1
|
Filograna R, Gerlach J, Choi HN, Rigoni G, Barbaro M, Oscarson M, Lee S, Tiklova K, Ringnér M, Koolmeister C, Wibom R, Riggare S, Nennesmo I, Perlmann T, Wredenberg A, Wedell A, Motori E, Svenningsson P, Larsson NG. PARKIN is not required to sustain OXPHOS function in adult mammalian tissues. NPJ Parkinsons Dis 2024; 10:93. [PMID: 38684669 PMCID: PMC11058849 DOI: 10.1038/s41531-024-00707-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Loss-of-function variants in the PRKN gene encoding the ubiquitin E3 ligase PARKIN cause autosomal recessive early-onset Parkinson's disease (PD). Extensive in vitro and in vivo studies have reported that PARKIN is involved in multiple pathways of mitochondrial quality control, including mitochondrial degradation and biogenesis. However, these findings are surrounded by substantial controversy due to conflicting experimental data. In addition, the existing PARKIN-deficient mouse models have failed to faithfully recapitulate PD phenotypes. Therefore, we have investigated the mitochondrial role of PARKIN during ageing and in response to stress by employing a series of conditional Parkin knockout mice. We report that PARKIN loss does not affect oxidative phosphorylation (OXPHOS) capacity and mitochondrial DNA (mtDNA) levels in the brain, heart, and skeletal muscle of aged mice. We also demonstrate that PARKIN deficiency does not exacerbate the brain defects and the pro-inflammatory phenotype observed in mice carrying high levels of mtDNA mutations. To rule out compensatory mechanisms activated during embryonic development of Parkin-deficient mice, we generated a mouse model where loss of PARKIN was induced in adult dopaminergic (DA) neurons. Surprisingly, also these mice did not show motor impairment or neurodegeneration, and no major transcriptional changes were found in isolated midbrain DA neurons. Finally, we report a patient with compound heterozygous PRKN pathogenic variants that lacks PARKIN and has developed PD. The PARKIN deficiency did not impair OXPHOS activities or induce mitochondrial pathology in skeletal muscle from the patient. Altogether, our results argue that PARKIN is dispensable for OXPHOS function in adult mammalian tissues.
Collapse
Affiliation(s)
- Roberta Filograna
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Jule Gerlach
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hae-Na Choi
- Institute for Biochemistry, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Giovanni Rigoni
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Michela Barbaro
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Oscarson
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Seungmin Lee
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Tiklova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Markus Ringnér
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Camilla Koolmeister
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Wibom
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Riggare
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Inger Nennesmo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wedell
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Elisa Motori
- Institute for Biochemistry, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Nils-Göran Larsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Transcriptome datasets of neural progenitors and neurons differentiated from induced pluripotent stem cells of healthy donors and Parkinson's disease patients with mutations in the PARK2 gene. Data Brief 2022; 41:107958. [PMID: 35242938 PMCID: PMC8867054 DOI: 10.1016/j.dib.2022.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
Parkinson's disease (PD) is a complex systemic disorder caused by neurodegenerative processes in the brain that are mainly characterized by progressive loss of dopaminergic neurons in the substantia nigra. About 10% of PD cases have been linked to specific gene mutations (Zafar and Yaddanapudi, 2022) including the PARK2 gene that encodes a RING domain-containing E3 ubiquitin ligase Parkin. PD-Parkin patients have a younger onset, longer disease duration, and more severe clinical symptoms in comparison to PD patients with unknown causative PD mutations (Zhou et al., 2020). Induced pluripotent stem cells (iPSCs) are considered to be a powerful tool for disease modeling. To evaluate how mutations in PARK2 contribute to PD development, iPSC lines were obtained from three healthy donors and three PD patients with different mutations in the PARK2 gene. iPSC lines were differentiated consequently into neural progenitors (NPs) and then into terminally differentiated neurons (DNs). The data presented in this article were generated on an NextSeq 500 System (Illumina) and include transcriptome profiles for NPs and DNs of healthy donors and PD patients with mutations in the PARK2 gene. Top10 up- and down-regulated differentially expressed genes in NPs and DNs of patients with PD compared to healthy donors were also presented. A comparative transcriptome analysis of neuronal derivatives of healthy donors and PD patients allows to examine the contributions of the PARK2 gene mutations to PD pathogenesis.
Collapse
|
3
|
Mor-Shaked H, Paz-Ebstein E, Basal A, Ben-Haim S, Grobe H, Heymann S, Israel Z, Namnah M, Nitzan A, Rosenbluh C, Saada A, Tzur T, Yanovsky-Dagan S, Zaidel-Bar R, Harel T, Arkadir D. Levodopa-responsive dystonia caused by biallelic PRKN exon inversion invisible to exome sequencing. Brain Commun 2021; 3:fcab197. [PMID: 34514401 PMCID: PMC8421701 DOI: 10.1093/braincomms/fcab197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/20/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022] Open
Abstract
Biallelic pathogenic variants in PRKN (PARK2), encoding the E3 ubiquitin ligase parkin, lead to early-onset Parkinson's disease. Structural variants, including duplications or deletions, are common in PRKN due to their location within the fragile site FRA6E. These variants are readily detectable by copy number variation analysis. We studied four siblings with levodopa-responsive dystonia by exome sequencing followed by genome sequencing. Affected individuals developed juvenile levodopa-responsive dystonia with subsequent appearance of parkinsonism and motor fluctuations that improved by subthalamic stimulation. Exome sequencing and copy number variation analysis were not diagnostic, yet revealed a shared homozygous block including PRKN. Genome sequencing revealed an inversion within PRKN, with intronic breakpoints flanking exon 5. Breakpoint junction analysis implicated non-homologous end joining and possibly replicative mechanisms as the repair pathways involved. Analysis of cDNA indicated skipping of exon 5 (84 bp) that was replaced by 93 bp of retained intronic sequence, preserving the reading frame yet altering a significant number of residues. Balanced copy number inversions in PRKN are associated with a severe phenotype. Such structural variants, undetected by exome analysis and by copy number variation analysis, should be considered in the relevant clinical setting. These findings raise the possibility that PRKN structural variants are more common than currently estimated.
Collapse
Affiliation(s)
- Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Emuna Paz-Ebstein
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Adily Basal
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Simona Ben-Haim
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Nuclear Medicine, Hadassah Medical Organization, Jerusalem 91120, Israel.,Institute of Nuclear Medicine, University College London and UCL Hospitals, NHS Trust, London NW1 2BU, UK
| | - Hanna Grobe
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Sami Heymann
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Neurosurgery, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Zvi Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Neurosurgery, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Montaser Namnah
- Department of Neurology, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Anat Nitzan
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Chaggai Rosenbluh
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Tomer Tzur
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Plastic Surgery, Hadassah Medical Organization, Jerusalem 91120, Israel
| | | | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - David Arkadir
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Neurology, Hadassah Medical Organization, Jerusalem 91120, Israel
| |
Collapse
|
4
|
Feng J. Modeling the pathophysiology of Parkinson's disease in patient-specific neurons. Exp Biol Med (Maywood) 2020; 246:298-304. [PMID: 32972199 DOI: 10.1177/1535370220961788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The 30 trillion cells that self-assemble into a human being originate from the pluripotent stem cells in the inner cell mass of a human blastocyst. The discovery of induced pluripotent stem cells (iPSCs) makes it possible to approximate various aspects of this natural developmental process artificially by generating materials that can be used in invasive mechanistic studies of virtually all human conditions. In Parkinson's disease, instructions computed by the basal ganglia to control voluntary motor functions break down, leading to widespread rhythmic bursting activities in the basal ganglia and beyond. It is thought that these oscillatory neuronal activities, which disrupt aperiodic neurotransmission in a normal brain, may reduce information content in the instructions for motor control. Using midbrain neuronal cultures differentiated from iPSCs of Parkinson's disease patients with parkin mutations, we find that parkin mutations cause oscillatory neuronal activities when dopamine D1-class receptors are activated. This system makes it possible to study the molecular basis of rhythmic bursting activities in Parkinson's disease. Further development of stem cell models of Parkinson's disease will enable better approximation of the situation in the brain of Parkinson's disease patients. In this review, I will discuss what has been found in the past about the pathophysiology of motor dysfunction in Parkinson's disease, especially oscillatory neuronal activities and how stem cell technologies may transform our abilities to understand the pathophysiology of Parkinson's disease.
Collapse
Affiliation(s)
- Jian Feng
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
5
|
Palumbo E, Russo A. Common fragile site instability in normal cells: Lessons and perspectives. Genes Chromosomes Cancer 2018; 58:260-269. [PMID: 30387295 DOI: 10.1002/gcc.22705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 12/26/2022] Open
Abstract
Mechanisms and events related to common fragile site (CFS) instability are well known in cancer cells. Here, we argue that normal cells remain an important experimental model to address questions related to CFS instability in the absence of alterations in cell cycle and DNA damage repair pathways, which are common features acquired in cancer. Furthermore, a major gap of knowledge concerns the stability of CFSs during gametogenesis. CFS instability in meiotic or postmeiotic stages of the germ cell line could generate chromosome deletions or large rearrangements. This in turn can lead to the functional loss of the several CFS-associated genes with tumor suppressor function. Our hypothesis is that such mutations can potentially result in genetic predisposition to develop cancer. Indirect evidence for CFS instability in human germ cells has been provided by genomic investigations in family pedigrees associated with genetic disease. The issue of CFS instability in the germ cell line should represent one of the future efforts, and may take advantage of the existence of sequence and functional conservation of CFSs between rodents and humans.
Collapse
Affiliation(s)
- Elisa Palumbo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Antonella Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Morais S, Bastos-Ferreira R, Sequeiros J, Alonso I. Genomic mechanisms underlying PARK2 large deletions identified in a cohort of patients with PD. NEUROLOGY-GENETICS 2016; 2:e73. [PMID: 27182553 PMCID: PMC4856358 DOI: 10.1212/nxg.0000000000000073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/09/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To identify the genomic mechanisms that result in PARK2 large gene deletions. METHODS We conducted mutation screening using PCR amplification of PARK2-coding regions and exon-intron boundaries, followed by sequencing to evaluate a large series of 244 unrelated Portuguese patients with symptoms of Parkinson disease. For the detection of large gene rearrangements, we performed multiplex ligation-dependent probe amplification, followed by long-range PCR and sequencing to map deletion breakpoints. RESULTS We identified biallelic pathogenic parkin mutations in 40 of the 244 patients. There were 18 different mutations, some of them novel. This study included mapping of 17 deletion breakpoints showing that nonhomologous end joining is the most common mechanism responsible for these gene rearrangements. None of these deletion breakpoints were previously described, and only one was present in 2 unrelated families, indicating that most of the deletions result from independent events. CONCLUSIONS The c.155delA mutation is highly prevalent in the Portuguese population (62.5% of the cases). Large deletions were present in 42.5% of the patients. We present the largest study on the molecular mechanisms that mediate PARK2 deletions in a homogeneous population.
Collapse
Affiliation(s)
- Sara Morais
- UnIGENe (S.M., J.S., I.A.), Institute for Molecular and Cell Biology; i3S (S.M., R.B.-F., J.S., I.A.), Instituto de Investigação e Inovação em Saúde; CGPP (R.B.-F., J.S., I.A.), Institute for Molecular and Cell Biology; and Instituto de Ciências Biomédicas Abel Salazar (J.S., I.A.), University of Porto, Portugal
| | - Rita Bastos-Ferreira
- UnIGENe (S.M., J.S., I.A.), Institute for Molecular and Cell Biology; i3S (S.M., R.B.-F., J.S., I.A.), Instituto de Investigação e Inovação em Saúde; CGPP (R.B.-F., J.S., I.A.), Institute for Molecular and Cell Biology; and Instituto de Ciências Biomédicas Abel Salazar (J.S., I.A.), University of Porto, Portugal
| | - Jorge Sequeiros
- UnIGENe (S.M., J.S., I.A.), Institute for Molecular and Cell Biology; i3S (S.M., R.B.-F., J.S., I.A.), Instituto de Investigação e Inovação em Saúde; CGPP (R.B.-F., J.S., I.A.), Institute for Molecular and Cell Biology; and Instituto de Ciências Biomédicas Abel Salazar (J.S., I.A.), University of Porto, Portugal
| | - Isabel Alonso
- UnIGENe (S.M., J.S., I.A.), Institute for Molecular and Cell Biology; i3S (S.M., R.B.-F., J.S., I.A.), Instituto de Investigação e Inovação em Saúde; CGPP (R.B.-F., J.S., I.A.), Institute for Molecular and Cell Biology; and Instituto de Ciências Biomédicas Abel Salazar (J.S., I.A.), University of Porto, Portugal
| |
Collapse
|
7
|
Kim SY, Seong MW, Jeon BS, Kim SY, Ko HS, Kim JY, Park SS. Phase analysis identifies compound heterozygous deletions of the PARK2 gene in patients with early-onset Parkinson disease. Clin Genet 2011; 82:77-82. [DOI: 10.1111/j.1399-0004.2011.01693.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Analysis on the susceptibility genes in two chinese pedigrees with familial Parkinson's disease. Neurol Res Int 2010; 2010:674740. [PMID: 21188226 PMCID: PMC3003980 DOI: 10.1155/2010/674740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/29/2010] [Accepted: 07/01/2010] [Indexed: 12/03/2022] Open
Abstract
Objective. To screen the susceptibility genes in Chinese pedigrees with early-onset familial Parkinson's disease (FPD). Methods. Fifty-one genomic DNA samples extracted from two Chinese pedigrees with FPD, the alpha-synuclein genes (SNCA), the leucine-rich repeat kinase 2(LRRK2), PINK1(PTEN-induced putative kinase 1), PARK7(Protein DJ1), PARK2(Parkinson juvenile disease protein 2), the glucocerebrosidase (GBA), and ATP(Ezrin-binding protein PACE-1), were sequenced by the use of polymerase chain reaction (PCR) technique. The gene dose of SNCA was checked. Results. There were only two missense mutations observed, respectively, at exon 5 of LRRK2 and exon 10 of PARK2, and both were enrolled in SNPs. Conclusion. No meaningful mutations could be detected, and other susceptibility genes should be detected in FDP patients in China.
Collapse
|
9
|
Bradley WEC, Di Paola D, Rampakakis E, Zannis-Hadjopoulos M. More is less: inactivation and deletion events and the search for tumor suppressor genes. J Cell Biochem 2010; 110:281-7. [PMID: 20336691 DOI: 10.1002/jcb.22565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Tumor suppressor genes are frequently inactivated in cancer by large-scale deletion events or epigenetic silencing, and experimental demonstration of such inactivation has historically been considered as support for assigning tumor suppressive function to a given gene. However, the discovery of a number of chromosomal domains wherein large deletions naturally occur at frequencies up to 100 times the average for the genome as a whole leads us to reevaluate the significance of sporadic deletions found within genes associated with these hotspots. Similarly, our recent demonstration that epigenetic chromatin silencing frequently spreads in cancer cells from gene-poor into gene-rich regions with apparent indifference to the gene content of the affected domain raises questions about the pertinence of inactivation as a criterion for ascribing tumor suppressor function to a given gene. We suggest that a number of putative suppressor genes for which inactivation and/or deletion events have been documented may simply be victims of collateral damage when these events occur, and the implication that these genes are being selected against during cancer progression should in some cases be reassessed.
Collapse
Affiliation(s)
- W Edward C Bradley
- Centre de Recherche du CHUM, Research, JA deSeve Bldg., Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
10
|
Mitsui J, Takahashi Y, Goto J, Tomiyama H, Ishikawa S, Yoshino H, Minami N, Smith DI, Lesage S, Aburatani H, Nishino I, Brice A, Hattori N, Tsuji S. Mechanisms of genomic instabilities underlying two common fragile-site-associated loci, PARK2 and DMD, in germ cell and cancer cell lines. Am J Hum Genet 2010; 87:75-89. [PMID: 20598272 DOI: 10.1016/j.ajhg.2010.06.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/05/2010] [Accepted: 06/13/2010] [Indexed: 11/17/2022] Open
Abstract
Common fragile sites (CFSs) are specific chromosome regions that exhibit an increased frequency of breaks when cells are exposed to a DNA-replication inhibitor such as aphidicolin. PARK2 and DMD, the causative genes for autosomal-recessive juvenile Parkinsonism and Duchenne and Becker muscular dystrophy, respectively, are two very large genes that are located within aphidicolin-induced CFSs. Gross rearrangements within these two genes are frequently observed as the causative mutations for these diseases, and similar alterations within the large fragile sites that surround these genes are frequently observed in cancer cells. To elucidate the molecular mechanisms underlying this fragility, we performed a custom-designed high-density comparative genomic hybridization analysis to determine the junction sequences of approximately 500 breakpoints in germ cell lines and cancer cell lines involving PARK2 or DMD. The sequence signatures where these breakpoints occur share some similar features both in germ cell lines and in cancer cell lines. Detailed analyses of these structures revealed that microhomologies are predominantly involved in rearrangement processes. Furthermore, breakpoint-clustering regions coincide with the latest-replicating region and with large nuclear-lamina-associated domains and are flanked by the highest-flexibility peaks and R/G band boundaries, suggesting that factors affecting replication timing collectively contribute to the vulnerability for rearrangement in both germ cell and somatic cell lines.
Collapse
Affiliation(s)
- Jun Mitsui
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bradley WEC, Raelson JV, Dubois DY, Godin E, Fournier H, Privé C, Allard R, Pinchuk V, Lapalme M, Paulussen RJA, Belouchi A. Hotspots of large rare deletions in the human genome. PLoS One 2010; 5:e9401. [PMID: 20195527 PMCID: PMC2828468 DOI: 10.1371/journal.pone.0009401] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/04/2010] [Indexed: 01/17/2023] Open
Abstract
Background We have examined the genomic distribution of large rare autosomal deletions in a sample of 440 parent-parent-child trios from the Quebec founder population (QFP) which was recruited for a study of Attention Deficit Hyperactivity Disorder. Methodology/Principal Findings DNA isolated from blood was genotyped on Illumina Hap300 arrays. PennCNV combined with visual evaluation of images generated by the Beadstudio program was used to determine deletion boundary definition of sufficient precision to discern independent events, with near-perfect concordance between parent and child in about 98% of the 399 events detected in the offspring; the remaining 7 deletions were considered de novo. We defined several genomic regions of very high deletion frequency (‘hotspots’), usually of 0.4–0.6 Mb in length where independent rare deletions were found at frequencies of up to 100 fold higher than the average for the genome as a whole. Five of the 7 de novo deletions were in these hotspots. The same hotspots were also observed in three other studies on members of the QFP, those with schizophrenia, with endometriosis and those from a longevity cohort. Conclusions/Significance Nine of the 13 hotspots carry one gene (7 of which are very long), while the rest contain no known genes. All nine genes have been implicated in disease. The patterns of exon deletions support the proposed roles for some of these genes in human disease, such as NRXN1 and PARKIN, and suggest limited roles or no role at all, for others, including MACROD2 and CTNNA3. Our results also offer an alternative interpretation for the observations of deletions in tumors which have been proposed as reflecting tumor-suppressive activity of genes in these hotspots.
Collapse
Affiliation(s)
- W Edward C Bradley
- Department of Medicine, Université de Montréal, Montréal, Quebec, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Asai H, Hirano M, Kiriyama T, Ikeda M, Ueno S. Naturally- and experimentally-designed restorations of the Parkin gene deficit in autosomal recessive juvenile parkinsonism. Biochem Biophys Res Commun 2009; 391:800-5. [PMID: 19945426 DOI: 10.1016/j.bbrc.2009.11.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 11/24/2009] [Indexed: 11/25/2022]
Abstract
Intranuclear events due to mutations in the Parkin gene remain elusive in autosomal recessive juvenile parkinsonism (ARJP). We identified a mutant PARKIN protein in fibroblast cultures from a pair of siblings with ARJP who were homozygous for the exon 4-deleted Parkin gene. Disease was mild in one patient and debilitating in the other. The detected mutant, encoded by a transcript lacking exon 3 as well as exon 4, is an in-frame deletion that removes 121 aa, resulting in a 344-aa protein (PaDel3,4). Cell culture and transfection studies revealed negative correlations between expression levels of PaDel3,4 and those of cell cycle proteins, including cyclin E, CDK2, ppRb, and E2F-1, and demonstrated that GFP-PaDel3,4 entered nucleus and ubiquitinated cyclin E as a part of SCF(hSel-10) ligase complex in the patient cells. In addition, nuclear localization signal-tagged PaDel3,4 expressed in the transfected patient cells most effectively ubiquitinated cyclin E and reduced DNA damage, protecting cells from oxidative stress. Antisense-oligonucleotide treatment promoted skipping of exon 3 and thus generated PaDel3,4, increasing cell survival. Collectively, we propose that naturally- and experimentally-induced exon skipping at least partly restores the mutant Parkin gene deficit, providing a molecular basis for the development of therapeutic exon skipping.
Collapse
Affiliation(s)
- Hirohide Asai
- Department of Neurology, Faculty of Medicine, Nara Medical University School of Medicine, Japan
| | | | | | | | | |
Collapse
|