1
|
Savulescu AF, Brackin R, Bouilhol E, Dartigues B, Warrell JH, Pimentel MR, Beaume N, Fortunato IC, Dallongeville S, Boulle M, Soueidan H, Agou F, Schmoranzer J, Olivo-Marin JC, Franco CA, Gomes ER, Nikolski M, Mhlanga MM. Interrogating RNA and protein spatial subcellular distribution in smFISH data with DypFISH. CELL REPORTS METHODS 2021; 1:100068. [PMID: 35474672 PMCID: PMC9017151 DOI: 10.1016/j.crmeth.2021.100068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/15/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Advances in single-cell RNA sequencing have allowed for the identification of cellular subtypes on the basis of quantification of the number of transcripts in each cell. However, cells might also differ in the spatial distribution of molecules, including RNAs. Here, we present DypFISH, an approach to quantitatively investigate the subcellular localization of RNA and protein. We introduce a range of analytical techniques to interrogate single-molecule RNA fluorescence in situ hybridization (smFISH) data in combination with protein immunolabeling. DypFISH is suited to study patterns of clustering of molecules, the association of mRNA-protein subcellular localization with microtubule organizing center orientation, and interdependence of mRNA-protein spatial distributions. We showcase how our analytical tools can achieve biological insights by utilizing cell micropatterning to constrain cellular architecture, which leads to reduction in subcellular mRNA distribution variation, allowing for the characterization of their localization patterns. Furthermore, we show that our method can be applied to physiological systems such as skeletal muscle fibers.
Collapse
Affiliation(s)
- Anca F. Savulescu
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7295 Cape Town, South Africa
| | - Robyn Brackin
- Advanced Medical Bioimaging, Charité – Universitätsmedizin, 10-117 Berlin, Germany
| | - Emmanuel Bouilhol
- Université de Bordeaux, Bordeaux Bioinformatics Center, 33000 Bordeaux, France
- Université de Bordeaux, CNRS, IBGC, UMR 5095, 33077 Bordeaux, France
| | - Benjamin Dartigues
- Université de Bordeaux, Bordeaux Bioinformatics Center, 33000 Bordeaux, France
| | - Jonathan H. Warrell
- Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Mafalda R. Pimentel
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Nicolas Beaume
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7295 Cape Town, South Africa
| | - Isabela C. Fortunato
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | | | - Mikaël Boulle
- Chemogenomic and Biological Screening Core Facility, C2RT, Department of Structural Biology and Chemistry, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Hayssam Soueidan
- Université de Bordeaux, Bordeaux Bioinformatics Center, 33000 Bordeaux, France
| | - Fabrice Agou
- Chemogenomic and Biological Screening Core Facility, C2RT, Department of Structural Biology and Chemistry, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
- Department of Structural Biology and Chemistry, URA 2185, Pasteur Institute, Paris, France
| | - Jan Schmoranzer
- Advanced Medical Bioimaging, Charité – Universitätsmedizin, 10-117 Berlin, Germany
| | | | - Claudio A. Franco
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Edgar R. Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Macha Nikolski
- Université de Bordeaux, Bordeaux Bioinformatics Center, 33000 Bordeaux, France
- Université de Bordeaux, CNRS, IBGC, UMR 5095, 33077 Bordeaux, France
| | - Musa M. Mhlanga
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, FNWI, Radboud University, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
2
|
Pinheiro H, Pimentel MR, Sequeira C, Oliveira LM, Pezzarossa A, Roman W, Gomes ER. mRNA distribution in skeletal muscle is associated with mRNA size. J Cell Sci 2021; 134:jcs256388. [PMID: 34297126 PMCID: PMC7611476 DOI: 10.1242/jcs.256388] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscle myofibers are large and elongated cells with multiple and evenly distributed nuclei. Nuclear distribution suggests that each nucleus influences a specific compartment within the myofiber and implies a functional role for nuclear positioning. Compartmentalization of specific mRNAs and proteins has been reported at the neuromuscular and myotendinous junctions, but mRNA distribution in non-specialized regions of the myofibers remains largely unexplored. We report that the bulk of mRNAs are enriched around the nucleus of origin and that this perinuclear accumulation depends on recently transcribed mRNAs. Surprisingly, mRNAs encoding large proteins - giant mRNAs - are spread throughout the cell and do not exhibit perinuclear accumulation. Furthermore, by expressing exogenous transcripts with different sizes we found that size contributes to mRNA spreading independently of mRNA sequence. Both these mRNA distribution patterns depend on microtubules and are independent of nuclear dispersion, mRNA expression level and stability, and the characteristics of the encoded protein. Thus, we propose that mRNA distribution in non-specialized regions of skeletal muscle is size selective to ensure cellular compartmentalization and simultaneous long-range distribution of giant mRNAs.
Collapse
Affiliation(s)
- Helena Pinheiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Mafalda Ramos Pimentel
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Catarina Sequeira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Luís Manuel Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Anna Pezzarossa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - William Roman
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Edgar R. Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
3
|
Sending messages in moving cells: mRNA localization and the regulation of cell migration. Essays Biochem 2020; 63:595-606. [PMID: 31324705 DOI: 10.1042/ebc20190009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
Cell migration is a fundamental biological process involved in tissue formation and homeostasis. The correct polarization of motile cells is critical to ensure directed movement, and is orchestrated by many intrinsic and extrinsic factors. Of these, the subcellular distribution of mRNAs and the consequent spatial control of translation are key modulators of cell polarity. mRNA transport is dependent on cis-regulatory elements within transcripts, which are recognized by trans-acting proteins that ensure the efficient delivery of certain messages to the leading edge of migrating cells. At their destination, translation of localized mRNAs then participates in regional cellular responses underlying cell motility. In this review, we summarize the key findings that established mRNA targetting as a critical driver of cell migration and how the characterization of polarized mRNAs in motile cells has been expanded from just a few species to hundreds of transcripts. We also describe the molecular control of mRNA trafficking, subsequent mechanisms of local protein synthesis and how these ultimately regulate cell polarity during migration.
Collapse
|
4
|
Kim SH, Vieira M, Shim JY, Choi H, Park HY. Recent progress in single-molecule studies of mRNA localization in vivo. RNA Biol 2019; 16:1108-1118. [PMID: 30336727 PMCID: PMC6693552 DOI: 10.1080/15476286.2018.1536592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/28/2018] [Accepted: 10/08/2018] [Indexed: 12/26/2022] Open
Abstract
From biogenesis to degradation, mRNA goes through diverse types of regulation and interaction with other biomolecules. Uneven distribution of mRNA transcripts and the diverse isoforms and modifications of mRNA make us wonder how cells manage the complexity and keep the functional integrity for the normal development of cells and organisms. Single-molecule microscopy tools have expanded the scope of RNA research with unprecedented spatiotemporal resolution. In this review, we highlight the recent progress in the methods for labeling mRNA targets and analyzing the quantitative information from fluorescence images of single mRNA molecules. In particular, the MS2 system and its various applications are the main focus of this article. We also review how recent studies have addressed biological questions related to the significance of mRNA localization in vivo. Efforts to visualize the dynamics of single mRNA molecules in live cells will push forward our knowledge on the nature of heterogeneity in RNA sequence, structure, and distribution as well as their molecular function and coordinated interaction with RNA binding proteins.
Collapse
Affiliation(s)
- Songhee H. Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Melissa Vieira
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Korea
| | - Jae Youn Shim
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
| | - Hongyoung Choi
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Korea
- Institute of Applied Physics, Seoul National University, Seoul, Korea
| |
Collapse
|
5
|
Bioinformatics Approaches to Gain Insights into cis-Regulatory Motifs Involved in mRNA Localization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:165-194. [PMID: 31811635 DOI: 10.1007/978-3-030-31434-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Messenger RNA (mRNA) is a fundamental intermediate in the expression of proteins. As an integral part of this important process, protein production can be localized by the targeting of mRNA to a specific subcellular compartment. The subcellular destination of mRNA is suggested to be governed by a region of its primary sequence or secondary structure, which consequently dictates the recruitment of trans-acting factors, such as RNA-binding proteins or regulatory RNAs, to form a messenger ribonucleoprotein particle. This molecular ensemble is requisite for precise and spatiotemporal control of gene expression. In the context of RNA localization, the description of the binding preferences of an RNA-binding protein defines a motif, and one, or more, instance of a given motif is defined as a localization element (zip code). In this chapter, we first discuss the cis-regulatory motifs previously identified as mRNA localization elements. We then describe motif representation in terms of entropy and information content and offer an overview of motif databases and search algorithms. Finally, we provide an outline of the motif topology of asymmetrically localized mRNA molecules.
Collapse
|
6
|
Katz ZB, English BP, Lionnet T, Yoon YJ, Monnier N, Ovryn B, Bathe M, Singer RH. Mapping translation 'hot-spots' in live cells by tracking single molecules of mRNA and ribosomes. eLife 2016; 5. [PMID: 26760529 PMCID: PMC4764586 DOI: 10.7554/elife.10415] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/29/2015] [Indexed: 11/13/2022] Open
Abstract
Messenger RNA localization is important for cell motility by local protein translation. However, while single mRNAs can be imaged and their movements tracked in single cells, it has not yet been possible to determine whether these mRNAs are actively translating. Therefore, we imaged single β-actin mRNAs tagged with MS2 stem loops colocalizing with labeled ribosomes to determine when polysomes formed. A dataset of tracking information consisting of thousands of trajectories per cell demonstrated that mRNAs co-moving with ribosomes have significantly different diffusion properties from non-translating mRNAs that were exposed to translation inhibitors. These data indicate that ribosome load changes mRNA movement and therefore highly translating mRNAs move slower. Importantly, β-actin mRNA near focal adhesions exhibited sub-diffusive corralled movement characteristic of increased translation. This method can identify where ribosomes become engaged for local protein production and how spatial regulation of mRNA-protein interactions mediates cell directionality.
Collapse
Affiliation(s)
- Zachary B Katz
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States.,Salk Institute for Biological Studies, La Jolla, United States
| | - Brian P English
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Timothée Lionnet
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Young J Yoon
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States
| | - Nilah Monnier
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Ben Ovryn
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
7
|
Urbanek MO, Galka-Marciniak P, Olejniczak M, Krzyzosiak WJ. RNA imaging in living cells - methods and applications. RNA Biol 2015; 11:1083-95. [PMID: 25483044 PMCID: PMC4615301 DOI: 10.4161/rna.35506] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Numerous types of transcripts perform multiple functions in cells, and these functions are mainly facilitated by the interactions of the RNA with various proteins and other RNAs. Insight into the dynamics of RNA biosynthesis, processing and cellular activities is highly desirable because this knowledge will deepen our understanding of cell physiology and help explain the mechanisms of RNA-mediated pathologies. In this review, we discuss the live RNA imaging systems that have been developed to date. We highlight information on the design of these systems, briefly discuss their advantages and limitations and provide examples of their numerous applications in various organisms and cell types. We present a detailed examination of one application of RNA imaging systems: this application aims to explain the role of mutant transcripts in human disease pathogenesis caused by triplet repeat expansions. Thus, this review introduces live RNA imaging systems and provides a glimpse into their various applications.
Collapse
Affiliation(s)
- Martyna O Urbanek
- a Department of Molecular Biomedicine; Institute of Bioorganic Chemistry; Polish Academy of Sciences ; Poznan , Poland
| | | | | | | |
Collapse
|
8
|
Liao G, Mingle L, Van De Water L, Liu G. Control of cell migration through mRNA localization and local translation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:1-15. [PMID: 25264217 DOI: 10.1002/wrna.1265] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/13/2014] [Accepted: 07/31/2014] [Indexed: 02/06/2023]
Abstract
Cell migration plays an important role in many normal and pathological functions such as development, wound healing, immune defense, and tumor metastasis. Polarized migrating cells exhibit asymmetric distribution of many cytoskeletal proteins, which is believed to be critical for establishing and maintaining cell polarity and directional cell migration. To target these proteins to the site of function, cells use a variety of mechanisms such as protein transport and messenger RNA (mRNA) localization-mediated local protein synthesis. In contrast to the former which is intensively investigated and relatively well understood, the latter has been understudied and relatively poorly understood. However, recent advances in the study of mRNA localization and local translation have demonstrated that mRNA localization and local translation are specific and effective ways for protein localization and are crucial for embryo development, neuronal function, and many other cellular processes. There are excellent reviews on mRNA localization, transport, and translation during development and other cellular processes. This review will focus on mRNA localization-mediated local protein biogenesis and its impact on somatic cell migration.
Collapse
Affiliation(s)
- Guoning Liao
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | | | | | | |
Collapse
|
9
|
The functions and regulatory principles of mRNA intracellular trafficking. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:57-96. [PMID: 25201103 DOI: 10.1007/978-1-4939-1221-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The subcellular localization of RNA molecules is a key step in the control of gene expression that impacts a broad array of biological processes in different organisms and cell types. Like other aspects of posttranscriptional gene regulation discussed in this collection of reviews, the intracellular trafficking of mRNAs is modulated by a complex regulatory code implicating specific cis-regulatory elements, RNA-binding proteins, and cofactors that function combinatorially to dictate precise localization mechanisms. In this review, we first discuss the functional benefits of transcript localization, the regulatory principles involved, and specific molecular mechanisms that have been described for a few well-characterized mRNAs. We also overview some of the emerging genomic and imaging technologies that have provided significant insights into this layer of gene regulation. Finally, we highlight examples of human diseases where defective transcript localization has been documented.
Collapse
|
10
|
Eliscovich C, Buxbaum AR, Katz ZB, Singer RH. mRNA on the move: the road to its biological destiny. J Biol Chem 2013; 288:20361-8. [PMID: 23720759 DOI: 10.1074/jbc.r113.452094] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells have evolved to regulate the asymmetric distribution of specific mRNA targets to institute spatial and temporal control over gene expression. Over the last few decades, evidence has mounted as to the importance of localization elements in the mRNA sequence and their respective RNA-binding proteins. Live imaging methodologies have shown mechanistic details of this phenomenon. In this minireview, we focus on the advanced biochemical and cell imaging techniques used to tweeze out the finer aspects of mechanisms of mRNA movement.
Collapse
Affiliation(s)
- Carolina Eliscovich
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
11
|
Park HY, Trcek T, Wells AL, Chao JA, Singer RH. An unbiased analysis method to quantify mRNA localization reveals its correlation with cell motility. Cell Rep 2012; 1:179-84. [PMID: 22832165 PMCID: PMC4079260 DOI: 10.1016/j.celrep.2011.12.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/22/2011] [Accepted: 12/23/2011] [Indexed: 12/03/2022] Open
Abstract
Localization of mRNA is a critical mechanism used by a large fraction of transcripts to restrict its translation to specific cellular regions. Although current high- resolution imaging techniques provide ample information, the analysis methods for localization have either been qualitative or employed quantification in non-randomly selected regions of interest. Here, we describe an analytical method for objective quantification of mRNA localization using a combination of two characteristics of its molecular distribution, polarization and dispersion. The validity of the method is demonstrated using single-molecule FISH images of budding yeast and fibroblasts. Live-cell analysis of endogenous β-actin mRNA in mouse fibroblasts reveals that mRNA polarization has a half- life of ~16 min and is cross-correlated with directed cell migration. This novel approach provides insights into the dynamic regulation of mRNA localization and its physiological roles.
Collapse
Affiliation(s)
- Hye Yoon Park
- Department of Anatomy and Structural Biology
- Gruss Lipper Biophotonics Center Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | - Robert H. Singer
- Department of Anatomy and Structural Biology
- Gruss Lipper Biophotonics Center Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence:
| |
Collapse
|
12
|
Lifland AW, Zurla C, Yu J, Santangelo PJ. Dynamics of native β-actin mRNA transport in the cytoplasm. Traffic 2011; 12:1000-11. [PMID: 21518164 DOI: 10.1111/j.1600-0854.2011.01209.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transport of messenger RNAs (mRNAs) in the cytoplasm is essential for localization to translation sites and for post-transcriptional regulation. Utilizing single-RNA sensitive probes and real-time fluorescence microscopy, we accurately quantified the dynamics of native, non-engineered, β-actin mRNAs within the cytoplasm of epithelial cells and fibroblasts for the first time. Using single-particle tracking and temporal analysis, we determined that native β-actin mRNAs, under physiologic conditions, exhibit bursts of intermittent, processive motion on microtubules, interspersed between time periods of diffusive motion, characterized by non-thermal enhanced diffusivity. When transport processes were perturbed via ATP depletion, temperature reduction, dynamitin overexpression and chemical inhibitors, processive motion was diminished or eliminated and diffusivity was reduced. These data support a model whereby processive, motor-driven motion is responsible for long-distance mRNA transport.
Collapse
Affiliation(s)
- Aaron W Lifland
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
13
|
Zurla C, Lifland AW, Santangelo PJ. Characterizing mRNA interactions with RNA granules during translation initiation inhibition. PLoS One 2011; 6:e19727. [PMID: 21573130 PMCID: PMC3088712 DOI: 10.1371/journal.pone.0019727] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 04/07/2011] [Indexed: 01/27/2023] Open
Abstract
When cells experience environmental stresses, global translational arrest is
often accompanied by the formation of stress granules (SG) and an increase in
the number of p-bodies (PBs), which are thought to play a crucial role in the
regulation of eukaryotic gene expression through the control of mRNA translation
and degradation. SGs and PBs have been extensively studied from the perspective
of their protein content and dynamics but, to date, there have not been
systematic studies on how they interact with native mRNA granules. Here, we
demonstrate the use of live-cell hybridization assays with multiply-labeled
tetravalent RNA imaging probes (MTRIPs) combined with immunofluorescence, as a
tool to characterize the polyA+ and β-actin mRNA distributions within
the cytoplasm of epithelial cell lines, and the changes in their colocalization
with native RNA granules including SGs, PBs and the RNA exosome during the
inhibition of translational initiation. Translation initiation inhibition was
achieved via the induction of oxidative stress using sodium arsenite, as well as
through the use of Pateamine A, puromycin and cycloheximide. This methodology
represents a valuable tool for future studies of mRNA trafficking and regulation
within living cells.
Collapse
Affiliation(s)
- Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, Georgia, United States of
America
| | - Aaron W. Lifland
- Wallace H. Coulter Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, Georgia, United States of
America
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, Georgia, United States of
America
- * E-mail:
| |
Collapse
|