1
|
Alshanski I, Toraskar S, Mor K, Daligault F, Jain P, Grandjean C, Kikkeri R, Hurevich M, Yitzchaik S. Impedimetric Characterization of NanA Structural Domains Activity on Sialoside-Containing Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22152-22158. [PMID: 39376038 PMCID: PMC11500401 DOI: 10.1021/acs.langmuir.4c02620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Streptococcus pneumoniae is a pathogenic bacterium that contains the surface-bound neuraminidase, NanA. NanA has two domains that interact with sialosides. It is hard to determine the contribution of each domain separately on catalysis or binding. In this work, we used biochemical methods to obtain the separated domains, applied electrochemical and surface analysis approaches, and determined the catalytic and binding preferences toward a surface-bound library of sialosides. Impedimetric studies on two different surfaces revealed that protein-surface interactions provide a tool for distinguishing the unique contribution of each domain at the interface affecting the substrate preference of the enzyme in different surroundings. We showed that each domain has a sialoside-specific affinity. Furthermore, while the interaction of the sialoside-covered surface with the carbohydrate-binding domain results in an increase in impedance and binding, the catalytic domain adheres to the surface at high concentrations but retains its catalytic activity at low concentrations.
Collapse
Affiliation(s)
- Israel Alshanski
- The
Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Suraj Toraskar
- Indian
Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune411008, India
| | - Karin Mor
- The
Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | - Prashant Jain
- Indian
Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune411008, India
| | | | - Raghavendra Kikkeri
- Indian
Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune411008, India
| | - Mattan Hurevich
- The
Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Singapore-HUJ
Alliance for Research and Enterprise (SHARE), The Cellular Agriculture
(CellAg) Programme, Campus for Research Excellence and Technological
Enterprise (CREATE), 138602 Singapore
| | - Shlomo Yitzchaik
- The
Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Singapore-HUJ
Alliance for Research and Enterprise (SHARE), The Cellular Agriculture
(CellAg) Programme, Campus for Research Excellence and Technological
Enterprise (CREATE), 138602 Singapore
| |
Collapse
|
2
|
Clark ND, Pham C, Kurniyati K, Sze CW, Coleman L, Fu Q, Zhang S, Malkowski MG, Li C. Functional and structural analyses reveal that a dual domain sialidase protects bacteria from complement killing through desialylation of complement factors. PLoS Pathog 2023; 19:e1011674. [PMID: 37747935 PMCID: PMC10553830 DOI: 10.1371/journal.ppat.1011674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/05/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
The complement system is the first line of innate immune defense against microbial infections. To survive in humans and cause infections, bacterial pathogens have developed sophisticated mechanisms to subvert the complement-mediated bactericidal activity. There are reports that sialidases, also known as neuraminidases, are implicated in bacterial complement resistance; however, its underlying molecular mechanism remains elusive. Several complement proteins (e.g., C1q, C4, and C5) and regulators (e.g., factor H and C4bp) are modified by various sialoglycans (glycans with terminal sialic acids), which are essential for their functions. This report provides both functional and structural evidence that bacterial sialidases can disarm the complement system via desialylating key complement proteins and regulators. The oral bacterium Porphyromonas gingivalis, a "keystone" pathogen of periodontitis, produces a dual domain sialidase (PG0352). Biochemical analyses reveal that PG0352 can desialylate human serum and complement factors and thus protect bacteria from serum killing. Structural analyses show that PG0352 contains a N-terminal carbohydrate-binding module (CBM) and a C-terminal sialidase domain that exhibits a canonical six-bladed β-propeller sialidase fold with each blade composed of 3-4 antiparallel β-strands. Follow-up functional studies show that PG0352 forms monomers and is active in a broad range of pH. While PG0352 can remove both N-acetylneuraminic acid (Neu5Ac) and N-glycolyl-neuraminic acid (Neu5Gc), it has a higher affinity to Neu5Ac, the most abundant sialic acid in humans. Structural and functional analyses further demonstrate that the CBM binds to carbohydrates and serum glycoproteins. The results shown in this report provide new insights into understanding the role of sialidases in bacterial virulence and open a new avenue to investigate the molecular mechanisms of bacterial complement resistance.
Collapse
Affiliation(s)
- Nicholas D. Clark
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, New York, United States of America
| | - Christopher Pham
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kurni Kurniyati
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ching Wooen Sze
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Laurynn Coleman
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Qin Fu
- Proteomics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - Sheng Zhang
- Proteomics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - Michael G. Malkowski
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, New York, United States of America
| | - Chunhao Li
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
3
|
Muñoz-Provencio D, Yebra MJ. Gut Microbial Sialidases and Their Role in the Metabolism of Human Milk Sialylated Glycans. Int J Mol Sci 2023; 24:9994. [PMID: 37373145 DOI: 10.3390/ijms24129994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Sialic acids (SAs) are α-keto-acid sugars with a nine-carbon backbone present at the non-reducing end of human milk oligosaccharides and the glycan moiety of glycoconjugates. SAs displayed on cell surfaces participate in the regulation of many physiologically important cellular and molecular processes, including signaling and adhesion. Additionally, sialyl-oligosaccharides from human milk act as prebiotics in the colon by promoting the settling and proliferation of specific bacteria with SA metabolism capabilities. Sialidases are glycosyl hydrolases that release α-2,3-, α-2,6- and α-2,8-glycosidic linkages of terminal SA residues from oligosaccharides, glycoproteins and glycolipids. The research on sialidases has been traditionally focused on pathogenic microorganisms, where these enzymes are considered virulence factors. There is now a growing interest in sialidases from commensal and probiotic bacteria and their potential transglycosylation activity for the production of functional mimics of human milk oligosaccharides to complement infant formulas. This review provides an overview of exo-alpha-sialidases of bacteria present in the human gastrointestinal tract and some insights into their biological role and biotechnological applications.
Collapse
Affiliation(s)
- Diego Muñoz-Provencio
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Spain
| | - María J Yebra
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Spain
| |
Collapse
|
4
|
Dong WB, Jiang YL, Zhu ZL, Zhu J, Li Y, Xia R, Zhou K. Structural and enzymatic characterization of the sialidase SiaPG from Porphyromonas gingivalis. Acta Crystallogr F Struct Biol Commun 2023; 79:87-94. [PMID: 36995120 PMCID: PMC10071834 DOI: 10.1107/s2053230x23001735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/24/2023] [Indexed: 03/31/2023] Open
Abstract
The sialidases, which catalyze the hydrolysis of sialic acid from extracellular glycoconjugates, are a group of major virulence factors in various pathogenic bacteria. In Porphyromonas gingivalis, which causes human periodontal disease, sialidase contributes to bacterial pathogenesis via promoting the formation of biofilms and capsules, reducing the ability for macrophage clearance, and providing nutrients for bacterial colonization. Here, the crystal structure of the P. gingivalis sialidase SiaPG is reported at 2.1 Å resolution, revealing an N-terminal carbohydrate-binding domain followed by a canonical C-terminal catalytic domain. Simulation of the product sialic acid in the active-site pocket together with functional analysis enables clear identification of the key residues that are required for substrate binding and catalysis. Moreover, structural comparison with other sialidases reveals distinct features of the active-site pocket which might confer substrate specificity. These findings provide the structural basis for the further design and optimization of effective inhibitors to target SiaPG to fight against P. gingivalis-derived oral diseases.
Collapse
Affiliation(s)
- Wen-Bo Dong
- Department of Stomatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, People’s Republic of China
| | - Yong-Liang Jiang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Zhong-Liang Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Jie Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Yang Li
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Rong Xia
- Department of Stomatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, People’s Republic of China
| | - Kang Zhou
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
5
|
Assailly C, Bridot C, Saumonneau A, Lottin P, Roubinet B, Krammer EM, François F, Vena F, Landemarre L, Alvarez Dorta D, Deniaud D, Grandjean C, Tellier C, Pascual S, Montembault V, Fontaine L, Daligault F, Bouckaert J, Gouin SG. Polyvalent Transition-State Analogues of Sialyl Substrates Strongly Inhibit Bacterial Sialidases*. Chemistry 2021; 27:3142-3150. [PMID: 33150981 DOI: 10.1002/chem.202004672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 11/06/2022]
Abstract
Bacterial sialidases (SA) are validated drug targets expressed by common human pathogens such as Streptococcus pneumoniae, Vibrio cholerae, or Clostridium perfringens. Noncovalent inhibitors of bacterial SA capable of reaching the submicromolar level are rarely reported. In this work, multi- and polyvalent compounds are developed, based on the transition-state analogue 2-deoxy-2,3-didehydro-N-acetylneuraminic (DANA). Poly-DANA inhibits the catalytic activity of SA from S. pneumoniae (NanA) and the symbiotic microorganism B. thetaiotaomicron (BtSA) at the picomolar and low nanomolar levels (expressed in moles of molecules and of DANA, respectively). Each DANA grafted to the polymer surpasses the inhibitory potential of the monovalent analogue by more than four orders of magnitude, which represents the highest multivalent effect reported so far for an enzyme inhibition. The synergistic interaction is shown to operate exclusively in the catalytic domain, and not in the flanked carbohydrate-binding module (CBM). These results offer interesting perspectives for the multivalent inhibition of other SA families lacking a CBM, such as viral, parasitic, or human SA.
Collapse
Affiliation(s)
- Coralie Assailly
- CNRS, CEISAM UMR, 6230, Université de Nantes, 44000, Nantes, France
| | - Clarisse Bridot
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 CNRS, Université de Lille, Lille, 59000, France
| | - Amélie Saumonneau
- UFIP, UMR CNRS 6286, UFR des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322, Nantes Cedex 3, France
| | - Paul Lottin
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Av. O. Messiaen, 72085, Le Mans cedex 9, France
| | - Benoit Roubinet
- Glycodiag, Bâtiment Physique-Chimie, Rue de Chartres, BP6759, 45067, Orléans cedex 2, France
| | - Eva-Maria Krammer
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 CNRS, Université de Lille, Lille, 59000, France
| | - Francesca François
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Av. O. Messiaen, 72085, Le Mans cedex 9, France
| | - Federica Vena
- Glycodiag, Bâtiment Physique-Chimie, Rue de Chartres, BP6759, 45067, Orléans cedex 2, France
| | - Ludovic Landemarre
- Glycodiag, Bâtiment Physique-Chimie, Rue de Chartres, BP6759, 45067, Orléans cedex 2, France
| | | | - David Deniaud
- CNRS, CEISAM UMR, 6230, Université de Nantes, 44000, Nantes, France
| | - Cyrille Grandjean
- UFIP, UMR CNRS 6286, UFR des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322, Nantes Cedex 3, France
| | - Charles Tellier
- UFIP, UMR CNRS 6286, UFR des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322, Nantes Cedex 3, France
| | - Sagrario Pascual
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Av. O. Messiaen, 72085, Le Mans cedex 9, France
| | - Véronique Montembault
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Av. O. Messiaen, 72085, Le Mans cedex 9, France
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Av. O. Messiaen, 72085, Le Mans cedex 9, France
| | - Franck Daligault
- UFIP, UMR CNRS 6286, UFR des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322, Nantes Cedex 3, France
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 CNRS, Université de Lille, Lille, 59000, France
| | | |
Collapse
|
6
|
Guan S, Zhu K, Dong Y, Li H, Yang S, Wang S, Shan Y. Exploration of Binding Mechanism of a Potential Streptococcus pneumoniae Neuraminidase Inhibitor from Herbaceous Plants by Molecular Simulation. Int J Mol Sci 2020; 21:ijms21031003. [PMID: 32028720 PMCID: PMC7038148 DOI: 10.3390/ijms21031003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 01/11/2023] Open
Abstract
Streptococcus pneumoniae can cause diseases such as pneumonia. Broad-spectrum antibiotic therapy for Streptococcus pneumoniae is increasingly limited due to the emergence of drug-resistant strains. The development of novel drugs is still currently of focus. Abundant polyphenols have been demonstrated to have antivirus and antibacterial ability. Chlorogenic acid is one of the representatives that has been proven to have the potential to inhibit both the influenza virus and Streptococcus pneumoniae. However, for such a potential neuraminidase inhibitor, the interaction mechanism studies between chlorogenic acid and Streptococcus pneumoniae neuraminidase are rare. In the current study, the binding mechanism of chlorogenic acid and Streptococcus pneumoniae neuraminidase were investigated by molecular simulation. The results indicated that chlorogenic acid might establish the interaction with Streptococcus pneumoniae neuraminidase via hydrogen bonds, salt bridge, and cation-π. The vital residues involved Arg347, Ile348, Lys440, Asp372, Asp417, and Glu768. The side chain of Arg347 might form a cap-like structure to lock the chlorogenic acid to the active site. The results from binding energy calculation indicated that chlorogenic acid had strong binding potential with neuraminidase. The results predicted a detailed binding mechanism of a potential Streptococcus pneumoniae neuraminidase inhibitor, which will be provide a theoretical basis for the mechanism of new inhibitors.
Collapse
Affiliation(s)
- Shanshan Guan
- College of Food Engineering, Jilin Engineering Normal University, Changchun 130052, Jilin, China; (K.Z.); (Y.D.); (H.L.); (S.Y.)
- Key Laboratory of Molecular Nutrition at Universities of Jilin Province, Changchun 130052, Jilin, China
- Correspondence: (S.G.); (Y.S.); Tel.: +86-4318-172-1319 (S.G. & Y.S.)
| | - Ketong Zhu
- College of Food Engineering, Jilin Engineering Normal University, Changchun 130052, Jilin, China; (K.Z.); (Y.D.); (H.L.); (S.Y.)
- Key Laboratory of Molecular Nutrition at Universities of Jilin Province, Changchun 130052, Jilin, China
| | - Yanjiao Dong
- College of Food Engineering, Jilin Engineering Normal University, Changchun 130052, Jilin, China; (K.Z.); (Y.D.); (H.L.); (S.Y.)
- Key Laboratory of Molecular Nutrition at Universities of Jilin Province, Changchun 130052, Jilin, China
| | - Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun 130052, Jilin, China; (K.Z.); (Y.D.); (H.L.); (S.Y.)
- Key Laboratory of Molecular Nutrition at Universities of Jilin Province, Changchun 130052, Jilin, China
| | - Shuang Yang
- College of Food Engineering, Jilin Engineering Normal University, Changchun 130052, Jilin, China; (K.Z.); (Y.D.); (H.L.); (S.Y.)
- Key Laboratory of Molecular Nutrition at Universities of Jilin Province, Changchun 130052, Jilin, China
| | - Song Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, Jilin, China;
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
- Correspondence: (S.G.); (Y.S.); Tel.: +86-4318-172-1319 (S.G. & Y.S.)
| |
Collapse
|
7
|
Fluorescent sialic derivatives for the specific detection of influenza viruses. Bioorg Med Chem Lett 2019; 29:126773. [DOI: 10.1016/j.bmcl.2019.126773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/19/2019] [Accepted: 10/19/2019] [Indexed: 12/20/2022]
|
8
|
Janesch P, Rouha H, Badarau A, Stulik L, Mirkina I, Caccamo M, Havlicek K, Maierhofer B, Weber S, Groß K, Steinhäuser J, Zerbs M, Varga C, Dolezilkova I, Maier S, Zauner G, Nielson N, Power CA, Nagy E. Assessing the function of pneumococcal neuraminidases NanA, NanB and NanC in in vitro and in vivo lung infection models using monoclonal antibodies. Virulence 2019; 9:1521-1538. [PMID: 30289054 PMCID: PMC6177239 DOI: 10.1080/21505594.2018.1520545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Streptococcus pneumoniae isolates express up to three neuraminidases (sialidases), NanA, NanB and NanC, all of which cleave the terminal sialic acid of glycan-structures that decorate host cell surfaces. Most research has focused on the role of NanA with limited investigations evaluating the roles of all three neuraminidases in host-pathogen interactions. We generated two highly potent monoclonal antibodies (mAbs), one that blocks the enzymatic activity of NanA and one cross-neutralizing NanB and NanC. Total neuraminidase activity of clinical S. pneumoniae isolates could be inhibited by this mAb combination in enzymatic assays. To detect desialylation of cell surfaces by pneumococcal neuraminidases, primary human tracheal/bronchial mucocilial epithelial tissues were infected with S. pneumoniae and stained with peanut lectin. Simultaneous targeting of the neuraminidases was required to prevent desialylation, suggesting that inhibition of NanA alone is not sufficient to preserve terminal lung glycans. Importantly, we also found that all three neuraminidases increased the interaction of S. pneumoniae with human airway epithelial cells. Lectin-staining of lung tissues of mice pre-treated with mAbs before intranasal challenge with S. pneumoniae confirmed that both anti-NanA and anti-NanBC mAbs were required to effectively block desialylation of the respiratory epithelium in vivo. Despite this, no effect on survival, reduction in pulmonary bacterial load, or significant changes in cytokine responses were observed. This suggests that neuraminidases have no pivotal role in this murine pneumonia model that is induced by high bacterial challenge inocula and does not progress from colonization as it happens in the human host.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Karin Groß
- a Arsanis Biosciences , Vienna , Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Slack TJ, Li W, Shi D, McArthur JB, Zhao G, Li Y, Xiao A, Khedri Z, Yu H, Liu Y, Chen X. Triazole-linked transition state analogs as selective inhibitors against V. cholerae sialidase. Bioorg Med Chem 2018; 26:5751-5757. [PMID: 30389408 PMCID: PMC6326775 DOI: 10.1016/j.bmc.2018.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/15/2018] [Accepted: 10/26/2018] [Indexed: 01/07/2023]
Abstract
Sialidases or neuraminidases are enzymes that catalyze the cleavage of terminal sialic acids from oligosaccharides and glycoconjugates. They play important roles in bacterial and viral infection and have been attractive targets for drug development. Structure-based drug design has led to potent inhibitors against neuraminidases of influenza A viruses that have been used successfully as approved therapeutics. However, selective and effective inhibitors against bacterial and human sialidases are still being actively pursued. Guided by crystal structural analysis, several derivatives of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en or DANA) were designed and synthesized as triazole-linked transition state analogs. Inhibition studies revealed that glycopeptide analog E-(TriazoleNeu5Ac2en)-AKE and compound (TriazoleNeu5Ac2en)-A were selective inhibitors against Vibrio cholerae sialidase, while glycopeptide analog (TriazoleNeu5Ac2en)-AdE selectively inhibited Vibrio cholerae and A. ureafaciens sialidases.
Collapse
Affiliation(s)
- Teri J. Slack
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA,These authors contributed equality to this work
| | - Wanqing Li
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA,These authors contributed equality to this work
| | - Dashuang Shi
- Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Ave, NW, Washington DC 20012, USA
| | - John B. McArthur
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Gengxiang Zhao
- Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Ave, NW, Washington DC 20012, USA
| | - Yanhong Li
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - An Xiao
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Zahra Khedri
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Yang Liu
- Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Ave, NW, Washington DC 20012, USA
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA,Corresponding author. Tel: +1 530 754 6037; fax: +1 530 752 8995. (X. Chen)
| |
Collapse
|
10
|
Lillehoj EP, Guang W, Hyun SW, Liu A, Hegerle N, Simon R, Cross AS, Ishida H, Luzina IG, Atamas SP, Goldblum SE. Neuraminidase 1-mediated desialylation of the mucin 1 ectodomain releases a decoy receptor that protects against Pseudomonas aeruginosa lung infection. J Biol Chem 2018; 294:662-678. [PMID: 30429216 DOI: 10.1074/jbc.ra118.006022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/13/2018] [Indexed: 01/19/2023] Open
Abstract
Pseudomonas aeruginosa (Pa) expresses an adhesin, flagellin, that engages the mucin 1 (MUC1) ectodomain (ED) expressed on airway epithelia, increasing association of MUC1-ED with neuraminidase 1 (NEU1) and MUC1-ED desialylation. The MUC1-ED desialylation unmasks both cryptic binding sites for Pa and a protease recognition site, permitting its proteolytic release as a hyperadhesive decoy receptor for Pa. We found here that intranasal administration of Pa strain K (PAK) to BALB/c mice increases MUC1-ED shedding into the bronchoalveolar compartment. MUC1-ED levels increased as early as 12 h, peaked at 24-48 h with a 7.8-fold increase, and decreased by 72 h. The a-type flagellin-expressing PAK strain and the b-type flagellin-expressing PAO1 strain stimulated comparable levels of MUC1-ED shedding. A flagellin-deficient PAK mutant provoked dramatically reduced MUC1-ED shedding compared with the WT strain, and purified flagellin recapitulated the WT effect. In lung tissues, Pa increased association of NEU1 and protective protein/cathepsin A with MUC1-ED in reciprocal co-immunoprecipitation assays and stimulated MUC1-ED desialylation. NEU1-selective sialidase inhibition protected against Pa-induced MUC1-ED desialylation and shedding. In Pa-challenged mice, MUC1-ED-enriched bronchoalveolar lavage fluid (BALF) inhibited flagellin binding and Pa adhesion to human airway epithelia by up to 44% and flagellin-driven motility by >30%. Finally, Pa co-administration with recombinant human MUC1-ED dramatically diminished lung and BALF bacterial burden, proinflammatory cytokine levels, and pulmonary leukostasis and increased 5-day survival from 0% to 75%. We conclude that Pa flagellin provokes NEU1-mediated airway shedding of MUC1-ED, which functions as a decoy receptor protecting against lethal Pa lung infection.
Collapse
Affiliation(s)
| | | | - Sang W Hyun
- Medicine, and.,U.S. Department of Veterans Affairs, Veterans Affairs Medical Center, Baltimore, Maryland 20201, and
| | - Anguo Liu
- Medicine, and.,U.S. Department of Veterans Affairs, Veterans Affairs Medical Center, Baltimore, Maryland 20201, and
| | - Nicolas Hegerle
- Medicine, and.,Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland 20201
| | - Raphael Simon
- Medicine, and.,Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland 20201
| | - Alan S Cross
- Medicine, and.,Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland 20201
| | - Hideharu Ishida
- Department of Applied Bio-organic Chemistry, Gifu University, Gifu 501-1193 Japan
| | - Irina G Luzina
- Medicine, and.,U.S. Department of Veterans Affairs, Veterans Affairs Medical Center, Baltimore, Maryland 20201, and
| | - Sergei P Atamas
- Medicine, and.,U.S. Department of Veterans Affairs, Veterans Affairs Medical Center, Baltimore, Maryland 20201, and
| | - Simeon E Goldblum
- Medicine, and.,U.S. Department of Veterans Affairs, Veterans Affairs Medical Center, Baltimore, Maryland 20201, and.,Pathology and
| |
Collapse
|
11
|
Sharapova Y, Suplatov D, Švedas V. Neuraminidase A from Streptococcus pneumoniae has a modular organization of catalytic and lectin domains separated by a flexible linker. FEBS J 2018; 285:2428-2445. [PMID: 29704878 DOI: 10.1111/febs.14486] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/01/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
Abstract
Neuraminidase A (NanA) of the pathogen Streptococcus pneumoniae cleaves receptors of the human respiratory epithelial surface during bacterial colonization. The full-size structure of NanA that contains one lectin and one catalytic domain within a single polypeptide chain remains unresolved. Both domains are crucial for the microorganism's virulence and considered as promising antimicrobial targets. Methods of bioinformatics and molecular dynamics have been implemented to model NanA's structure and study interaction between the lectin and catalytic domains in three neuraminidases NanA, NanB, and NanC from Streptococcus pneumoniae. A significant difference in spatial organization of these homologous enzymes has been revealed. The lectin and catalytic domains of NanB and NanC form rigid globules stabilized by multiple interdomain interactions, whereas in NanA, the two domains are separated by a 16 amino acids long flexible linker - a characteristic of proteins that require conformational flexibility for their functioning. The biological role of this structural adaptation of NanA as a key virulence enzyme is discussed.
Collapse
Affiliation(s)
- Yana Sharapova
- Faculty of Bioengineering and Bioinformatics, Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Russia
| | - Dmitry Suplatov
- Faculty of Bioengineering and Bioinformatics, Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Russia
| | - Vytas Švedas
- Faculty of Bioengineering and Bioinformatics, Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Russia
| |
Collapse
|
12
|
Hobbs JK, Pluvinage B, Boraston AB. Glycan-metabolizing enzymes in microbe-host interactions: the Streptococcus pneumoniae paradigm. FEBS Lett 2018; 592:3865-3897. [PMID: 29608212 DOI: 10.1002/1873-3468.13045] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/31/2022]
Abstract
Streptococcus pneumoniae is a frequent colonizer of the upper airways; however, it is also an accomplished pathogen capable of causing life-threatening diseases. To colonize and cause invasive disease, this bacterium relies on a complex array of factors to mediate the host-bacterium interaction. The respiratory tract is rich in functionally important glycoconjugates that display a vast range of glycans, and, thus, a key component of the pneumococcus-host interaction involves an arsenal of bacterial carbohydrate-active enzymes to depolymerize these glycans and carbohydrate transporters to import the products. Through the destruction of host glycans, the glycan-specific metabolic machinery deployed by S. pneumoniae plays a variety of roles in the host-pathogen interaction. Here, we review the processing and metabolism of the major host-derived glycans, including N- and O-linked glycans, Lewis and blood group antigens, proteoglycans, and glycogen, as well as some dietary glycans. We discuss the role of these metabolic pathways in the S. pneumoniae-host interaction, speculate on the potential of key enzymes within these pathways as therapeutic targets, and relate S. pneumoniae as a model system to glycan processing in other microbial pathogens.
Collapse
Affiliation(s)
- Joanne K Hobbs
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | - Benjamin Pluvinage
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | - Alisdair B Boraston
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| |
Collapse
|
13
|
Xu Z, von Grafenstein S, Walther E, Fuchs JE, Liedl KR, Sauerbrei A, Schmidtke M. Sequence diversity of NanA manifests in distinct enzyme kinetics and inhibitor susceptibility. Sci Rep 2016; 6:25169. [PMID: 27125351 PMCID: PMC4850393 DOI: 10.1038/srep25169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/11/2016] [Indexed: 01/20/2023] Open
Abstract
Streptococcus pneumoniae is the leading pathogen causing bacterial pneumonia and meningitis. Its surface-associated virulence factor neuraminidase A (NanA) promotes the bacterial colonization by removing the terminal sialyl residues from glycoconjugates on eukaryotic cell surface. The predominant role of NanA in the pathogenesis of pneumococci renders it an attractive target for therapeutic intervention. Despite the highly conserved activity of NanA, our alignment of the 11 NanAs revealed the evolutionary diversity of this enzyme. The amino acid substitutions we identified, particularly those in the lectin domain and in the insertion domain next to the catalytic centre triggered our special interest. We synthesised the representative NanAs and the mutagenized derivatives from E. coli for enzyme kinetics study and neuraminidase inhibitor susceptibility test. Via molecular docking we got a deeper insight into the differences between the two major variants of NanA and their influence on the ligand-target interactions. In addition, our molecular dynamics simulations revealed a prominent intrinsic flexibility of the linker between the active site and the insertion domain, which influences the inhibitor binding. Our findings for the first time associated the primary sequence diversity of NanA with the biochemical properties of the enzyme and with the inhibitory efficiency of neuraminidase inhibitors.
Collapse
Affiliation(s)
- Zhongli Xu
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Susanne von Grafenstein
- University of Innsbruck, Institute for General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80/82, 6020 Innsbruck, Austria
| | - Elisabeth Walther
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Julian E Fuchs
- University of Innsbruck, Institute for General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80/82, 6020 Innsbruck, Austria
| | - Klaus R Liedl
- University of Innsbruck, Institute for General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Sauerbrei
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Michaela Schmidtke
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knöll-Straße 2, 07745 Jena, Germany
| |
Collapse
|
14
|
Owen CD, Lukacik P, Potter JA, Sleator O, Taylor GL, Walsh MA. Streptococcus pneumoniae NanC: STRUCTURAL INSIGHTS INTO THE SPECIFICITY AND MECHANISM OF A SIALIDASE THAT PRODUCES A SIALIDASE INHIBITOR. J Biol Chem 2015; 290:27736-48. [PMID: 26370075 PMCID: PMC4646021 DOI: 10.1074/jbc.m115.673632] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae is an important human pathogen that causes a range of disease states. Sialidases are important bacterial virulence factors. There are three pneumococcal sialidases: NanA, NanB, and NanC. NanC is an unusual sialidase in that its primary reaction product is 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en, also known as DANA), a nonspecific hydrolytic sialidase inhibitor. The production of Neu5Ac2en from α2–3-linked sialosides by the catalytic domain is confirmed within a crystal structure. A covalent complex with 3-fluoro-β-N-acetylneuraminic acid is also presented, suggesting a common mechanism with other sialidases up to the final step of product formation. A conformation change in an active site hydrophobic loop on ligand binding constricts the entrance to the active site. In addition, the distance between the catalytic acid/base (Asp-315) and the ligand anomeric carbon is unusually short. These features facilitate a novel sialidase reaction in which the final step of product formation is direct abstraction of the C3 proton by the active site aspartic acid, forming Neu5Ac2en. NanC also possesses a carbohydrate-binding module, which is shown to bind α2–3- and α2–6-linked sialosides, as well as N-acetylneuraminic acid, which is captured in the crystal structure following hydration of Neu5Ac2en by NanC. Overall, the pneumococcal sialidases show remarkable mechanistic diversity while maintaining a common structural scaffold.
Collapse
Affiliation(s)
- C David Owen
- From the Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| | - Petra Lukacik
- Diamond Light Source and Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom, and
| | - Jane A Potter
- From the Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| | - Olivia Sleator
- the Medical Research Council France, c/o European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
| | - Garry L Taylor
- From the Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom,
| | - Martin A Walsh
- Diamond Light Source and the Medical Research Council France, c/o European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
| |
Collapse
|
15
|
Yang L, Connaris H, Potter JA, Taylor GL. Structural characterization of the carbohydrate-binding module of NanA sialidase, a pneumococcal virulence factor. BMC STRUCTURAL BIOLOGY 2015; 15:15. [PMID: 26289431 PMCID: PMC4546082 DOI: 10.1186/s12900-015-0042-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/11/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Streptococcus pneumoniae Neuraminidase A (NanA) is a multi-domain protein anchored to the bacterial surface. Upstream of the catalytic domain of NanA is a domain that conforms to the sialic acid-recognising CBM40 family of the CAZY (carbohydrate-active enzymes) database. This domain has been identified to play a critical role in allowing the bacterium to promote adhesion and invasion of human brain microvascular endothelial cells, and hence may play a key role in promoting bacterial meningitis. In addition, the CBM40 domain has also been reported to activate host chemokines and neutrophil recruitment during infection. RESULTS Crystal structures of both apo- and holo- forms of the NanA CBM40 domain (residues 121 to 305), have been determined to 1.8 Å resolution. The domain shares the fold of other CBM40 domains that are associated with sialidases. When in complex with α2,3- or α2,6-sialyllactose, the domain is shown to interact only with the terminal sialic acid. Significantly, a deep acidic pocket adjacent to the sialic acid-binding site is identified, which is occupied by a lysine from a symmetry-related molecule in the crystal. This pocket is adjacent to a region that is predicted to be involved in protein-protein interactions. CONCLUSIONS The structural data provide the details of linkage-independent sialyllactose binding by NanA CBM40 and reveal striking surface features that may hold the key to recognition of binding partners on the host cell surface. The structure also suggests that small molecules or sialic acid analogues could be developed to fill the acidic pocket and hence provide a new therapeutic avenue against meningitis caused by S. pneumoniae.
Collapse
Affiliation(s)
- Lei Yang
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
| | - Helen Connaris
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
| | - Jane A Potter
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
| | - Garry L Taylor
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|
16
|
Lillehoj EP, Hyun SW, Liu A, Guang W, Verceles AC, Luzina IG, Atamas SP, Kim KC, Goldblum SE. NEU1 Sialidase Regulates Membrane-tethered Mucin (MUC1) Ectodomain Adhesiveness for Pseudomonas aeruginosa and Decoy Receptor Release. J Biol Chem 2015; 290:18316-31. [PMID: 25963144 DOI: 10.1074/jbc.m115.657114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Indexed: 02/03/2023] Open
Abstract
Airway epithelia express sialylated receptors that recognize exogenous danger signals. Regulation of receptor responsiveness to these signals remains incompletely defined. Here, we explore the mechanisms through which the human sialidase, neuraminidase-1 (NEU1), promotes the interaction between the sialoprotein, mucin 1 (MUC1), and the opportunistic pathogen, Pseudomonas aeruginosa. P. aeruginosa flagellin engaged the MUC1 ectodomain (ED), increasing NEU1 association with MUC1. The flagellin stimulus increased the association of MUC1-ED with both NEU1 and its chaperone/transport protein, protective protein/cathepsin A. Scatchard analysis demonstrated NEU1-dependent increased binding affinity of flagellin to MUC1-expressing epithelia. NEU1-driven MUC1-ED desialylation rapidly increased P. aeruginosa adhesion to and invasion of the airway epithelium. MUC1-ED desialylation also increased its shedding, and the shed MUC1-ED competitively blocked P. aeruginosa adhesion to cell-associated MUC1-ED. Levels of desialylated MUC1-ED were elevated in the bronchoalveolar lavage fluid of mechanically ventilated patients with P. aeruginosa airway colonization. Preincubation of P. aeruginosa with these same ex vivo fluids competitively inhibited bacterial adhesion to airway epithelia, and MUC1-ED immunodepletion completely abrogated their inhibitory activity. These data indicate that a prokaryote, P. aeruginosa, in a ligand-specific manner, mobilizes eukaryotic NEU1 to enhance bacterial pathogenicity, but the host retaliates by releasing MUC1-ED into the airway lumen as a hyperadhesive decoy receptor.
Collapse
Affiliation(s)
| | | | | | | | | | - Irina G Luzina
- Medicine, and the Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201, and
| | - Sergei P Atamas
- Medicine, and the Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201, and
| | - K Chul Kim
- the Department of Otolaryngology, University of Arizona College of Medicine, Tucson, Arizona 85724
| | - Simeon E Goldblum
- Medicine, and the Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201, and Pathology, University of Maryland School of Medicine, Baltimore, Maryland 21201,
| |
Collapse
|
17
|
Using common spatial distributions of atoms to relate functionally divergent influenza virus N10 and N11 protein structures to functionally characterized neuraminidase structures, toxin cell entry domains, and non-influenza virus cell entry domains. PLoS One 2015; 10:e0117499. [PMID: 25706124 PMCID: PMC4337911 DOI: 10.1371/journal.pone.0117499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 12/24/2014] [Indexed: 11/19/2022] Open
Abstract
The ability to identify the functional correlates of structural and sequence variation in proteins is a critical capability. We related structures of influenza A N10 and N11 proteins that have no established function to structures of proteins with known function by identifying spatially conserved atoms. We identified atoms with common distributed spatial occupancy in PDB structures of N10 protein, N11 protein, an influenza A neuraminidase, an influenza B neuraminidase, and a bacterial neuraminidase. By superposing these spatially conserved atoms, we aligned the structures and associated molecules. We report spatially and sequence invariant residues in the aligned structures. Spatially invariant residues in the N6 and influenza B neuraminidase active sites were found in previously unidentified spatially equivalent sites in the N10 and N11 proteins. We found the corresponding secondary and tertiary structures of the aligned proteins to be largely identical despite significant sequence divergence. We found structural precedent in known non-neuraminidase structures for residues exhibiting structural and sequence divergence in the aligned structures. In N10 protein, we identified staphylococcal enterotoxin I-like domains. In N11 protein, we identified hepatitis E E2S-like domains, SARS spike protein-like domains, and toxin components shared by alpha-bungarotoxin, staphylococcal enterotoxin I, anthrax lethal factor, clostridium botulinum neurotoxin, and clostridium tetanus toxin. The presence of active site components common to the N6, influenza B, and S. pneumoniae neuraminidases in the N10 and N11 proteins, combined with the absence of apparent neuraminidase function, suggests that the role of neuraminidases in H17N10 and H18N11 emerging influenza A viruses may have changed. The presentation of E2S-like, SARS spike protein-like, or toxin-like domains by the N10 and N11 proteins in these emerging viruses may indicate that H17N10 and H18N11 sialidase-facilitated cell entry has been supplemented or replaced by sialidase-independent receptor binding to an expanded cell population that may include neurons and T-cells.
Collapse
|
18
|
Walther E, Richter M, Xu Z, Kramer C, von Grafenstein S, Kirchmair J, Grienke U, Rollinger JM, Liedl KR, Slevogt H, Sauerbrei A, Saluz HP, Pfister W, Schmidtke M. Antipneumococcal activity of neuraminidase inhibiting artocarpin. Int J Med Microbiol 2014; 305:289-97. [PMID: 25592264 DOI: 10.1016/j.ijmm.2014.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/01/2014] [Accepted: 12/14/2014] [Indexed: 02/06/2023] Open
Abstract
Streptococcus (S.) pneumoniae is a major cause of secondary bacterial pneumonia during influenza epidemics. Neuraminidase (NA) is a virulence factor of both pneumococci and influenza viruses. Bacterial neuraminidases (NAs) are structurally related to viral NA and susceptible to oseltamivir, an inhibitor designed to target viral NA. This prompted us to evaluate the antipneumococcal potential of two NA inhibiting natural compounds, the diarylheptanoid katsumadain A and the isoprenylated flavone artocarpin. Chemiluminescence, fluorescence-, and hemagglutination-based enzyme assays were applied to determine the inhibitory efficiency (IC(50) value) of the tested compounds towards pneumococcal NAs. The mechanism of inhibition was studied via enzyme kinetics with recombinant NanA NA. Unlike oseltamivir, which competes with the natural substrate of NA, artocarpin exhibits a mixed-type inhibition with a Ki value of 9.70 μM. Remarkably, artocarpin was the only NA inhibitor (NAI) for which an inhibitory effect on pneumococcal growth (MIC: 0.99-5.75 μM) and biofilm formation (MBIC: 1.15-2.97 μM) was observable. In addition, we discovered that the bactericidal effect of artocarpin can reduce the viability of pneumococci by a factor of >1000, without obvious harm to lung epithelial cells. This renders artocarpin a promising natural product for further investigations.
Collapse
Affiliation(s)
- E Walther
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - M Richter
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Z Xu
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - C Kramer
- University of Innsbruck, Institute for General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80/82, 6020 Innsbruck, Austria
| | - S von Grafenstein
- University of Innsbruck, Institute for General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80/82, 6020 Innsbruck, Austria
| | - J Kirchmair
- University of Hamburg, Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, Germany
| | - U Grienke
- University of Innsbruck, Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80/82, 6020 Innsbruck, Austria; University of Vienna, Department of Pharmacognosy, Althanstraße 14, 1090 Vienna, Austria
| | - J M Rollinger
- University of Vienna, Department of Pharmacognosy, Althanstraße 14, 1090 Vienna, Austria
| | - K R Liedl
- University of Innsbruck, Institute for General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80/82, 6020 Innsbruck, Austria
| | - H Slevogt
- Jena University Hospital, ZIK Septomics, Albert-Einstein-Straße 10, 07745 Jena, Germany
| | - A Sauerbrei
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - H P Saluz
- Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstraße 11a, 07745 Jena, Germany
| | - W Pfister
- Jena University Hospital, Department of Medical Microbiology, Erlanger Allee 101, 07747 Jena, Germany
| | - M Schmidtke
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knöll-Straße 2, 07745 Jena, Germany.
| |
Collapse
|
19
|
Abstract
Alkyne-hinged 3-fluorosialyl fluoride (DFSA) containing an alkyne group was shown to be a mechanism-based target-specific irreversible inhibitor of sialidases. The ester-protected analog DFSA (PDFSA) is a membrane-permeable precursor of DFSA designed to be used in living cells, and it was shown to form covalent adducts with virus, bacteria, and human sialidases. The fluorosialyl-enzyme adduct can be ligated with an azide-annexed biotin via click reaction and detected by the streptavidin-specific reporting signals. Liquid chromatography-mass spectrometry/mass spectrometry analysis on the tryptic peptide fragments indicates that the 3-fluorosialyl moiety modifies tyrosine residues of the sialidases. DFSA was used to demonstrate influenza infection and the diagnosis of the viral susceptibility to the anti-influenza drug oseltamivir acid, whereas PDFSA was used for in situ imaging of the changes of sialidase activity in live cells.
Collapse
|
20
|
Pérez-Dorado I, Galan-Bartual S, Hermoso JA. Pneumococcal surface proteins: when the whole is greater than the sum of its parts. Mol Oral Microbiol 2012; 27:221-45. [PMID: 22759309 DOI: 10.1111/j.2041-1014.2012.00655.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Surface-exposed proteins of pathogenic bacteria are considered as potential virulence factors through their direct contribution to host-pathogen interactions. Four families of surface proteins decorate the cell surface of the human pathogen Streptococcus pneumoniae. Besides lipoproteins and LPXTG proteins, also present in other gram-positive bacteria, the pneumococcus presents the choline-binding protein (CBP) family and the non-classical surface proteins (NCSPs). The CBPs present specific structural features that allow their anchorage to the cell envelope through non-covalent interaction with choline residues of lipoteichoic acid and teichoic acid. NCSP is an umbrella term for less characterized proteins displaying moonlighting functions on the pneumococcal surface that lack a leader peptide and membrane-anchor motif. Considering the unceasing evolution of microbial species under the selective pressure of antibiotic use, detailed understanding of the interaction between pathogen and the host cells is required for the development of novel therapeutic strategies to combat pneumococcal infections. This article reviews recent progress in the investigation of the three-dimensional structures of surface-exposed pneumococcal proteins. The modular nature of some of them produces a great versatility and sophistication of the virulence functions that, in most cases, cannot be deduced by the structural analysis of the isolated modules.
Collapse
Affiliation(s)
- I Pérez-Dorado
- Department of Crystallography and Structural Biology, Instituto de Química-Física Rocasolano, CSIC, Madrid, Spain
| | | | | |
Collapse
|
21
|
Li C, Kurniyati, Hu B, Bian J, Sun J, Zhang W, Liu J, Pan Y, Li C. Abrogation of neuraminidase reduces biofilm formation, capsule biosynthesis, and virulence of Porphyromonas gingivalis. Infect Immun 2012; 80:3-13. [PMID: 22025518 PMCID: PMC3255687 DOI: 10.1128/iai.05773-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/18/2011] [Indexed: 01/27/2023] Open
Abstract
The oral bacterium Porphyromonas gingivalis is a key etiological agent of human periodontitis, a prevalent chronic disease that affects up to 80% of the adult population worldwide. P. gingivalis exhibits neuraminidase activity. However, the enzyme responsible for this activity, its biochemical features, and its role in the physiology and virulence of P. gingivalis remain elusive. In this report, we found that P. gingivalis encodes a neuraminidase, PG0352 (SiaPg). Transcriptional analysis showed that PG0352 is monocistronic and is regulated by a sigma70-like promoter. Biochemical analyses demonstrated that SiaPg is an exo-α-neuraminidase that cleaves glycosidic-linked sialic acids. Cryoelectron microscopy and tomography analyses revealed that the PG0352 deletion mutant (ΔPG352) failed to produce an intact capsule layer. Compared to the wild type, in vitro studies showed that ΔPG352 formed less biofilm and was less resistant to killing by the host complement. In vivo studies showed that while the wild type caused a spreading type of infection that affected multiple organs and all infected mice were killed, ΔPG352 only caused localized infection and all animals survived. Taken together, these results demonstrate that SiaPg is an important virulence factor that contributes to the biofilm formation, capsule biosynthesis, and pathogenicity of P. gingivalis, and it can potentially serve as a new target for developing therapeutic agents against P. gingivalis infection.
Collapse
Affiliation(s)
- Chen Li
- Department of Oral Biology, The State University of New York at Buffalo, New York, USA
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Kurniyati
- Department of Oral Biology, The State University of New York at Buffalo, New York, USA
| | - Bo Hu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Texas, USA
| | - Jiang Bian
- Department of Oral Biology, The State University of New York at Buffalo, New York, USA
| | - Jianlan Sun
- Department of Pathology and Anatomical Sciences
| | - Weiyan Zhang
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, New York, USA
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Texas, USA
| | - Yaping Pan
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Chunhao Li
- Department of Oral Biology, The State University of New York at Buffalo, New York, USA
| |
Collapse
|
22
|
Grienke U, Schmidtke M, von Grafenstein S, Kirchmair J, Liedl KR, Rollinger JM. Influenza neuraminidase: A druggable target for natural products. Nat Prod Rep 2012; 29:11-36. [DOI: 10.1039/c1np00053e] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Gut H, Xu G, Taylor GL, Walsh MA. Structural Basis for Streptococcus pneumoniae NanA Inhibition by Influenza Antivirals Zanamivir and Oseltamivir Carboxylate. J Mol Biol 2011; 409:496-503. [DOI: 10.1016/j.jmb.2011.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 11/27/2022]
|
24
|
Kim S, Oh DB, Kang HA, Kwon O. Features and applications of bacterial sialidases. Appl Microbiol Biotechnol 2011; 91:1-15. [PMID: 21544654 DOI: 10.1007/s00253-011-3307-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/02/2011] [Accepted: 04/05/2011] [Indexed: 11/28/2022]
Abstract
Sialidases, or neuraminidases (EC 3.2.1.18), belong to a class of glycosyl hydrolases that release terminal N-acylneuraminate residues from the glycans of glycoproteins, glycolipids, and polysaccharides. In bacteria, sialidases can be used to scavenge sialic acids as a nutrient from various sialylated substrates or to recognize sialic acids exposed on the surface of the host cell. Despite the fact that bacterial sialidases share many structural features, their biochemical properties, especially their linkage and substrate specificities, vary widely. Bacterial sialidases can catalyze the hydrolysis of terminal sialic acids linked by the α(2,3)-, α(2,6)-, or α(2,8)-linkage to a diverse range of substrates. In addition, some of these enzymes can catalyze the transfer of sialic acids from sialoglycans to asialoglycoconjugates via a transglycosylation reaction mechanism. Thus, some bacterial sialidases have been applied to synthesize complex sialyloligosaccharides through chemoenzymatic approaches and to analyze the glycan structure. In this review article, the biochemical features of bacterial sialidases and their potential applications in regioselective hydrolysis reactions as well as sialylation by transglycosylation for the synthesis of sialylated complex glycans are discussed.
Collapse
Affiliation(s)
- Seonghun Kim
- Microbe-based Fusion Technology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup, South Korea
| | | | | | | |
Collapse
|
25
|
Banerjee A, Van Sorge NM, Sheen TR, Uchiyama S, Mitchell TJ, Doran KS. Activation of brain endothelium by pneumococcal neuraminidase NanA promotes bacterial internalization. Cell Microbiol 2010; 12:1576-88. [PMID: 20557315 DOI: 10.1111/j.1462-5822.2010.01490.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Streptococcus pneumoniae (SPN), the leading cause of meningitis in children and adults worldwide, is associated with an overwhelming host inflammatory response and subsequent brain injury. Here we examine the global response of the blood-brain barrier to SPN infection and the role of neuraminidase A (NanA), an SPN surface anchored protein recently described to promote central nervous system tropism. Microarray analysis of human brain microvascular endothelial cells (hBMEC) during infection with SPN or an isogenic NanA-deficient (ΔnanA) mutant revealed differentially activated genes, including neutrophil chemoattractants IL-8, CXCL-1, CXCL-2. Studies using bacterial mutants, purified recombinant NanA proteins and in vivo neutrophil chemotaxis assays indicated that pneumococcal NanA is necessary and sufficient to activate host chemokine expression and neutrophil recruitment during infection. Chemokine induction was mapped to the NanA N-terminal lectin-binding domain with a limited contribution of the sialidase catalytic activity, and was not dependent on the invasive capability of the organism. Furthermore, pretreatment of hBMEC with recombinant NanA protein significantly increased bacterial invasion, suggesting that NanA-mediated activation of hBMEC is a prerequisite for efficient SPN invasion. These findings were corroborated in an acute murine infection model where we observed less inflammatory infiltrate and decreased chemokine expression following infection with the ΔnanA mutant.
Collapse
Affiliation(s)
- Anirban Banerjee
- Department of Biology, Center for Microbial Sciences, San Diego State University, San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
26
|
The NanA neuraminidase of Streptococcus pneumoniae is involved in biofilm formation. Infect Immun 2009; 77:3722-30. [PMID: 19564377 DOI: 10.1128/iai.00228-09] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae remains a major cause of bacteremia, pneumonia, and otitis media despite vaccines and effective antibiotics. The neuraminidase of S. pneumoniae, which catalyzes the release of terminal sialic acid residues from glycoconjugates, is involved in host colonization in animal models of infection and may provide a novel target for preventing pneumococcal infection. We demonstrate that the S. pneumoniae neuraminidase (NanA) cleaves sialic acid and show that it is involved in biofilm formation, suggesting an additional role in pathogenesis, and that it shares this property with the neuraminidase of Pseudomonas aeruginosa even though we show that the two enzymes are phylogenetically divergent. Using an in vitro model of biofilm formation incorporating human airway epithelial cells, we demonstrate that small-molecule inhibitors of NanA block biofilm formation and may provide a novel target for preventative therapy. This work highlights the role played by the neuraminidase in pathogenesis and represents an important step in drug development for prevention of colonization of the respiratory tract by this important pathogen.
Collapse
|