1
|
Diane A, Abunada H, Khattab N, Moin ASM, Butler AE, Dehbi M. Role of the DNAJ/HSP40 family in the pathogenesis of insulin resistance and type 2 diabetes. Ageing Res Rev 2021; 67:101313. [PMID: 33676026 DOI: 10.1016/j.arr.2021.101313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022]
Abstract
Insulin resistance (IR) underpins a wide range of metabolic disorders including type 2 diabetes (T2D), metabolic syndrome and cardiovascular diseases. IR is characterized by a marked reduction in the magnitude and/or delayed onset of insulin to stimulate glucose disposal. This condition is due to defects in one or several intracellular intermediates of the insulin signaling cascade, ranging from insulin receptor substrate (IRS) inactivation to reduced glucose phosphorylation and oxidation. Genetic predisposition, as well as other precipitating factors such as aging, obesity, and sedentary lifestyles are among the risk factors underlying the pathogenesis of IR and its subsequent progression to T2D. One of the cardinal hallmarks of T2D is the impairment of the heat shock response (HSR). Human and animal studies provided compelling evidence of reduced expression of several components of the HSR (i.e. Heat shock proteins or HSPs) in diabetic samples in a manner that correlates with the degree of IR. Interventions that induce the HSR, irrespective of the means to achieve it, proved their effectiveness in enhancing insulin sensitivity and improving glycemic index. However, most of these studies have been focused on HSP70 family. In this review, we will focus on the novel role of DNAJ/HSP40 cochaperone family in metabolic diseases associated with IR.
Collapse
|
2
|
Bittencourt A, Schroeder HT, Porto RR, de Lemos Muller CH, Krause M, Homem de Bittencourt PI. Heat shock response to exercise in pancreatic islets of obese mice. Biochimie 2019; 168:28-40. [PMID: 31678111 DOI: 10.1016/j.biochi.2019.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/27/2019] [Indexed: 12/18/2022]
Abstract
Chronic obesity imposes an organismal state of low-grade inflammation because the physiological resolution of inflammation is progressively repressed giving rise to cellular senescence and its accompanying Senescence-Associated Secretory Phenotype (SASP), which avoids apoptosis but perpetuates the relay of inflammatory signals from adipose tissue toward the rest of the body. Conversely, resolution of inflammation depends on the integrity of heat shock response (HSR) pathway that leads to the expression of cytoprotective and anti-inflammatory protein chaperones of the 70 kDa family (HSP70). However, chronic exposure to the aforementioned injuring factors leads to SASP, which, in turn, suppresses the HSR. A main metabolic tissue severely jeopardized by obesity-related dysfunctions is the endocrine pancreas, particularly β-cells of the islets of Langerhans. Because exercise is a powerful inducer of HSR and predicted to alleviate negative health outcomes of obesity, we sought whether obesity influence HSP70 expression in pancreatic islets and other metabolic tissues (adipose tissue and skeletal muscle) of adult B6.129SF2/J mice fed on a high-fat diet (HFD) for 13 weeks since the weaning and whether acute exercise as well as moderate-intensity exercise training (8 weeks) could interfere with this scenario. We showed that acute exercise of moderate intensity protects pancreatic islets against cytokine-induced cell death. In addition, acute exercise challenge time-dependently increased islet HSP70 that peaked at 12 h post-exercise in both trained and untrained mice fed on a control diet, suggesting an adequate HSR to exercise training. Unexpectedly, however, neither exercise training nor acute exercise challenges were able to increase islet HSP70 contents in trained mice submitted to HFD, but only in untrained HFD animals. In parallel, HFD disrupted glycemic status which is accompanied by loss of muscular mass resembling sarcopenic obesity that could not be rescued by exercise training. These results suggest that exercise influences HSR in pancreatic islets but obesity undermines islet, muscle and adipose tissue HSR, which is associated with metabolic abnormalities observed in such tissues.
Collapse
Affiliation(s)
- Aline Bittencourt
- Laboratory of Cellular Physiology (FisCel) and Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel) and Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rossana Rosa Porto
- Laboratory of Cellular Physiology (FisCel) and Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Henrique de Lemos Muller
- Laboratory of Cellular Physiology (FisCel) and Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mauricio Krause
- Laboratory of Cellular Physiology (FisCel) and Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel) and Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Welsh M, Jamalpour M, Zang G, Åkerblom B. The role of the Src Homology-2 domain containing protein B (SHB) in β cells. J Mol Endocrinol 2016; 56:R21-31. [PMID: 26489764 DOI: 10.1530/jme-15-0228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2015] [Indexed: 12/17/2022]
Abstract
This review will describe the SH2-domain signaling protein Src Homology-2 domain containing protein B (SHB) and its role in various physiological processes relating in particular to glucose homeostasis and β cell function. SHB operates downstream of several tyrosine kinase receptors and assembles signaling complexes in response to receptor activation by interacting with other signaling proteins via its other domains (proline-rich, phosphotyrosine-binding and tyrosine-phosphorylation sites). The subsequent responses are context-dependent. Absence of Shb in mice has been found to exert effects on hematopoiesis, angiogenesis and glucose metabolism. Specifically, first-phase insulin secretion in response to glucose was impaired and this effect was related to altered characteristics of focal adhesion kinase activation modulating signaling through Akt, ERK, β catenin and cAMP. It is believed that SHB plays a role in integrating adaptive responses to various stimuli by simultaneously modulating cellular responses in different cell-types, thus playing a role in maintaining physiological homeostasis.
Collapse
Affiliation(s)
- Michael Welsh
- Department of Medical Cell BiologyUppsala University, PO Box 571, Husargatan 3, SE-75123 Uppsala, Sweden
| | - Maria Jamalpour
- Department of Medical Cell BiologyUppsala University, PO Box 571, Husargatan 3, SE-75123 Uppsala, Sweden
| | - Guangxiang Zang
- Department of Medical Cell BiologyUppsala University, PO Box 571, Husargatan 3, SE-75123 Uppsala, Sweden
| | - Björn Åkerblom
- Department of Medical Cell BiologyUppsala University, PO Box 571, Husargatan 3, SE-75123 Uppsala, Sweden
| |
Collapse
|
4
|
The regulatory roles of NADPH oxidase, intra- and extra-cellular HSP70 in pancreatic islet function, dysfunction and diabetes. Clin Sci (Lond) 2015; 128:789-803. [DOI: 10.1042/cs20140695] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The 70 kDa heat-shock protein (HSP70) family is important for a dynamic range of cellular processes that include protection against cell stress, modulation of cell signalling, gene expression, protein synthesis, protein folding and inflammation. Within this family, the inducible 72 kDa and the cognate 73 kDa forms are found at the highest level. HSP70 has dual functions depending on location. For example, intracellular HSP70 (iHSP70) is anti-inflammatory whereas extracellular HSP70 (eHSP70) has a pro-inflammatory function, resulting in local and systemic inflammation. We have recently identified a divergence in the levels of eHSP70 and iHSP70 in subjects with diabetes compared with healthy subjects and also reported that eHSP70 was correlated with insulin resistance and pancreatic β-cell dysfunction/death. In the present review, we describe possible mechanisms by which HSP70 participates in cell function/dysfunction, including the activation of NADPH oxidase isoforms leading to oxidative stress, focusing on the possible role of HSPs and signalling in pancreatic islet α- and β-cell physiological function in health and Type 2 diabetes mellitus.
Collapse
|
5
|
Campanha-Rodrigues AL, Grazioli G, Oliveira TC, Campos-Lisbôa ACV, Mares-Guia TR, Sogayar MC. Therapeutic Potential of Laminin–Biodritin Microcapsules for Type 1 Diabetes Mellitus. Cell Transplant 2015; 24:247-61. [DOI: 10.3727/096368913x675160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pancreatic islet microencapsulation constitutes an attractive therapy for type 1 diabetes mellitus; however, long-term β-cell function remains a major problem. Loss of extracellular matrix interactions during islet isolation dramatically affects β-cell viability. We have previously shown beneficial effects of laminin (LN) in human islet cultures. Herein, we investigated whether LN could improve the outcome of transplantation after islet microencapsulation in Biodritin, an alginate-based material. To test LN-Biodritin stability, microcapsules were subjected to different types of in vitro stress. Focusing on biocompatibility, empty microcapsules were coincubated with the RAW 264.7 macrophage cell line for up to 24 h, and empty beads were implanted IP in mice and retrieved for analyses after 7 and 30 days. Upon culturing for 48 h, mRNA, protein levels, and caspase 3 activity were evaluated in islets microencapsulated with LN-Biodritin. Mice rendered diabetic by streptozotocin injection were transplanted with microencapsulated islets, followed by assessment of body weight, glycemia, and graft function (evaluated by OGTT). Graft efficiency was observed upon microencapsulated islet explantation. The results obtained showed that LN-Biodritin microcapsules were as stable and biocompatible as Biodritin. Modulation of mRNA and protein levels suggested protection against apoptosis and islet stress. Mice transplanted with LN-Biodritin microencapsulated islets presented a better outcome at 198 days postsurgery. Graft explantation led animals to hyperglycemia. In conclusion, LN-Biodritin constitutes a very promising biomaterial for islet transplantation.
Collapse
Affiliation(s)
- Ana Lucia Campanha-Rodrigues
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Gisella Grazioli
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Cell Protect Biotechnology Ltda., São Paulo, SP, Brazil
| | - Talita C. Oliveira
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Carolina V. Campos-Lisbôa
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Cell Protect Biotechnology Ltda., São Paulo, SP, Brazil
| | - Thiago R. Mares-Guia
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Cell Protect Biotechnology Ltda., São Paulo, SP, Brazil
| | - Mari C. Sogayar
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Alenkvist I, Dyachok O, Tian G, Li J, Mehrabanfar S, Jin Y, Birnir B, Tengholm A, Welsh M. Absence of Shb impairs insulin secretion by elevated FAK activity in pancreatic islets. J Endocrinol 2014; 223:267-75. [PMID: 25274988 DOI: 10.1530/joe-14-0531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Src homology-2 domain containing protein B (SHB) has previously been shown to function as a pleiotropic adapter protein, conveying signals from receptor tyrosine kinases to intracellular signaling intermediates. The overexpression of Shb in β-cells promotes β-cell proliferation by increased insulin receptor substrate (IRS) and focal adhesion kinase (FAK) activity, whereas Shb deficiency causes moderate glucose intolerance and impaired first-peak insulin secretion. Using an array of techniques, including live-cell imaging, patch-clamping, immunoblotting, and semi-quantitative PCR, we presently investigated the causes of the abnormal insulin secretory characteristics in Shb-knockout mice. Shb-knockout islets displayed an abnormal signaling signature with increased activities of FAK, IRS, and AKT. β-catenin protein expression was elevated and it showed increased nuclear localization. However, there were no major alterations in the gene expression of various proteins involved in the β-cell secretory machinery. Nor was Shb deficiency associated with changes in glucose-induced ATP generation or cytoplasmic Ca(2+) handling. In contrast, the glucose-induced rise in cAMP, known to be important for the insulin secretory response, was delayed in the Shb-knockout compared with WT control. Inhibition of FAK increased the submembrane cAMP concentration, implicating FAK activity in the regulation of insulin exocytosis. In conclusion, Shb deficiency causes a chronic increase in β-cell FAK activity that perturbs the normal insulin secretory characteristics of β-cells, suggesting multi-faceted effects of FAK on insulin secretion depending on the mechanism of FAK activation.
Collapse
Affiliation(s)
- Ida Alenkvist
- Department of Medical Cell BiologyUppsala University, Box 571, Husargatan 3, 75123 Uppsala, SwedenDepartment of NeuroscienceUppsala University, Uppsala, Sweden
| | - Oleg Dyachok
- Department of Medical Cell BiologyUppsala University, Box 571, Husargatan 3, 75123 Uppsala, SwedenDepartment of NeuroscienceUppsala University, Uppsala, Sweden
| | - Geng Tian
- Department of Medical Cell BiologyUppsala University, Box 571, Husargatan 3, 75123 Uppsala, SwedenDepartment of NeuroscienceUppsala University, Uppsala, Sweden
| | - Jia Li
- Department of Medical Cell BiologyUppsala University, Box 571, Husargatan 3, 75123 Uppsala, SwedenDepartment of NeuroscienceUppsala University, Uppsala, Sweden
| | - Saba Mehrabanfar
- Department of Medical Cell BiologyUppsala University, Box 571, Husargatan 3, 75123 Uppsala, SwedenDepartment of NeuroscienceUppsala University, Uppsala, Sweden
| | - Yang Jin
- Department of Medical Cell BiologyUppsala University, Box 571, Husargatan 3, 75123 Uppsala, SwedenDepartment of NeuroscienceUppsala University, Uppsala, Sweden
| | - Bryndis Birnir
- Department of Medical Cell BiologyUppsala University, Box 571, Husargatan 3, 75123 Uppsala, SwedenDepartment of NeuroscienceUppsala University, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell BiologyUppsala University, Box 571, Husargatan 3, 75123 Uppsala, SwedenDepartment of NeuroscienceUppsala University, Uppsala, Sweden
| | - Michael Welsh
- Department of Medical Cell BiologyUppsala University, Box 571, Husargatan 3, 75123 Uppsala, SwedenDepartment of NeuroscienceUppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Heterogeneity among RIP-Tag2 insulinomas allows vascular endothelial growth factor-A independent tumor expansion as revealed by studies in Shb mutant mice: implications for tumor angiogenesis. Mol Oncol 2012; 6:333-46. [PMID: 22336752 DOI: 10.1016/j.molonc.2012.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/23/2012] [Accepted: 01/23/2012] [Indexed: 11/22/2022] Open
Abstract
The Shb adapter protein is a signaling intermediate that operates downstream of vascular endothelial growth factor receptor-2 (VEGFR-2) in endothelial cells. The Shb knockout mouse displays a dysfunctional microvasculature and impaired growth of subcutaneously implanted tumor cells. We decided to investigate tumor growth and angiogenesis in the absence of Shb in an inheritable tumor model, the RIP-Tag2 mouse, which produces insulinomas in a manner highly dependent on de novo angiogenesis. We observed a reduced tumor incidence and burden in both RIP-Tag2 Shb-/- and RIP-Tag2 Shb+/- mice. This correlated with a reduced microvascular density, measured as a percentage of insulinoma area positive for CD31 staining, and altered vascular morphology. However, treatment with a VEGF-A blocking antibody was without effect on the Shb mutant tumor volume whereas it significantly inhibited tumor volume in the wild-type mice, suggesting that in mice with reduced Shb expression tumor angiogenesis was primarily sustained by VEGF-A independent pathway(s). This notion was further substantiated by gene expression analysis of angiogenic markers showing reduced VEGF-A expression in Shb-deficient tumors. Considerable heterogeneity with respect to the gene expression profiles of other angiogenic markers and the signal-transduction characteristics was observed between different tumors, suggesting that multiple "rescue" pathways could be operating. The numbers of invasive tumors or metastases were unchanged in the Shb mutant. It is concluded that the Shb mutant background reduces tumor frequency by chronically suppressing VEGF-A dependent angiogenesis. However, VEGF-A independent angiogenesis supports a significant degree of tumor expansion in Shb-deficient mice, indicating heterogeneity in the mechanisms by which tumor expansion is promoted. Interference with Shb signaling may provide novel means for future cancer therapy.
Collapse
|
8
|
Christensen DP, Dahllöf M, Lundh M, Rasmussen DN, Nielsen MD, Billestrup N, Grunnet LG, Mandrup-Poulsen T. Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol Med 2011; 17:378-90. [PMID: 21274504 DOI: 10.2119/molmed.2011.00021] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/24/2011] [Indexed: 12/13/2022] Open
Abstract
Both common forms of diabetes have an inflammatory pathogenesis in which immune and metabolic factors converge on interleukin-1β as a key mediator of insulin resistance and β-cell failure. In addition to improving insulin resistance and preventing β-cell inflammatory damage, there is evidence of genetic association between diabetes and histone deacetylases (HDACs); and HDAC inhibitors (HDACi) promote β-cell development, proliferation, differentiation and function and positively affect late diabetic microvascular complications. Here we review this evidence and propose that there is a strong rationale for preclinical studies and clinical trials with the aim of testing the utility of HDACi as a novel therapy for diabetes.
Collapse
Affiliation(s)
- Dan P Christensen
- Center for Medical Research Methodology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
9
|
D’Hertog W, Maris M, Ferreira GB, Verdrengh E, Lage K, Hansen DA, Cardozo AK, Workman CT, Moreau Y, Eizirik DL, Waelkens E, Overbergh L, Mathieu C. Novel Insights into the Global Proteome Responses of Insulin-Producing INS-1E Cells To Different Degrees of Endoplasmic Reticulum Stress. J Proteome Res 2010; 9:5142-52. [DOI: 10.1021/pr1004086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wannes D’Hertog
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Michael Maris
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Gabriela B. Ferreira
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Eefje Verdrengh
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Kasper Lage
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Daniel A. Hansen
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Alessandra K. Cardozo
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Christopher T. Workman
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Yves Moreau
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Decio L. Eizirik
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Etienne Waelkens
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Lutgart Overbergh
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Chantal Mathieu
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| |
Collapse
|
10
|
Calounova G, Livera G, Zhang XQ, Liu K, Gosden RG, Welsh M. The Src homology 2 domain-containing adapter protein B (SHB) regulates mouse oocyte maturation. PLoS One 2010; 5:e11155. [PMID: 20585392 PMCID: PMC2886836 DOI: 10.1371/journal.pone.0011155] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 05/24/2010] [Indexed: 01/01/2023] Open
Abstract
SHB (Src homology 2 domain-containing adapter protein B) is involved in receptor tyrosine kinase signaling. Mice deficient in the Shb gene have been found to exhibit a transmission ratio distortion with respect to inheritance of the Shb null allele among offspring and this phenomenon was linked to female gamete production. Consequently, we postulated that Shb plays a role for oocyte biology and thus decided to investigate oocyte formation, meiotic maturation, and early embryo development in relation to absence of the Shb gene. Oogenesis was apparently accelerated judging from the stages of oocyte development on fetal day 18.5 and one week postnatally in Shb -/- mice; but in adulthood ovarian follicle maturation was impaired in these mice. Completion of meiosis I (first polar body extrusion) was less synchronized, with a fraction of oocytes showing premature polar body extrusion in the absence of Shb. In vitro fertilization of mature oocytes isolated from Shb +/+, +/- and -/- mice revealed impaired early embryo development in the -/- embryos. Moreover, the absence of Shb enhanced ERK (extracellular-signal regulated kinase) and RSK (ribosomal S6 kinase) signaling in oocytes and these effects were paralleled by an increased ribosomal protein S6 phosphorylation and activation. It is concluded that SHB regulates normal oocyte and follicle development and that perturbation of SHB signaling causes defective meiosis I and early embryo development.
Collapse
Affiliation(s)
| | - Gabriel Livera
- Laboratory of Development of the Gonads, UMR-U967, INSERM/CEA/Paris Diderot-Paris 7 University, Fontenay aux Roses, France
| | - Xiao-Qun Zhang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kui Liu
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Roger G. Gosden
- Center for Reproductive Medicine and Infertility, Weill Medical College, Cornell University, New York, New York, United States of America
| | - Michael Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Pei GH, Liang J, Song WL, Wang ZP, Mo CB. Preconditioning of pancreatic graft with isoproterenol reduces posttransplant ischemia/reperfusion injury in rats. Shijie Huaren Xiaohua Zazhi 2010; 18:871-876. [DOI: 10.11569/wcjd.v18.i9.871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the protective effects of isoproterenol preconditioning (IPC) against ischemia/reperfusion injury in rats after pancreas transplantation and to explore mechanisms involved.
METHODS: The expression of heat shock protein 70 (HSP70) in the pancreas of rats undergoing IPC was detected at different time points after IPC. A rat model of posttransplant pancreatic ischemia/reperfusion injury was established. The donor rats that showed high expression of HSP70 in the pancreas were used as experiment group, while donor rats that did not undergo IPC were used as control group. The blood and pancreatic samples were taken 6 h after pancreas transplantation. The expression of HSP70 in the pancreas was detected by Western blot and immunohistochemistry. The expression of TNF-α in the pancreas was detected by immunohistochemistry. Serum amylase was determined by iodine colorimetry. The apoptosis rate of pancreatic cells was determined by flow cytometry.
RESULTS: The expression level of HSP70 in the pancreas of donor rats reached the peak at 24 h after IPC, which was significantly higher than those at other time points (0.92 ± 0.25 vs 0.24 ± 0.04, 0.34 ± 0.06, 0.58 ± 0.07, 0.62 ± 0.11 and 0.25 ± 0.09, respectively; all P < 0.05). The expression levels of HSP70 in the experimental group at 6, 12, 24 and 36 h after IPC were significantly higher than those in the control group at corresponding time points (0.34 ± 0.06 vs 0.28 ± 0.07, 0.58 ± 0.07vs 0.25 ± 0.04, 0.92 ± 0.25 vs 0.27 ± 0.05 and 0.62 ± 0.11 vs 0.25 ± 0.06, respectively; all P < 0.05) but returned to normal level at 48 h. No significant differences were noted in the expression levels of HSP70 among each time point in the control group. HSP70 was mainly expressed in pancreatic acinar cells and the vessel wall. The expression level of TNF-α, apoptosis rate, neutrophil count and serum amylase significantly increased in the control group when compared with those in sham-operated group (all P < 0.01). However, the levels of these parameters significantly decreased in the experiment group when compared with those in the control group (11 929 ± 1 220 vs 46 111 ± 3 127, 26.7% ± 4.5% vs 37.4% ± 4.7%, 3 308 ± 531 vs6 668 ± 1 506 and 1 057 IU/L± 148 IU/L vs 1 408 IU/L± 195 IU/L, respectively; all P < 0.05).
CONCLUSION: Isoproterenol preconditioning reduces ischemia/reperfusion injury in rats after pancreas transplantation perhaps by inducing the production of HSP70.
Collapse
|