importantly the toxicity of defined antibacterials. This was observed with both Gram negative and Gram positive bacteria, irrespective of the antibiotic or tellurite tolerance of the particular microorganism. The tellurite-mediated antibiotic-potentiating effect occurs in laboratory and clinical, uropathogenic Escherichia coli, especially with antibiotics disturbing the cell wall (ampicillin, cefotaxime) or protein synthesis (tetracycline, chloramphenicol, gentamicin). In particular, the effect of tellurite on the activity of the clinically-relevant, third-generation cephalosporin (cefotaxime), was evaluated. Cell viability assays showed that tellurite and cefotaxime act synergistically against E. coli. In conclusion, using tellurite like an adjuvant could be of great help to cope with several multi-resistant pathogens.
Collapse
Affiliation(s)
- Roberto C. Molina-Quiroz
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago de Chile, Chile
| | - Claudia M. Muñoz-Villagrán
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago de Chile, Chile
| | - Erick de la Torre
- Laboratorio de Microbiología y Biotecnología, Facultad de Ciencias, Universidad San Luis Gonzaga, Ica, Perú
| | - Juan C. Tantaleán
- Laboratorio de Microbiología y Biotecnología, Facultad de Ciencias, Universidad San Luis Gonzaga, Ica, Perú
| | - Claudio C. Vásquez
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago de Chile, Chile
- * E-mail: (CCV); (JMPD)
| | - José M. Pérez-Donoso
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago de Chile, Chile
- * E-mail: (CCV); (JMPD)
| |
Collapse
|
18
|
Contreras NDP, Vásquez CC. Tellurite-induced carbonylation of the Escherichia coli pyruvate dehydrogenase multienzyme complex. Arch Microbiol 2010; 192:969-73. [PMID: 20821193 DOI: 10.1007/s00203-010-0624-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/12/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
Abstract
The soluble tellurium oxyanion, tellurite, is toxic for most organisms. At least in part, tellurite toxicity involves the generation of oxygen-reactive species which induce an oxidative stress status that damages different macromolecules with DNA, lipids and proteins as oxidation targets. The objective of this work was to determine the effects of tellurite exposure upon the Escherichia coli pyruvate dehydrogenase (PDH) complex. The complex displays two distinct enzymatic activities: pyruvate dehydrogenase that oxidatively decarboxylates pyruvate to acetylCoA and tellurite reductase, which reduces tellurite (Te(4+)) to elemental tellurium (Te(o)). PDH complex components (AceE, AceF and Lpd) become oxidized upon tellurite exposure as a consequence of increased carbonyl group formation. When the individual enzymatic activities from each component were analyzed, AceE and Lpd did not show significant changes after tellurite treatment. AceF activity (dihydrolipoil acetyltransferase) decreased ~30% when cells were exposed to the toxicant. Finally, pyruvate dehydrogenase activity decreased >80%, while no evident changes were observed in complex's tellurite reductase activity.
Collapse
Affiliation(s)
- Nataly del P Contreras
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | | |
Collapse
|
19
|
Simple, fast, and sensitive method for quantification of tellurite in culture media. Appl Environ Microbiol 2010; 76:4901-4. [PMID: 20525868 DOI: 10.1128/aem.00598-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A fast, simple, and reliable chemical method for tellurite quantification is described. The procedure is based on the NaBH(4)-mediated reduction of TeO(3)(2-) followed by the spectrophotometric determination of elemental tellurium in solution. The method is highly reproducible, is stable at different pH values, and exhibits linearity over a broad range of tellurite concentrations.
Collapse
|
20
|
Chasteen TG, Fuentes DE, Tantaleán JC, Vásquez CC. Tellurite: history, oxidative stress, and molecular mechanisms of resistance. FEMS Microbiol Rev 2009; 33:820-32. [DOI: 10.1111/j.1574-6976.2009.00177.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|