1
|
Landucci E, Mango D, Carloni S, Mazzantini C, Pellegrini-Giampietro DE, Saidi A, Balduini W, Schiavi E, Tigli L, Pioselli B, Imbimbo BP, Facchinetti F. Beneficial effects of CHF6467, a modified human nerve growth factor, in experimental neonatal hypoxic-ischaemic encephalopathy. Br J Pharmacol 2025; 182:510-529. [PMID: 39379341 DOI: 10.1111/bph.17353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Therapeutic hypothermia (TH) has become the standard care to reduce morbidity and mortality in neonates affected by moderate-to-severe hypoxic-ischaemic encephalopathy (HIE). Despite the use of TH for HIE, the incidence of mortality and disabilities remains high. EXPERIMENTAL APPROACH Nerve growth factor (NGF) is a potent neurotrophin, but clinical use is limited by its pain eliciting effects. CHF6467 is a recombinant modified form of human NGF devoid of algogenic activity (painless NGF). KEY RESULTS In rodent hippocampal slices exposed to oxygen and glucose deprivation, CHF6467 protected neurons from death and reverted neurotransmission impairment when combined with hypothermia. In a model of rat neonatal HIE, intranasal CHF6467 (20 μg kg-1) significantly reduced brain infarct volume versus vehicle when delivered 10 min or 3 h after the insult. CHF6467 (20 and 40 μg kg-1, i.n.), significantly decreased brain infarct volume to a similar extent to TH and when combined, showed a synergistic neuroprotective effect. CHF6467 (20 μg kg-1, i.n.) per se and in combination with hypothermia reversed locomotor coordination impairment (Rotarod test) and memory deficits (Y-maze and novel object recognition test) in the neonatal HIE rat model. Intranasal administration of CHF6467 resulted in meaningful concentrations in the brain, blunted HIE-induced mRNA elevation of brain neuroinflammatory markers and, when combined to TH, significantly counteracted the increase in plasma levels of neurofilament light chain, a peripheral marker of neuroaxonal damage. CONCLUSION AND IMPLICATIONS CHF6467 administered intranasally is a promising therapy, in combination with TH, for the treatment of HIE.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Dalila Mango
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | | | - Amira Saidi
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Elisa Schiavi
- Corporate Preclinical R&D, Chiesi Farmaceutici, Parma, Italy
| | - Laura Tigli
- Corporate Preclinical R&D, Chiesi Farmaceutici, Parma, Italy
| | | | - Bruno P Imbimbo
- Corporate Preclinical R&D, Chiesi Farmaceutici, Parma, Italy
| | | |
Collapse
|
2
|
Latini L, De Araujo DSM, Amato R, Canovai A, Buccarello L, De Logu F, Novelli E, Vlasiuk A, Malerba F, Arisi I, Florio R, Asari H, Capsoni S, Strettoi E, Villetti G, Imbimbo BP, Dal Monte M, Nassini R, Geppetti P, Marinelli S, Cattaneo A. A p75 neurotrophin receptor-sparing nerve growth factor protects retinal ganglion cells from neurodegeneration by targeting microglia. Br J Pharmacol 2024; 181:4890-4919. [PMID: 39252503 DOI: 10.1111/bph.17316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Retinal ganglion cells (RGCs) are the output stage of retinal information processing, via their axons forming the optic nerve (ON). ON damage leads to axonal degeneration and death of RGCs, and results in vision impairment. Nerve growth factor (NGF) signalling is crucial for RGC operations and visual functions. Here, we investigate a new neuroprotective mechanism of a novel therapeutic candidate, a p75-less, TrkA-biased NGF agonist (hNGFp) in rat RGC degeneration, in comparison with wild type human NGF (hNGFwt). EXPERIMENTAL APPROACH Both neonate and adult rats, whether subjected or not to ON lesion, were treated with intravitreal injections or eye drops containing either hNGFp or hNGFwt. Different doses of the drugs were administered at days 1, 4 or 7 after injury for a maximum of 10 days, when immunofluorescence, electrophysiology, cellular morphology, cytokine array and behaviour studies were carried out. Pharmacokinetic evaluation was performed on rabbits treated with hNGFp ocular drops. RESULTS hNGFp exerted a potent RGC neuroprotection by acting on microglia cells, and outperformed hNGFwt in rescuing RGC degeneration and reducing inflammatory molecules. Delayed use of hNGFp after ON lesion resulted in better outcomes compared with treatment with hNGFwt. Moreover, hNGFp-based ocular drops were less algogenic than hNGFwt. Pharmacokinetic measurements revealed that biologically relevant quantities of hNGFp were found in the rabbit retina. CONCLUSIONS AND IMPLICATIONS Our data point to microglia as a new cell target through which NGF-induced TrkA signalling exerts neuroprotection of the RGC, emphasizing hNGFp as a powerful treatment to tackle retinal degeneration.
Collapse
Affiliation(s)
- Laura Latini
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
| | | | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Lucia Buccarello
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Elena Novelli
- Institute of Neuroscience, Italian National Research Council-CNR, Pisa, Italy
| | - Anastasiia Vlasiuk
- Faculty of Biosciences, Collaboration for Joint PhD Degree Between EMBL and Heidelberg University, Heidelberg, Germany
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Rome, Italy
| | - Francesca Malerba
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Ivan Arisi
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Rita Florio
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Hiroki Asari
- Faculty of Biosciences, Collaboration for Joint PhD Degree Between EMBL and Heidelberg University, Heidelberg, Germany
| | - Simona Capsoni
- BIO@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
- Section of Human Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Enrica Strettoi
- Institute of Neuroscience, Italian National Research Council-CNR, Pisa, Italy
| | - Gino Villetti
- Department of Research & Development, Chiesi Farmaceutici, Parma, Italy
| | | | | | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Silvia Marinelli
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Antonino Cattaneo
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
- BIO@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
3
|
Napoli D, Orsini N, Salamone G, Calvello MA, Capsoni S, Cattaneo A, Strettoi E. Human NGF "Painless" Ocular Delivery for Retinitis Pigmentosa: An In Vivo Study. eNeuro 2024; 11:ENEURO.0096-24.2024. [PMID: 39293937 PMCID: PMC11412101 DOI: 10.1523/eneuro.0096-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 09/20/2024] Open
Abstract
Retinitis pigmentosa (RP) is a family of genetically heterogeneous diseases still without a cure. Despite the causative genetic mutation typically not expressed in cone photoreceptors, these cells inevitably degenerate following the primary death of rods, causing blindness. The reasons for the "bystander" degeneration of cones are presently unknown but decrement of survival factors, oxidative stress, and inflammation all play a role. Targeting these generalized biological processes represents a strategy to develop mutation-agnostic therapies for saving vision in large populations of RP individuals. A classical method to support neuronal survival is by employing neurotrophic factors, such as NGF. This study uses painless human NGF (hNGFp), a TrkA receptor-biased variant of the native molecule with lower affinity for nociceptors and limited activity as a pain inducer; the molecule has identical neurotrophic power of the native form but a reduced affinity for the p75NTR receptors, known to trigger apoptosis. hNGFp has a recognized activity on brain microglial cells, which are induced to a phenotype switch from a highly activated to a more homeostatic configuration. hNGFp was administered to RP-like mice in vivo with the aim of decreasing retinal inflammation and also providing retinal neuroprotection. However, the ability of this treatment to counteract the bystander degeneration of cones remained limited.
Collapse
Affiliation(s)
- Debora Napoli
- CNR Neuroscience Institute, Pisa 56124, Italy
- Regional Doctorate School in Neuroscience, University of Florence, Italy
| | - Noemi Orsini
- CNR Neuroscience Institute, Pisa 56124, Italy
- Regional Doctorate School in Neuroscience, University of Florence, Italy
| | | | | | - Simona Capsoni
- Section of Human Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
- Rita Levi-Montalcini European Brain Research Institute (EBRI), Roma 00161, Italy
| | | |
Collapse
|
4
|
Tringali G, Pizzoferrato M, Lisi L, Marinelli S, Buccarello L, Falsini B, Cattaneo A, Navarra P. A Vicious NGF-p75 NTR Positive Feedback Loop Exacerbates the Toxic Effects of Oxidative Damage in the Human Retinal Epithelial Cell Line ARPE-19. Int J Mol Sci 2023; 24:16237. [PMID: 38003427 PMCID: PMC10671591 DOI: 10.3390/ijms242216237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
In spite of its variety of biological activities, the clinical exploitation of human NGF (hNGF) is currently limited to ocular pathologies. It is therefore interesting to test the effects of hNGF in preclinical models that may predict their efficacy and safety in the clinical setting of ocular disorders and compare the effects of hNGF with those of its analogs. We used a human retinal pigment cell line, ARPE-19 cells, to investigate the effects of hNGF and its analogs, mouse NGF (mNGF) and painless NGF (pNGF), on cell viability under basal conditions and after exposure to oxidative stimuli, i.e., hydrogen peroxide (H2O2) and ultraviolet (UV)-A rays. The effects of hNGF and pNGF were also tested on the gene expression and protein synthesis of the two NGF receptor subtypes, p75 neurotrophic receptors (p75NTR) and tyrosine kinase A (TrkA) receptors. We drew the following conclusions: (i) the exposure of ARPE-19 cells to H2O2 or UV-A causes a dose-dependent decrease in the number of viable cells; (ii) under baseline conditions, hNGF, but not pNGF, causes a concentration-dependent decrease in cell viability in the range of doses 1-100 ng/mL; (iii) hNGF, but not pNGF, significantly potentiates the toxic effects of H2O2 or of UV-A on ARPE-19 cells in the range of doses 1-100 ng/mL, while mNGF at the same doses presents an intermediate behavior; (iv) 100 ng/mL of hNGF triggers an increase in p75NTR expression in H2O2-treated ARPE-19 cells, while pNGF at the same dose does not; (v) pNGF, but not hNGF (both given at 100 ng/mL), increases the total cell fluorescence intensity for TrkA receptors in H2O2-treated ARPE-19 cells. The present findings suggest a vicious positive feedback loop through which NGF-mediated upregulation of p75NTR contributes to worsening the toxic effects of oxidative damage in the human retinal epithelial cell line ARPE-19. Looking at the possible clinical relevance of these findings, one can postulate that pNGF might show a better benefit/risk ratio than hNGF in the treatment of ocular disorders.
Collapse
Affiliation(s)
- Giuseppe Tringali
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (M.P.)
| | - Michela Pizzoferrato
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (M.P.)
| | - Lucia Lisi
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (M.P.)
| | - Silvia Marinelli
- European Brain Research Institute-Fondazione Rita Levi Montalcini, 00161 Rome, Italy (L.B.)
| | - Lucia Buccarello
- European Brain Research Institute-Fondazione Rita Levi Montalcini, 00161 Rome, Italy (L.B.)
| | - Benedetto Falsini
- UOC Ophtalmology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Department of Ophthalmology, Bambino Gesù IRCCS Children’s Hospital, 00133 Rome, Italy
| | - Antonino Cattaneo
- European Brain Research Institute-Fondazione Rita Levi Montalcini, 00161 Rome, Italy (L.B.)
- Bio@SNS Laboratory, Scuola Normale Superiore, 56124 Pisa, Italy
| | - Pierluigi Navarra
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (M.P.)
| |
Collapse
|
5
|
Covaceuszach S, Lamba D. The NGF R100W Mutation, Associated with Hereditary Sensory Autonomic Neuropathy Type V, Specifically Affects the Binding Energetic Landscapes of NGF and of Its Precursor proNGF and p75NTR. BIOLOGY 2023; 12:biology12030364. [PMID: 36979056 PMCID: PMC10045213 DOI: 10.3390/biology12030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
Nerve Growth Factor (NGF), the prototype of the neurotrophin family, stimulates morphological differentiation and regulates neuronal gene expression by binding to TrkA and p75NTR receptors. It plays a critical role in maintaining the function and phenotype of peripheral sensory and sympathetic neurons and in mediating pain transmission and perception during adulthood. A point mutation in the NGFB gene (leading to the amino acid substitution R100W) is responsible for Hereditary Sensory and Autonomic Neuropathy type V (HSAN V), leading to a congenital pain insensitivity with no clear cognitive impairments, but with alterations in the NGF/proNGF balance. The available crystal structures of the p75NTR/NGF and 2p75NTR/proNGF complexes offer a starting point for Molecular Dynamics (MD) simulations in order to capture the impact of the R100W mutation on their binding energetic landscapes and to unveil the molecular determinants that trigger their different physiological and pathological outcomes. The present in silico studies highlight that the stability and the binding energetic fingerprints in the 2p75NTR/proNGF complex is not affected by R100W mutation, which on the contrary, deeply affects the energetic landscape, and thus the stability in the p75NTR/NGF complex. Overall, these findings present insights into the structural basis of the molecular mechanisms beyond the clinical manifestations of HSAN V patients.
Collapse
Affiliation(s)
- Sonia Covaceuszach
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
- Correspondence: (S.C.); (D.L.)
| | - Doriano Lamba
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
- Consorzio Interuniversitario “Istituto Nazionale Biostrutture e Biosistemi”, 00136 Roma, Italy
- Correspondence: (S.C.); (D.L.)
| |
Collapse
|
6
|
Ferraguti G, Terracina S, Micangeli G, Lucarelli M, Tarani L, Ceccanti M, Spaziani M, D'Orazi V, Petrella C, Fiore M. NGF and BDNF in pediatrics syndromes. Neurosci Biobehav Rev 2023; 145:105015. [PMID: 36563920 DOI: 10.1016/j.neubiorev.2022.105015] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Neurotrophins (NTs) as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) play multiple roles in different settings including neuronal development, function and survival in both the peripheral and the central nervous systems from early stages. This report aims to provide a summary and subsequent review of evidences on the role of NTs in rare and non-common pediatric human diseases associated with changes in neurodevelopment. A variety of diseases has been analyzed and many have been linked to NTs neurobiological effects, including chronic granulomatous disease, hereditary sensory and autonomic neuropathy, Duchenne muscular dystrophy, Bardet-Biedl syndrome, Angelman syndrome, fragile X syndrome, trisomy 16, Williams-Beuren syndrome, Prader-Willi syndrome, WAGR syndrome, fetal alcohol spectrum disorders, Down syndrome and Klinefelter Syndrome. NTs alterations have been associated with numerous pathologic manifestations including cognitive defects, behavioral abnormalities, epilepsy, obesity, tumorigenesis as well as muscle-skeletal, immunity, bowel, pain sensibility and cilia diseases. In this report, we discuss that further studies are needed to clear a possible therapeutic role of NTs in these still often uncurable diseases.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ginevra Micangeli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Rome, Italy
| | - Matteo Spaziani
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Valerio D'Orazi
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy.
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy.
| |
Collapse
|
7
|
Yu X, Yang Z, Zhang Y, Xia J, Zhang J, Han Q, Yu H, Wu C, Xu Y, Xu W, Yang W. Lipid Nanoparticle Delivery of Chemically Modified NGF R100W mRNA Alleviates Peripheral Neuropathy. Adv Healthc Mater 2023; 12:e2202127. [PMID: 36325948 DOI: 10.1002/adhm.202202127] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Messenger RNA (mRNA) carries genetic instructions to the cell machinery for the transient production of antigens or therapeutic proteins and shows enormous potential in vaccine development, cancer immunotherapy, protein replacement therapy, and genome engineering. Here, the synthesis of chemically modified nerve growth factor mutant (NGFR100W ) mRNA through in vitro transcription is described. After the replacement of the original signal peptide sequence with the Ig Kappa leader sequence, codon-optimized NGFR100W mRNA yielded high secretion of mature NGFR100W , which promotes axon growth in PC12 cells. Using lipid nanoparticle (LNP)-delivery of N1-methylpseudouridine-modified mRNA in mice, NGFR100W -mRNA-LNPs result in the successful expression of NGFR100W protein, which significantly reduces nociceptive activity compared to that of NGFWT . This indicates that NGFR100W derived from exogenous mRNA elicited "painless" neuroprotective activity. Additionally, the therapeutic value of NGFR100W mRNA is established in a paclitaxel-induced peripheral neuropathy model by demonstrating the rapid recovery of intraepidermal nerve fibers. The results show that in vitro-transcribed mRNA has significant flexibility in sequence design and fast in vivo functional validation of target proteins. Furthermore, the results highlight the therapeutic potential of mRNA as a supplement to beneficial proteins for preventing or reversing some chronic medical conditions, such as peripheral neuropathy.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zheng Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yu Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Jia Xia
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Jiahui Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Qi Han
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Hang Yu
- Shanghai RNACure Biopharma Co., Ltd., Shanghai, 200438, P. R. China
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wei Xu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.,Department of Neurology, Ruijin Hospital, Zhoushan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, 316012, P. R. China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai, 200025, P. R. China
| |
Collapse
|
8
|
Testa G, Mainardi M, Vannini E, Pancrazi L, Cattaneo A, Costa M. Disentangling the signaling complexity of nerve growth factor receptors by
CRISPR
/Cas9. FASEB J 2022; 36:e22498. [PMID: 37036720 DOI: 10.1096/fj.202101760rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
The binding of nerve growth factor (NGF) to the tropomyosin-related kinase A (TrkA) and p75NTR receptors activates a large variety of pathways regulating critical processes as diverse as proliferation, differentiation, membrane potential, synaptic plasticity, and pain. To ascertain the details of TrkA-p75NTR interaction and cooperation, a plethora of experiments, mostly based on receptor overexpression or downregulation, have been performed. Among the heterogeneous cellular systems used for studying NGF signaling, the PC12 pheochromocytoma-derived cell line is a widely used model. By means of CRISPR/Cas9 genome editing, we created PC12 cells lacking TrkA, p75NTR , or both. We found that TrkA-null cells become unresponsive to NGF. Conversely, the absence of p75NTR enhances the phosphorylation of TrkA and its effectors. Using a patch-clamp, we demonstrated that the individual activation of TrkA and p75NTR by NGF results in antagonizing effects on the membrane potential. These newly developed PC12 cell lines can be used to investigate the specific roles of TrkA and p75NTR in a genetically defined cellular model, thus providing a useful platform for future studies and further gene editing.
Collapse
Affiliation(s)
- Giovanna Testa
- Laboratory of Biology “Bio@SNS” Scuola Normale Superiore Pisa Italy
| | - Marco Mainardi
- Laboratory of Biology “Bio@SNS” Scuola Normale Superiore Pisa Italy
- Neuroscience Institute National Research Council (CNR) Pisa Italy
| | - Eleonora Vannini
- Neuroscience Institute National Research Council (CNR) Pisa Italy
| | - Laura Pancrazi
- Neuroscience Institute National Research Council (CNR) Pisa Italy
| | - Antonino Cattaneo
- Laboratory of Biology “Bio@SNS” Scuola Normale Superiore Pisa Italy
- European Brain Research Institute “Rita Levi Montalcini” (EBRI) Rome Italy
| | - Mario Costa
- Laboratory of Biology “Bio@SNS” Scuola Normale Superiore Pisa Italy
- Neuroscience Institute National Research Council (CNR) Pisa Italy
- Centro Pisano ricerca e implementazione clinica Flash Radiotherapy “CPFR@CISUP”, “S. Chiara” Hospital Pisa Italy
| |
Collapse
|
9
|
Lisi L, Marinelli S, Ciotti GMP, Pizzoferrato M, Palmerio F, Chiavari M, Cattaneo A, Navarra P. The effects of painless nerve growth factor on human microglia polarization. Front Cell Neurosci 2022; 16:969058. [PMID: 36339818 PMCID: PMC9633670 DOI: 10.3389/fncel.2022.969058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2023] Open
Abstract
Previous studies in the rat suggest that microglial cells represent a potential druggable target for nerve growth factor (NGF) in the brain. The painless human Nerve Growth Factor (hNGFp) is a recombinant mutated form of human nerve growth factor (hNGF) that shows identical neurotrophic and neuroprotective properties of wild-type NGF but displays at least 10-fold lower algogenic activity. From the pharmacological point of view, hNGFp is a biased tropomyosin receptor kinase A (TrkA) agonist and displays a significantly lower affinity for the p75 neurotrophin receptor (p75NTR). This study aimed to evaluate the expression of TrkA and p75NTR NGF receptors in two different human microglia cell lines, and to investigate the effects of hNGFp and wild-type NGF (NGF) on L-arginine metabolism, taken as a marker of microglia polarization. Both NGF receptors are expressed in human microglia cell lines and are effective in transducing signals triggered by NGF and hNGFp. The latter and, to a lesser extent, NGF inhibit cytokine-stimulated inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in these cells. Conversely NGF but not hNGFp stimulates arginase-mediated urea production.
Collapse
Affiliation(s)
- Lucia Lisi
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Silvia Marinelli
- European Brain Research Institute-Fondazione Rita Levi Montalcini, Rome, Italy
| | - Gabriella Maria Pia Ciotti
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Michela Pizzoferrato
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Federica Palmerio
- European Brain Research Institute-Fondazione Rita Levi Montalcini, Rome, Italy
| | - Marta Chiavari
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Antonino Cattaneo
- European Brain Research Institute-Fondazione Rita Levi Montalcini, Rome, Italy
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| | - Pierluigi Navarra
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| |
Collapse
|
10
|
Lisi L, Ciotti GMP, Chiavari M, Martire M, Navarra P. The effects of CHF6467, a new mutated form of NGF, on cell models of human glioblastoma. A comparison with wild-type NGF. Growth Factors 2022; 40:37-45. [PMID: 35442129 DOI: 10.1080/08977194.2022.2060095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
CHF6467 is a mutated form of human recombinant nerve growth factor (NGF). The mutation selectively disrupts the binding of NGF to its p75NTR receptor while maintaining the affinity toward TrkA receptor. Because of such different profile of receptor interaction, CHF6467 maintains unaltered the neurotrophic and neuroprotective properties of wild-type NGF but shows reduced algogenic activity.In this study, we investigated the effects of CHF6467 on mortality, proliferation, cell-damage and migration in three human glioblastoma cell lines (U87MG, T98G, LN18), and in the rat astrocytoma C6 cells. Both CHF6467 and wild-type NGF, given in the range 1-50 ng/ml, did not modify cell proliferation, metabolism and migration, as well as the number of live/dead cells.The present in vitro data are predictive of a lack of tumorigenic activity by both wild-type NGF and CHF6467 on these cell types in vivo, and warrant for CHF6467 further clinical development.
Collapse
Affiliation(s)
- Lucia Lisi
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Gabriella Maria Pia Ciotti
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Marta Chiavari
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Maria Martire
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Pierluigi Navarra
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| |
Collapse
|
11
|
Capsoni S, Cattaneo A. Getting Into the Brain: The Intranasal Approach to Enhance the Delivery of Nerve Growth Factor and Its Painless Derivative in Alzheimer’s Disease and Down Syndrome. Front Neurosci 2022; 16:773347. [PMID: 35360160 PMCID: PMC8961408 DOI: 10.3389/fnins.2022.773347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/10/2022] [Indexed: 01/04/2023] Open
Abstract
The neurotrophin Nerve Growth Factor (NGF) holds a great potential as a therapeutic candidate for the treatment of neurological diseases. However, its safe and effective delivery to the brain is limited by the fact that NGF needs to be selectively targeted to the brain, to avoid severe side effects such as pain and to bypass the blood brain barrier. In this perspective, we will summarize the different approaches that have been used, or are currently applied, to deliver NGF to the brain, during preclinical and clinical trials to develop NGF as a therapeutic drug for Alzheimer’s disease. We will focus on the intranasal delivery of NGF, an approach that is used to deliver proteins to the brain in a non-invasive, safe, and effective manner minimizing systemic exposure. We will also describe the main experimental facts related to the effective intranasal delivery of a mutant form of NGF [painless NGF, human nerve growth factor painless (hNGFp)] in mouse models of Alzheimer’s disease and compare it to other ways to deliver NGF to the brain. We will also report new data on the application of intranasal delivery of hNGFp in Down Syndrome mouse model. These new data extend the therapeutic potential of hNGFp for the treatment of the dementia that is progressively associated to Down Syndrome. In conclusion, we will show how this approach can be a promising strategy and a potential solution for other unmet medical needs of safely and effectively delivering this neuroprotective neurotrophin to the brain.
Collapse
Affiliation(s)
- Simona Capsoni
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
- Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- *Correspondence: Simona Capsoni,
| | - Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
- European Brain Research Institute–Fondazione Rita Levi-Montalcini, Rome, Italy
| |
Collapse
|
12
|
Testa G, Cattaneo A, Capsoni S. Understanding pain perception through genetic painlessness diseases: The role of NGF and proNGF. Pharmacol Res 2021; 169:105662. [PMID: 34000361 DOI: 10.1016/j.phrs.2021.105662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 01/25/2023]
Abstract
Nerve growth factor (NGF), by binding to TrkA and p75NTR receptors, regulates the survival and differentiation of sensory neurons during development and mediates pain transmission and perception during adulthood, by acting at different levels of the nervous system. Key to understanding the role of NGF as a pain mediator is the finding that mutations (namely, R121W, V232fs and R221W) in the NGF gene cause painlessness disease Hereditary Sensory and Autonomic Neuropathy type V (HSAN V). Here we shall review the consequences of these NGF mutations, each of which results in specific clinical signs: R221W determines congenital pain insensitivity with no overt cognitive disabilities, whereas V232fs and R121W also result in intellectual disability, thus showing similarities to HSAN IV, which is caused by mutations in TrkA, rather than to HSAN V. Comparing the cellular, biochemical and clinical findings of these mutations could help in better understanding not only the possible mechanisms underlying HSAN V, but also mechanisms of NGF signalling and roles. These mutations alter the balance between NGF and proNGF in favour of an accumulation of the latter, suggesting a possible role of proNGF as a molecule with an analgesic role. Furthermore, the neurotrophic and pronociceptive functions of NGF are split by the R221W mutation, making NGF variants based on this mutation interesting for designing therapeutic applications for many diseases. This review emphasizes the possibility of using the mutations involved in "painlessness" clinical disorders as an innovative approach to identify new proteins and pathways involved in pain transmission and perception. OUTSTANDING QUESTIONS: Why do homozygous HSAN V die postnatally? What is the cause of this early postnatal lethality? Is the development of a mouse or a human feeling less pain affecting higher cognitive and perceptual functions? What is the consequence of the HSAN V mutation on the development of joints and bones? Are the multiple fractures observed in HSAN V patients due exclusively to the carelessness consequent to not feeling pain, or also to an intrinsic frailty of their bones? Are heterodimers of NGFWT and NGFR221W in the heterozygote state formed? And if so, what are the properties of these heterodimeric proteins? How is the processing of proNGFR221W to NGFR221W affected by the mutation?
Collapse
Affiliation(s)
- Giovanna Testa
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy.
| | - Simona Capsoni
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy; Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
13
|
Malerba F, Bruni Ercole B, Florio R, Cattaneo A. A Quantitative Bioassay to Determine the Inhibitory Potency of NGF-TrkA Antagonists. SLAS DISCOVERY 2021; 26:823-830. [PMID: 33874771 DOI: 10.1177/24725552211000672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this article, we demonstrate and validate a new bioassay named the NTAB [NGF-TrkA (nerve growth factor-tropomyosin receptor kinase A) antagonist bioassay] for the determination of the inhibitory potency of NGF-TrkA antagonists, based on the inhibition of NGF-dependent proliferation of the human TF1 erythroleukemic cell line.It is well known that NGF holds great therapeutic potential due to its neurotrophic and neuroprotective properties. NGF is also involved in some pathways, however, principally driven by TrkA that, if not correctly regulated, can lead to unwanted pathological outcomes linked to pain, angiogenesis, and cancer.Indeed, there is an increasing interest, from a therapeutic perspective, in designing new effective molecules (antibodies, antibody fragments, or small molecules) able to inhibit the undesired NGF-TrkA pathway. For these reasons, there is an interest to develop functional cell-based assays for determination of the inhibition potency of compounds inhibiting the NGF-TrkA axis. The NTAB presents significant advantages over other published NGF-TrkA functional bioassays, for these reasons: (1) It is quantitative, (2) it measures a pure TrkA response, (3) it is simpler, (4) it is based on a natural biological response, and (5) it is easily scalable from a lab scale to an automated industrial assay.The NTAB assay was validated with a panel of well-characterized NGF-TrkA inhibitors, yielding characteristic dose-response curves, from which the relative strength of the inhibitors was quantitatively determined and used for comparisons. This new bioassay will be very useful to assist in the validation and prioritization of the best inhibitors among a large number of candidates.
Collapse
Affiliation(s)
- Francesca Malerba
- Fondazione EBRI (European Brain Research Institute) Rita Levi-Montalcini, Rome, Italy
| | - Bruno Bruni Ercole
- Fondazione EBRI (European Brain Research Institute) Rita Levi-Montalcini, Rome, Italy
| | - Rita Florio
- Fondazione EBRI (European Brain Research Institute) Rita Levi-Montalcini, Rome, Italy
| | - Antonino Cattaneo
- Fondazione EBRI (European Brain Research Institute) Rita Levi-Montalcini, Rome, Italy.,BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
14
|
Abstract
Primary nociceptors are a heterogeneous class of peripheral somatosensory neurons, responsible for detecting noxious, pruriceptive, and thermal stimuli. These neurons are further divided into several molecularly defined subtypes that correlate with their functional sensory modalities and morphological features. During development, all nociceptors arise from a common pool of embryonic precursors, and then segregate progressively into their mature specialized phenotypes. In this review, we summarize the intrinsic transcriptional programs and extrinsic trophic factor signaling mechanisms that interact to control nociceptor diversification. We also discuss how recent transcriptome profiling studies have significantly advanced the field of sensory neuron development.
Collapse
Affiliation(s)
- Suna L Cranfill
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
15
|
Yang W, Sung K, Xu W, Rodriguez MJ, Wu AC, Santos SA, Fang S, Uber RK, Dong SX, Guillory BC, Orain X, Raus J, Jolivalt C, Calcutt N, Rissman RA, Ding J, Wu C. A missense point mutation in nerve growth factor (NGF R100W) results in selective peripheral sensory neuropathy. Prog Neurobiol 2020; 194:101886. [PMID: 32693191 DOI: 10.1016/j.pneurobio.2020.101886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 06/09/2020] [Accepted: 07/11/2020] [Indexed: 01/15/2023]
Abstract
The R100W mutation in nerve growth factor is associated with hereditary sensory autonomic neuropathy V in a Swedish family. These patients develop severe loss of perception to deep pain but with apparently normal cognitive functions. To better understand the disease mechanism, we examined a knockin mouse model of HSAN V. The homozygous mice showed significant structural deficits in intra-epidermal nerve fibers (IENFs) at birth. These mice had a total loss of pain perception at ∼2 months of age and often failed to survive to adulthood. Heterozygous mutant mice developed a progressive degeneration of small sensory fibers both behaviorally and functionally: they showed a progressive loss of IENFs starting at the age of 9 months accompanied with progressive loss of perception to painful stimuli such as noxious temperature. Quantitative analysis of lumbar 4/5 dorsal root ganglia revealed a significant reduction in small size neurons, while analysis of sciatic nerve fibers revealed the heterozygous mutant mice had no reduction in myelinated nerve fibers. Significantly, the amount of NGF secreted from mouse embryonic fibroblasts were reduced from both heterozygous and homozygous mice compared to their wild-type littermates. Interestingly, the heterozygous mice showed no apparent structural alteration in the brain: neither the anterior cingulate cortex nor the medial septum including NGF-dependent basal forebrain cholinergic neurons. Accordingly, these animals did not develop appreciable deficits in tests for brain function. Our study has thus demonstrated that the NGFR100W mutation likely affects the structure and function of peripheral sensory neurons.
Collapse
Affiliation(s)
- Wanlin Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Department of Neurology, Zhuijiang Hospital, Southern Medical University, Guangzhou, China
| | - Kijung Sung
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Wei Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maria J Rodriguez
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Andrew C Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Sarai A Santos
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Savannah Fang
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Rebecca K Uber
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Stephanie X Dong
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Brandon C Guillory
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Xavier Orain
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Jordan Raus
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Corrine Jolivalt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Nigel Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Jianqing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Unveiling functional motions based on point mutations in biased signaling systems: A normal mode study on nerve growth factor bound to TrkA. PLoS One 2020; 15:e0231542. [PMID: 32497034 PMCID: PMC7272051 DOI: 10.1371/journal.pone.0231542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/26/2020] [Indexed: 11/19/2022] Open
Abstract
Many receptors elicit signal transduction by activating multiple intracellular pathways. This transduction can be triggered by a non-specific ligand, which simultaneously activates all the signaling pathways of the receptors. However, the binding of one biased ligand preferentially trigger one pathway over another, in a process called biased signaling. The identification the functional motions related to each of these distinct pathways has a direct impact on the development of new effective and specific drugs. We show here how to detect specific functional motions by considering the case of the NGF/TrkA-Ig2 complex. NGF-mediated TrkA receptor activation is dependent on specific structural motions that trigger the neuronal growth, development, and survival of neurons in nervous system. The R221W mutation in the ngf gene impairs nociceptive signaling. We discuss how the large-scale structural effects of this mutation lead to the suppression of collective motions necessary to induce TrkA activation of nociceptive signaling. Our results suggest that subtle changes in the NGF interaction network due to the point mutation are sufficient to inhibit the motions of TrkA receptors putatively linked to nociception. The methodological approach presented in this article, based jointly on the normal mode analysis and the experimentally observed functional alterations due to point mutations provides an essential tool to reveal the structural changes and motions linked to the disease, which in turn could be necessary for a drug design study.
Collapse
|
17
|
The NGF R100W Mutation Specifically Impairs Nociception without Affecting Cognitive Performance in a Mouse Model of Hereditary Sensory and Autonomic Neuropathy Type V. J Neurosci 2019; 39:9702-9715. [PMID: 31685654 DOI: 10.1523/jneurosci.0688-19.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/01/2019] [Accepted: 10/27/2019] [Indexed: 12/22/2022] Open
Abstract
Nerve growth factor (NGF) is a key mediator of nociception, acting during the development and differentiation of dorsal root ganglion (DRG) neurons, and on adult DRG neuron sensitization to painful stimuli. NGF also has central actions in the brain, where it regulates the phenotypic maintenance of cholinergic neurons. The physiological function of NGF as a pain mediator is altered in patients with Hereditary Sensory and Autonomic Neuropathy type V (HSAN V), caused by the 661C>T transition in the Ngf gene, resulting in the R100W missense mutation in mature NGF. Homozygous HSAN V patients present with congenital pain insensitivity, but are cognitively normal. This led us to hypothesize that the R100W mutation may differentially affect the central and peripheral actions of NGF. To test this hypothesis and provide a mechanistic basis to the HSAN V phenotype, we generated transgenic mice harboring the human 661C>T mutation in the Ngf gene and studied both males and females. We demonstrate that heterozygous NGFR100W/wt mice display impaired nociception. DRG neurons of NGFR100W/wt mice are morphologically normal, with no alteration in the different DRG subpopulations, whereas skin innervation is reduced. The NGFR100W protein has reduced capability to activate pain-specific signaling, paralleling its reduced ability to induce mechanical allodynia. Surprisingly, however, NGFR100W/wt mice, unlike heterozygous mNGF+/- mice, show no learning or memory deficits, despite a reduction in secretion and brain levels of NGF. The results exclude haploinsufficiency of NGF as a mechanistic cause for heterozygous HSAN V mice and demonstrate a specific effect of the R100W mutation on nociception.SIGNIFICANCE STATEMENT The R100W mutation in nerve growth factor (NGF) causes Hereditary Sensory and Autonomic Neuropathy type V, a rare disease characterized by impaired nociception, even in apparently clinically silent heterozygotes. For the first time, we generated and characterized heterozygous knock-in mice carrying the human R100W-mutated allele (NGFR100W/wt). Mutant mice have normal nociceptor populations, which, however, display decreased activation of pain transduction pathways. NGFR100W interferes with peripheral and central NGF bioavailability, but this does not impact on CNS function, as demonstrated by normal learning and memory, in contrast with heterozygous NGF knock-out mice. Thus, a point mutation allows neurotrophic and pronociceptive functions of NGF to be split, with interesting implications for the treatment of chronic pain.
Collapse
|
18
|
Dahlström M, Nordvall G, Sundström E, Åkesson E, Tegerstedt G, Eriksdotter M, Forsell P. Identification of amino acid residues of nerve growth factor important for neurite outgrowth in human dorsal root ganglion neurons. Eur J Neurosci 2019; 50:3487-3501. [PMID: 31301255 PMCID: PMC6899756 DOI: 10.1111/ejn.14513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 06/27/2019] [Accepted: 07/05/2019] [Indexed: 01/21/2023]
Abstract
Nerve growth factor (NGF) is an essential neurotrophic factor for the development and maintenance of the central and the peripheral nervous system. NGF deficiency in the basal forebrain precedes degeneration of basal forebrain cholinergic neurons in Alzheimer's disease, contributing to memory decline. NGF mediates neurotrophic support via its high‐affinity receptor, the tropomyosin‐related kinase A (TrkA) receptor, and mediates mitogenic and differentiation signals via the extracellular signal‐regulated protein kinases 1 and 2 (ERK1/2). However, the molecular mechanisms underlying the different NGF/TrkA/ERK signalling pathways are far from clear. In this study, we have investigated the role of human NGF and three NGF mutants, R100E, W99A and K95A/Q96A, their ability to activate TrkA or ERK1/2, and their ability to induce proliferation or differentiation in human foetal dorsal root ganglion (DRG) neurons or in PC12 cells. We show that the R100E mutant was significantly more potent than NGF itself to induce proliferation and differentiation, and significantly more potent in activation of ERK1/2 in DRG neurons. The W99A and K95A/Q96A mutants, on the other hand, were less effective than the wild‐type protein. An unexpected finding was the high efficacy of the K95A/Q96A mutant to activate TrkA and to induce differentiation of DRG neurons at elevated concentrations. These data demonstrate an NGF mutant with improved neurotrophic properties in primary human neuronal cells. The R100E mutant represents an interesting candidate for further drug development in Alzheimer's disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Märta Dahlström
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,AlzeCure Foundation, Huddinge, Sweden
| | - Gunnar Nordvall
- AlzeCure Foundation, Huddinge, Sweden.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,AlzeCure Pharma AB, Huddinge, Sweden
| | - Erik Sundström
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Elisabet Åkesson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,R&D Unit, Stockholms Sjukhem, Stockholm, Sweden
| | - Gunilla Tegerstedt
- Division of Gynecology and Obstetrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Pontus Forsell
- AlzeCure Foundation, Huddinge, Sweden.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,AlzeCure Pharma AB, Huddinge, Sweden
| |
Collapse
|
19
|
Cholinergic striatal neurons are increased in HSAN V homozygous mice despite reduced NGF bioavailability. Biochem Biophys Res Commun 2019; 509:763-766. [DOI: 10.1016/j.bbrc.2018.12.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/28/2018] [Indexed: 12/11/2022]
|
20
|
Sung K, Yang W, Wu C. Uncoupling neurotrophic function from nociception of nerve growth factor: what can be learned from a rare human disease? Neural Regen Res 2019; 14:570-573. [PMID: 30632491 PMCID: PMC6352596 DOI: 10.4103/1673-5374.247442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nerve growth factor (NGF) is a powerful trophic factor that provides essential support for the survival and differentiation of sympathetic and sensory neurons during development. However, NGF also activates nociceptors contributing significantly to inflammatory pain and neuropathic pain after tissue injury. As such anti-NGF based therapies represent a promising strategy for pain management. Because of dose-dependent serious side effects such as back pain, injection site hyperalgesia, clinical trials of using NGF to treat various disorders such as diabetic neuropathies, chemotherapy-induced and human immunodeficiency virus-associated peripheral neuropathies were all discontinued. Thus far, worldwide clinical applications of NGF in treating patients are very limited except in China. Hereditary sensory autonomic neuropathy type V (HSAN V) is an extremely rare disease. Genetic analyses have revealed that HSAN V is associated with autosomal recessive mutations in NGF. One of the mutations occurred at the 100th position of mature NGF resulting in a change of residue from arginine to tryptophan (R100W). Although those HSAN V patients associated with the NGFR100W mutation suffer from severe loss of deep pain, bone fractures and joint destruction, interestingly patients with the NGFR100W mutation do not show apparent cognitive deficits, suggesting important trophic support function is preserved. We believe that NGFR100W provides an ideal tool to uncouple the two important functions of NGF: trophic versus nociceptive. Studies from investigators including ourselves have indeed confirmed in animal testing that the NGFR100W no longer induced pain. More importantly, the trophic function seemed to be largely preserved in NGF harboring the R100W mutation. On the mechanistic level, we found that the NGFR100W mutation was capable of binding to and signaling through the tyrosine receptor kinase A receptor. But its ability to bind to and activate the 75 kDa neurotrophic factor was significantly diminished. The significance of these findings is at least two folds: 1) the NGFR100W mutation can be used as an alternative to the wildtype NGF to treat human conditions without eliciting pain; and 2) the 75 kDa neurotrophic factor may serve as a novel target for pain management. We will discuss all the details in this mini-review.
Collapse
Affiliation(s)
- Kijung Sung
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Wanlin Yang
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
21
|
Yang W, Sung K, Zhou F, Xu W, Rissman RA, Ding J, Wu C. Targeted Mutation (R100W) of the Gene Encoding NGF Leads to Deficits in the Peripheral Sensory Nervous System. Front Aging Neurosci 2018; 10:373. [PMID: 30524266 PMCID: PMC6262302 DOI: 10.3389/fnagi.2018.00373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/26/2018] [Indexed: 12/25/2022] Open
Abstract
Nerve growth factor (NGF) exerts multifaceted functions through different stages of life. A missense mutation (R100W) in the beta-NGF gene was found in hereditary sensory autonomic neuropathy V (HSAN V) patients with severe loss of pain perception but without overt cognitive impairment. To better understand the pathogenesis of HSAN V, we generated the first NGFR100W knock in mouse model for HSAN V. We found that the homozygotes exhibited a postnatal lethal phenotype. A majority of homozygous pups died within the first week. Some homozygous pups could ingest more milk and survived up to 2 months by reducing litter size. Whole mount in situ hybridization using E10.5 embryos revealed that, compared to wild type, R100W mutation did not alter the gene expression patterns of TrkA and P75NTR in the homozygotes. We also found that the homozygotes displayed normal embryonic development of major organs (heart, lung, liver, kidney, and spleen). Furthermore, the homozygotes exhibited severe loss of PGP9.5-positive intra-epidermal sensory fibers. Taken together, our results suggest that, as with HSAN V patients, the R100W mutation primarily affects the peripheral sensory nervous system in the mouse model. This novel mouse model makes it possible to further study in vivo how NGFR100W uncouple trophic function from nociception of NGF.
Collapse
Affiliation(s)
- Wanlin Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kijung Sung
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Fengli Zhou
- Department of Respiratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Robert A. Rissman
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
- Veterans Affairs San Diego Health Care System, San Diego, CA, United States
| | - Jianqing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengbiao Wu
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
- Veterans Affairs San Diego Health Care System, San Diego, CA, United States
| |
Collapse
|
22
|
Cattaneo A, Capsoni S. Painless Nerve Growth Factor: A TrkA biased agonist mediating a broad neuroprotection via its actions on microglia cells. Pharmacol Res 2018; 139:17-25. [PMID: 30391352 DOI: 10.1016/j.phrs.2018.10.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/28/2018] [Accepted: 10/28/2018] [Indexed: 12/13/2022]
Abstract
Nerve Growth Factor (NGF) is a therapeutic candidate for Alzheimer's disease, based on its well known actions on basal forebrain cholinergic neurons. However, because of its pro-nociceptive activity, in current clinical trials NGF has to be administered intraparenchymally into the brain by neurosurgery via cell or gene therapy approaches. To prevent the NGF pain-inducing collateral effects, thus avoiding the necessity for local brain injection, we developed painless NGF (hNGFp), based on the human genetic disease Hereditary Sensory and Autonomic Neuropathy type V (HSAN V). hNGFp has similar neurotrophic activity as wild type human NGF, but its pain sensitizing activity is tenfold lower. Pharmacologically, hNGFp is a biased receptor agonist of NGF TrkA receptor. The results of recent studies shed new light on the neuroprotective mechanism by hNGFp and are highly relevant for the planning of NGF-based clinical trials. The intraparenchymal delivery of hNGFp, as used in clinical trials, was simulated in the 5xFAD mouse model and found to be inefficacious in reducing Aβ plaque load. On the contrary, the same dose of hNGFp administered intranasally, which was rather widely biodistributed in the brain and did not induce pain sensitization, blocked APP processing into amyloid and restored synaptic plasticity and memory in this aggressive neurodegeneration model. This potent and broad neuroprotection by hNGFp was found to be mediated by hNGFp actions on glial cells. hNGFp increases inflammatory proteins such as the soluble TNFα receptor II and the chemokine CXCL12. Independent work has shown that NGF has a potent anti-inflammatory action on microglia and steers them towards a neuroprotective phenotype. These studies demonstrate that microglia cells are a new target cell of NGF in the brain and have therapeutic significance: i) they establish that the neuroprotective actions of hNGFp relies on a widespread exposure of the brain, ii) they identify a new anti-neurodegenerative pathway, linking hNGFp to inflammatory chemokines and cytokines via microglia, a common target for new therapeutic opportunities for neurodegenerative diseases, iii) they extend the neuroprotective potential of hNGFp beyond its classical cholinergic target, thereby widening the range of neurological diseases for which this neurotrophic factor might be used therapeutically, iv) they help interpreting the results of current NGF clinical trials in AD and the design of future trials with this new potent therapeutic candidate.
Collapse
Affiliation(s)
- Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy; Rita Levi-Montalcini European Brain Research Institute (EBRI), Roma, Italy.
| | - Simona Capsoni
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy; Section of Human Physiology, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
23
|
Sung K, Ferrari LF, Yang W, Chung C, Zhao X, Gu Y, Lin S, Zhang K, Cui B, Pearn ML, Maloney MT, Mobley WC, Levine JD, Wu C. Swedish Nerve Growth Factor Mutation (NGF R100W) Defines a Role for TrkA and p75 NTR in Nociception. J Neurosci 2018; 38:3394-3413. [PMID: 29483280 PMCID: PMC5895035 DOI: 10.1523/jneurosci.1686-17.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 01/23/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Nerve growth factor (NGF) exerts multiple functions on target neurons throughout development. The recent discovery of a point mutation leading to a change from arginine to tryptophan at residue 100 in the mature NGFβ sequence (NGFR100W) in patients with hereditary sensory and autonomic neuropathy type V (HSAN V) made it possible to distinguish the signaling mechanisms that lead to two functionally different outcomes of NGF: trophic versus nociceptive. We performed extensive biochemical, cellular, and live-imaging experiments to examine the binding and signaling properties of NGFR100W Our results show that, similar to the wild-type NGF (wtNGF), the naturally occurring NGFR100W mutant was capable of binding to and activating the TrkA receptor and its downstream signaling pathways to support neuronal survival and differentiation. However, NGFR100W failed to bind and stimulate the 75 kDa neurotrophic factor receptor (p75NTR)-mediated signaling cascades (i.e., the RhoA-Cofilin pathway). Intraplantar injection of NGFR100W into adult rats induced neither TrkA-mediated thermal nor mechanical acute hyperalgesia, but retained the ability to induce chronic hyperalgesia based on agonism for TrkA signaling. Together, our studies provide evidence that NGFR100W retains trophic support capability through TrkA and one aspect of its nociceptive signaling, but fails to engage p75NTR signaling pathways. Our findings suggest that wtNGF acts via TrkA to regulate the delayed priming of nociceptive responses. The integration of both TrkA and p75NTR signaling thus appears to regulate neuroplastic effects of NGF in peripheral nociception.SIGNIFICANCE STATEMENT In the present study, we characterized the naturally occurring nerve growth factor NGFR100W mutant that is associated with hereditary sensory and autonomic neuropathy type V. We have demonstrated for the first time that NGFR100W retains trophic support capability through TrkA, but fails to engage p75NTR signaling pathways. Furthermore, after intraplantar injection into adult rats, NGFR100W induced neither thermal nor mechanical acute hyperalgesia, but retained the ability to induce chronic hyperalgesia. We have also provided evidence that the integration of both TrkA- and p75NTR-mediated signaling appears to regulate neuroplastic effects of NGF in peripheral nociception. Our study with NGFR100W suggests that it is possible to uncouple trophic effect from nociceptive function, both induced by wild-type NGF.
Collapse
Affiliation(s)
| | - Luiz F Ferrari
- Department of Oral Surgery, University of California San Francisco, San Francisco, California 94143
| | - Wanlin Yang
- Department of Neurosciences
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China 200025
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, South Korea
| | | | - Yingli Gu
- Department of Neurosciences
- Department of Neurology, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China 150001
| | - Suzhen Lin
- Department of Neurosciences
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China 200025
| | - Kai Zhang
- Department of Chemistry
- Department of Biochemistry, Neuroscience Program, Center for Biophysics and Quantitative Biology, Chemistry-Biology Interface Training Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | | | - Matthew L Pearn
- Department of Anesthesiology, University of California San Diego, School of Medicine, La Jolla, California 92093
- V.A. San Diego Healthcare System, San Diego, California 92161
| | - Michael T Maloney
- Department of Neurosciences, Stanford University, Stanford, California 94305
| | | | - Jon D Levine
- Department of Oral Surgery, University of California San Francisco, San Francisco, California 94143
| | - Chengbiao Wu
- Department of Neurosciences,
- V.A. San Diego Healthcare System, San Diego, California 92161
| |
Collapse
|
24
|
Capsoni S, Malerba F, Carucci NM, Rizzi C, Criscuolo C, Origlia N, Calvello M, Viegi A, Meli G, Cattaneo A. The chemokine CXCL12 mediates the anti-amyloidogenic action of painless human nerve growth factor. Brain 2017; 140:201-217. [PMID: 28031222 PMCID: PMC5379860 DOI: 10.1093/brain/aww271] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/19/2016] [Accepted: 09/07/2016] [Indexed: 11/17/2022] Open
Abstract
Nerve growth factor is a therapeutic candidate for Alzheimer’s disease. Due to its pain-inducing activity, in current clinical trials nerve growth factor is delivered locally into the brain by neurosurgery, but data on the efficacy of local nerve growth factor delivery in decreasing amyloid-β deposition are not available. To reduce the nerve growth factor pain-inducing side effects, thus avoiding the need for local brain injection, we developed human painless nerve growth factor (hNGFp), inspired by the human genetic disease hereditary sensory and autonomic neuropathy type V. hNGFp has identical neurotrophic potency as wild-type human nerve growth factor, but a 10-fold lower pain sensitizing activity. In this study we first mimicked, in the 5xFAD mouse model, the intraparenchymal delivery of hNGFp used in clinical trials and found it to be ineffective in decreasing amyloid-β plaque load. On the contrary, the same dose of hNGFp delivered intranasally, which was widely biodistributed in the brain and did not induce pain, showed a potent anti-amyloidogenic action and rescued synaptic plasticity and memory deficits. We found that hNGFp acts on glial cells, modulating inflammatory proteins such as the soluble TNFα receptor II and the chemokine CXCL12. We further established that the rescuing effect by hNGFp is mediated by CXCL12, as pharmacological inhibition of CXCL12 receptor CXCR4 occludes most of hNGFp effects. These findings have significant therapeutic implications: (i) we established that a widespread exposure of the brain is required for nerve growth factor to fully exert its neuroprotective actions; and (ii) we have identified a new anti-neurodegenerative pathway as a broad target for new therapeutic opportunities for neurodegenerative diseases.
Collapse
Affiliation(s)
- Simona Capsoni
- 1 Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy.,2 Institute of Neuroscience, National Council for Research, Pisa, Italy
| | - Francesca Malerba
- 1 Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy.,3 Neurotrophins and Neurodegenerative Diseases Laboratory, Rita Levi-Montalcini European Brain Research Institute, Rome, Italy
| | | | - Caterina Rizzi
- 1 Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Chiara Criscuolo
- 2 Institute of Neuroscience, National Council for Research, Pisa, Italy.,4 Department of Biotechnological and Applied Clinical Sciences, School of Medicine, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Nicola Origlia
- 2 Institute of Neuroscience, National Council for Research, Pisa, Italy
| | | | - Alessandro Viegi
- 1 Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Giovanni Meli
- 3 Neurotrophins and Neurodegenerative Diseases Laboratory, Rita Levi-Montalcini European Brain Research Institute, Rome, Italy
| | - Antonino Cattaneo
- 1 Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy .,3 Neurotrophins and Neurodegenerative Diseases Laboratory, Rita Levi-Montalcini European Brain Research Institute, Rome, Italy
| |
Collapse
|
25
|
Severini C, Petrocchi Passeri P, Ciotti M, Florenzano F, Petrella C, Malerba F, Bruni B, D'Onofrio M, Arisi I, Brandi R, Possenti R, Calissano P, Cattaneo A. Nerve growth factor derivative NGF61/100 promotes outgrowth of primary sensory neurons with reduced signs of nociceptive sensitization. Neuropharmacology 2017; 117:134-148. [DOI: 10.1016/j.neuropharm.2017.01.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/09/2017] [Accepted: 01/29/2017] [Indexed: 12/16/2022]
|
26
|
Single-Fiber Recordings of Nociceptive Fibers in Patients With HSAN Type V With Congenital Insensitivity to Pain. Clin J Pain 2016; 32:636-42. [DOI: 10.1097/ajp.0000000000000303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Malerba F, Paoletti F, Bruni Ercole B, Materazzi S, Nassini R, Coppi E, Patacchini R, Capsoni S, Lamba D, Cattaneo A. Functional Characterization of Human ProNGF and NGF Mutants: Identification of NGF P61SR100E as a "Painless" Lead Investigational Candidate for Therapeutic Applications. PLoS One 2015; 10:e0136425. [PMID: 26371475 PMCID: PMC4570711 DOI: 10.1371/journal.pone.0136425] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/04/2015] [Indexed: 11/21/2022] Open
Abstract
Background Nerve Growth Factor (NGF) holds a great therapeutic promise for Alzheimer's disease, diabetic neuropathies, ophthalmic diseases, dermatological ulcers. However, the necessity for systemic delivery has hampered the clinical applications of NGF due to its potent pro-nociceptive action. A “painless” human NGF (hNGF R100E) mutant has been engineered. It has equal neurotrophic potency to hNGF but a lower nociceptive activity. We previously described and characterized the neurotrophic and nociceptive properties also of the hNGF P61S and P61SR100E mutants, selectively detectable against wild type hNGF. However, the reduced pain-sensitizing potency of the “painless” hNGF mutants has not been quantified. Objectives and Results Aiming at the therapeutic application of the “painless” hNGF mutants, we report on the comparative functional characterization of the precursor and mature forms of the mutants hNGF R100E and hNGF P61SR100E as therapeutic candidates, also in comparison to wild type hNGF and to hNGF P61S. The mutants were assessed by a number of biochemical, biophysical methods and assayed by cellular assays. Moreover, a highly sensitive ELISA for the detection of the P61S-tagged mutants in biological samples has been developed. Finally, we explored the pro-nociceptive effects elicited by hNGF mutants in vivo, demonstrating an expanded therapeutic window with a ten-fold increase in potency. Conclusions This structure-activity relationship study has led to validate the concept of developing painless NGF as a therapeutic, targeting the NGF receptor system and supporting the choice of hNGF P61S R100E as the best candidate to advance in clinical development. Moreover, this study contributes to the identification of the molecular determinants modulating the properties of the hNGF “painless” mutants.
Collapse
Affiliation(s)
- Francesca Malerba
- Neurotrophic Factors and Neurodegenerative Diseases Unit, European Brain Research Institute, “Rita Levi-Montalcini” Foundation, Rome, Italy
- Neurobiology Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Francesca Paoletti
- Neurotrophic Factors and Neurodegenerative Diseases Unit, European Brain Research Institute, “Rita Levi-Montalcini” Foundation, Rome, Italy
- Neurobiology Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Bruno Bruni Ercole
- Neurotrophic Factors and Neurodegenerative Diseases Unit, European Brain Research Institute, “Rita Levi-Montalcini” Foundation, Rome, Italy
| | - Serena Materazzi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Elisabetta Coppi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | | | - Simona Capsoni
- Neurobiology Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Doriano Lamba
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park–Basovizza, Trieste, Italy
| | - Antonino Cattaneo
- Neurotrophic Factors and Neurodegenerative Diseases Unit, European Brain Research Institute, “Rita Levi-Montalcini” Foundation, Rome, Italy
- Neurobiology Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
- * E-mail:
| |
Collapse
|
28
|
Marchetti L, Luin S, Bonsignore F, de Nadai T, Beltram F, Cattaneo A. Ligand-induced dynamics of neurotrophin receptors investigated by single-molecule imaging approaches. Int J Mol Sci 2015; 16:1949-79. [PMID: 25603178 PMCID: PMC4307343 DOI: 10.3390/ijms16011949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/05/2015] [Indexed: 01/14/2023] Open
Abstract
Neurotrophins are secreted proteins that regulate neuronal development and survival, as well as maintenance and plasticity of the adult nervous system. The biological activity of neurotrophins stems from their binding to two membrane receptor types, the tropomyosin receptor kinase and the p75 neurotrophin receptors (NRs). The intracellular signalling cascades thereby activated have been extensively investigated. Nevertheless, a comprehensive description of the ligand-induced nanoscale details of NRs dynamics and interactions spanning from the initial lateral movements triggered at the plasma membrane to the internalization and transport processes is still missing. Recent advances in high spatio-temporal resolution imaging techniques have yielded new insight on the dynamics of NRs upon ligand binding. Here we discuss requirements, potential and practical implementation of these novel approaches for the study of neurotrophin trafficking and signalling, in the framework of current knowledge available also for other ligand-receptor systems. We shall especially highlight the correlation between the receptor dynamics activated by different neurotrophins and the respective signalling outcome, as recently revealed by single-molecule tracking of NRs in living neuronal cells.
Collapse
Affiliation(s)
- Laura Marchetti
- National Enterprise for nanoScience and nanoTechnology (NEST) Laboratory, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, Pisa I-56127, Italy.
| | - Stefano Luin
- National Enterprise for nanoScience and nanoTechnology (NEST) Laboratory, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, Pisa I-56127, Italy.
| | - Fulvio Bonsignore
- National Enterprise for nanoScience and nanoTechnology (NEST) Laboratory, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, Pisa I-56127, Italy.
| | - Teresa de Nadai
- Biology Laboratory (BioSNS), Scuola Normale Superiore and Istituto di Neuroscienze-CNR, via Moruzzi 1, Pisa I-56100, Italy.
| | - Fabio Beltram
- National Enterprise for nanoScience and nanoTechnology (NEST) Laboratory, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, Pisa I-56127, Italy.
| | - Antonino Cattaneo
- Biology Laboratory (BioSNS), Scuola Normale Superiore and Istituto di Neuroscienze-CNR, via Moruzzi 1, Pisa I-56100, Italy.
| |
Collapse
|
29
|
Marchetti L, De Nadai T, Bonsignore F, Calvello M, Signore G, Viegi A, Beltram F, Luin S, Cattaneo A. Site-specific labeling of neurotrophins and their receptors via short and versatile peptide tags. PLoS One 2014; 9:e113708. [PMID: 25426999 PMCID: PMC4245215 DOI: 10.1371/journal.pone.0113708] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/28/2014] [Indexed: 01/29/2023] Open
Abstract
We present a toolbox for the study of molecular interactions occurring between NGF and its receptors. By means of a suitable insertional mutagenesis method we show the insertion of an 8 amino acid tag (A4) into the sequence of NGF and of 12 amino acid tags (A1 and S6) into the sequence of TrkA and P75NTR NGF-receptors. These tags are shortened versions of the acyl and peptidyl carrier proteins; they are here covalently conjugated to the biotin-substituted arm of a coenzyme A (coA) substrate by phosphopantetheinyl transferase enzymes (PPTases). We demonstrate site-specific biotinylation of the purified recombinant tagged neurotrophin, in both the immature proNGF and mature NGF forms. The resulting tagged NGF is fully functional: it can signal and promote PC12 cells differentiation similarly to recombinant wild-type NGF. Furthermore, we show that the insertion of A1 and S6 tags into human TrkA and P75NTR sequences leads to the site-specific biotinylation of these receptors at the cell surface of living cells. Crucially, the two tags are labeled selectively by two different PPTases: this is exploited to reach orthogonal fluorolabeling of the two receptors co-expressed at low density in living cells. We describe the protocols to obtain the enzymatic, site-specific biotinylation of neurotrophins and their receptors as an alternative to their chemical, nonspecific biotinylation. The present strategy has three main advantages: i) it yields precise control of stoichiometry and site of biotin conjugation; ii) the tags used can be functionalized with virtually any small probe that can be carried by coA substrates, besides (and in addition to) biotin; iii) above all it makes possible to image and track interacting molecules at the single-molecule level in living systems.
Collapse
Affiliation(s)
- Laura Marchetti
- NEST, Scuola Normale Superiore and Istituto Nanoscienze – CNR, Pisa, Italy
- BioSNS Laboratory, Scuola Normale Superiore and Istituto di Neuroscienze - CNR, Pisa, Italy
| | - Teresa De Nadai
- BioSNS Laboratory, Scuola Normale Superiore and Istituto di Neuroscienze - CNR, Pisa, Italy
| | - Fulvio Bonsignore
- NEST, Scuola Normale Superiore and Istituto Nanoscienze – CNR, Pisa, Italy
| | | | | | - Alessandro Viegi
- BioSNS Laboratory, Scuola Normale Superiore and Istituto di Neuroscienze - CNR, Pisa, Italy
| | - Fabio Beltram
- NEST, Scuola Normale Superiore and Istituto Nanoscienze – CNR, Pisa, Italy
- IIT@NEST, Center for Nanotechnology Innovation, Pisa, Italy
| | - Stefano Luin
- NEST, Scuola Normale Superiore and Istituto Nanoscienze – CNR, Pisa, Italy
- * E-mail: (SL); (AC)
| | - Antonino Cattaneo
- BioSNS Laboratory, Scuola Normale Superiore and Istituto di Neuroscienze - CNR, Pisa, Italy
- * E-mail: (SL); (AC)
| |
Collapse
|
30
|
Lewin GR, Nykjaer A. Pro-neurotrophins, sortilin, and nociception. Eur J Neurosci 2014; 39:363-74. [PMID: 24494677 PMCID: PMC4232910 DOI: 10.1111/ejn.12466] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/13/2013] [Accepted: 11/28/2013] [Indexed: 01/26/2023]
Abstract
Nerve growth factor (NGF) signaling is important in the development and functional maintenance of nociceptors, but it also plays a central role in initiating and sustaining heat and mechanical hyperalgesia following inflammation. NGF signaling in pain has traditionally been thought of as primarily engaging the classic high-affinity receptor tyrosine kinase receptor TrkA to initiate sensitization events. However, the discovery that secreted proforms of nerve NGF have biological functions distinct from the processed mature factors raised the possibility that these proneurotrophins (proNTs) may have distinct function in painful conditions. ProNTs engage a novel receptor system that is distinct from that of mature neurotrophins, consisting of sortilin, a type I membrane protein belonging to the VPS10p family, and its co-receptor, the classic low-affinity neurotrophin receptor p75NTR. Here, we review how this new receptor system may itself function with or independently of the classic TrkA system in regulating inflammatory or neuropathic pain.
Collapse
Affiliation(s)
- Gary R Lewin
- Department of Neuroscience, Molecular Physiology of Somatic Sensation Group, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, 13122, Berlin, Germany
| | | |
Collapse
|
31
|
Capsoni S. From genes to pain: nerve growth factor and hereditary sensory and autonomic neuropathy type V. Eur J Neurosci 2014; 39:392-400. [DOI: 10.1111/ejn.12461] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 11/10/2013] [Accepted: 11/20/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Simona Capsoni
- Laboratory of Biology; Scuola Normale Superiore; Piazza dei Cavalieri 7, 56126 Pisa Italy
| |
Collapse
|
32
|
Genes, molecules and patients--emerging topics to guide clinical pain research. Eur J Pharmacol 2013; 716:188-202. [PMID: 23500200 PMCID: PMC3793871 DOI: 10.1016/j.ejphar.2013.01.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 12/20/2012] [Accepted: 01/09/2013] [Indexed: 01/23/2023]
Abstract
This review selectively explores some areas of pain research that, until recently, have been poorly understood. We have chosen four topics that relate to clinical pain and we discuss the underlying mechanisms and related pathophysiologies contributing to these pain states. A key issue in pain medicine involves crucial events and mediators that contribute to normal and abnormal pain signaling, but remain unseen without genetic, biomarker or imaging analysis. Here we consider how the altered genetic make-up of familial pains reveals the human importance of channels discovered by preclinical research, followed by the contribution of receptors as stimulus transducers in cold sensing and cold pain. Finally we review recent data on the neuro-immune interactions in chronic pain and the potential targets for treatment in cancer-induced bone pain.
Collapse
|
33
|
McKelvey L, Shorten GD, O'Keeffe GW. Nerve growth factor-mediated regulation of pain signalling and proposed new intervention strategies in clinical pain management. J Neurochem 2013; 124:276-289. [PMID: 23157347 DOI: 10.1111/jnc.12093] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/16/2012] [Accepted: 11/07/2012] [Indexed: 01/29/2023]
Abstract
Nerve growth factor (NGF) is the founding member of the neurotrophins family of proteins. It was discovered more than half a century ago through its ability to promote sensory and sympathetic neuronal survival and axonal growth during the development of the peripheral nervous system, and is the paradigmatic target-derived neurotrophic factor on which the neurotrophic hypothesis is based. Since that time, NGF has also been shown to play a key role in the generation of acute and chronic pain and in hyperalgesia in diverse pain states. NGF is expressed at high levels in damaged or inflamed tissues and facilitates pain transmission by nociceptive neurons through a variety of mechanisms. Genetic mutations in NGF or its tyrosine kinase receptor TrkA, lead to a congenital insensitivity or a decreased ability of humans to perceive pain. The hereditary sensory autonomic neuropathies (HSANs) encompass a spectrum of neuropathies that affect one's ability to perceive sensation. HSAN type IV and HSAN type V are caused by mutations in TrkA and NGF respectively. This review will focus firstly on the biology of NGF and its role in pain modulation. We will review neuropathies and clinical presentations that result from the disruption of NGF signalling in HSAN type IV and HSAN type V and review current advances in developing anti-NGF therapy for the clinical management of pain.
Collapse
Affiliation(s)
- Laura McKelvey
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
34
|
Marchetti L, Callegari A, Luin S, Signore G, Viegi A, Beltram F, Cattaneo A. Ligand signature in the membrane dynamics of single TrkA receptor molecules. J Cell Sci 2013; 126:4445-56. [DOI: 10.1242/jcs.129916] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The neurotrophin receptor TrkA is critically involved in several physio-pathological processes. Still, a clear description of the early steps of ligand-induced TrkA responses at the cell plasma membrane is missing. Here we exploit single particle tracking (SPT) and TIRF microscopy to study TrkA membrane lateral mobility and changes of oligomerization state upon binding of diverse TrkA agonists (NGF, NGF R100E HSANV mutant, proNGF and NT-3). We show that, in the absence of ligands, most of TrkA receptors are fast moving monomers characterized by an average diffusion coefficient of 0.47 µm2/s; about 20% TrkA molecules are moving at least an order of magnitude slower and around 4% are almost immobile within regions of about 0.6 µm diameter. Ligand binding results in increased slow and/or immobile populations over the fast one, slowing down of non-immobile trajectories and reduction of confinement areas, observations which are consistent with the formation of receptor dimeric and oligomeric states. We demonstrate that the extent of TrkA lateral mobility modification is strictly ligand-dependent and that each ligand promotes distinct trajectory patterns of TrkA receptors at the cell membrane (ligand “fingerprinting” effect). This ligand-signature of receptor dynamics results from a differential combination of receptor-binding affinity, intracellular effectors recruited in the signalling platforms and formation of signalling/recycling endosome precursors. Thus, our data uncover a close correlation between the initial receptor membrane dynamics triggered upon binding and the specific biological outcomes induced by different ligands for the same receptor.
Collapse
|
35
|
Nerve growth factor and Alzheimer's disease: new facts for an old hypothesis. Mol Neurobiol 2012; 46:588-604. [PMID: 22940884 DOI: 10.1007/s12035-012-8310-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/12/2012] [Indexed: 01/10/2023]
Abstract
Understanding sporadic Alzheimer's disease (AD) onset and progression requires an explanation of what triggers the common core of abnormal processing of the amyloid precursor protein and tau processing. In the quest for upstream drivers of sporadic, late-onset AD neurodegeneration, nerve growth factor (NGF) has a central role. Initially connected to AD on a purely correlative basis, because of its neurotrophic actions on basal forebrain cholinergic neurons, two independent lines of research, reviewed in this article, place alterations of NGF processing and signaling at the center stage of a new mechanism, leading to the activation of amyloidogenesis and tau processing. Thus, experimental studies on NGF deficit induced neurodegeneration in transgenic mice, as well as the mechanistic studies on the anti-amyloidogenic actions of NGF/TrkA signaling in primary neuronal cultures demonstrated a novel causal link between neurotrophic signaling deficits and Alzheimer's neurodegeneration. Around these results, a new NGF hypothesis can be built, with neurotrophic deficits of various types representing an upstream driver of the core AD triad pathology. According to the new NGF hypothesis for AD, therapies aimed at reestablishing a correct homeostatic balance between ligands (and receptors) of the NGF pathway appear to have a clear and strong rationale, not just as long-term cholinergic neuroprotection, but also as a truly disease-modifying approach.
Collapse
|
36
|
Capsoni S, Marinelli S, Ceci M, Vignone D, Amato G, Malerba F, Paoletti F, Meli G, Viegi A, Pavone F, Cattaneo A. Intranasal "painless" human Nerve Growth Factor [corrected] slows amyloid neurodegeneration and prevents memory deficits in App X PS1 mice. PLoS One 2012; 7:e37555. [PMID: 22666365 PMCID: PMC3364340 DOI: 10.1371/journal.pone.0037555] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/25/2012] [Indexed: 02/02/2023] Open
Abstract
Nerve Growth Factor (NGF) is being considered as a therapeutic candidate for Alzheimer's disease (AD) treatment but the clinical application is hindered by its potent pro-nociceptive activity. Thus, to reduce systemic exposure that would induce pain, in recent clinical studies NGF was administered through an invasive intracerebral gene-therapy approach. Our group demonstrated the feasibility of a non-invasive intranasal delivery of NGF in a mouse model of neurodegeneration. NGF therapeutic window could be further increased if its nociceptive effects could be avoided altogether. In this study we exploit forms of NGF, mutated at residue R100, inspired by the human genetic disease HSAN V (Hereditary Sensory Autonomic Neuropathy Type V), which would allow increasing the dose of NGF without triggering pain. We show that "painless" hNGF displays full neurotrophic and anti-amyloidogenic activities in neuronal cultures, and a reduced nociceptive activity in vivo. When administered intranasally to APPxPS1 mice ( n = 8), hNGFP61S/R100E prevents the progress of neurodegeneration and of behavioral deficits. These results demonstrate the in vivo neuroprotective and anti-amyloidogenic properties of hNGFR100 mutants and provide a rational basis for the development of "painless" hNGF variants as a new generation of therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
- Simona Capsoni
- European Brain Research Institute, Rome, Italy
- Scuola Normale Superiore, Pisa, Italy
| | - Sara Marinelli
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | | | | | - Francesca Malerba
- European Brain Research Institute, Rome, Italy
- Scuola Normale Superiore, Pisa, Italy
| | | | | | | | - Flaminia Pavone
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Antonino Cattaneo
- European Brain Research Institute, Rome, Italy
- Scuola Normale Superiore, Pisa, Italy
- * E-mail:
| |
Collapse
|
37
|
Rotthier A, Baets J, Timmerman V, Janssens K. Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nat Rev Neurol 2012; 8:73-85. [PMID: 22270030 DOI: 10.1038/nrneurol.2011.227] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hereditary sensory and autonomic neuropathies (HSANs) are a clinically and genetically heterogeneous group of disorders of the PNS. Progressive degeneration, predominantly of sensory and autonomic neurons, is the main pathological feature in patients with HSAN, and causes prominent sensory loss and ulcerative mutilations in combination with variable autonomic and motor disturbances. Advances in molecular genetics have enabled identification of disease-causing mutations in 12 genes, and studies on the functional effects of these mutations are underway. Although some of the affected proteins--such as nerve growth factor and its receptor--have obvious nerve-specific roles, others are ubiquitously expressed proteins that are involved in sphingolipid metabolism, vesicular transport, transcription regulation and structural integrity. An important challenge in the future will be to understand the common molecular pathways that result in HSANs. Unraveling the mechanisms that underlie sensory and autonomic neurodegeneration could assist in identifying targets for future therapeutic strategies in patients with HSAN. This Review highlights key advances in the understanding of HSANs, including insights into the molecular mechanisms of disease, derived from genetic studies of patients with these disorders.
Collapse
Affiliation(s)
- Annelies Rotthier
- VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | | | | | | |
Collapse
|
38
|
Malerba F, Paoletti F, Capsoni S, Cattaneo A. Intranasal delivery of therapeutic proteins for neurological diseases. Expert Opin Drug Deliv 2011; 8:1277-96. [PMID: 21619468 DOI: 10.1517/17425247.2011.588204] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Among the range of therapeutic protein candidates for new generation treatments of neurological diseases, neurotrophic factors and recombinant antibodies hold the greatest potential. However, major difficulties in their safe and effective delivery to the brain severely limit these applications. The BBB restricts the exchange of proteins between the plasma and the CNS. Moreover, therapeutic proteins often need to be selectively targeted to the brain, while minimizing their biodistribution to systemic compartments, to avoid peripheral side effects. The intranasal delivery of proteins has recently emerged as a non-invasive, safe and effective method to target proteins to the CNS, bypassing the BBB and minimizing systemic exposure. AREAS COVERED We critically summarize the main experimental and mechanistic facts about the simple and non-invasive nasal delivery approach, which provides a promising strategy and a potential solution for the severe unmet medical need of safely and effectively delivering protein therapeutics to the brain. EXPERT OPINION The intranasal route for the effective delivery of recombinant therapeutic proteins represents an emerging and promising non-invasive strategy. Future studies will achieve a detailed understanding of pharmacokinetic and mechanisms of delivery to optimize formulations and fully exploit the nose-to-brain interface in order to deliver proteins for the treatment of neurological diseases. This expanding research area will most likely produce exciting results in the near future towards new therapeutical approaches for the CNS.
Collapse
|
39
|
Capsoni S, Covaceuszach S, Marinelli S, Ceci M, Bernardo A, Minghetti L, Ugolini G, Pavone F, Cattaneo A. Taking pain out of NGF: a "painless" NGF mutant, linked to hereditary sensory autonomic neuropathy type V, with full neurotrophic activity. PLoS One 2011; 6:e17321. [PMID: 21387003 PMCID: PMC3046150 DOI: 10.1371/journal.pone.0017321] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/28/2011] [Indexed: 01/07/2023] Open
Abstract
During adulthood, the neurotrophin Nerve Growth Factor (NGF) sensitizes nociceptors, thereby increasing the response to noxious stimuli. The relationship between NGF and pain is supported by genetic evidence: mutations in the NGF TrkA receptor in patients affected by an hereditary rare disease (Hereditary Sensory and Autonomic Neuropathy type IV, HSAN IV) determine a congenital form of severe pain insensitivity, with mental retardation, while a mutation in NGFB gene, leading to the aminoacid substitution R100W in mature NGF, determines a similar loss of pain perception, without overt cognitive neurological defects (HSAN V). The R100W mutation provokes a reduced processing of proNGF to mature NGF in cultured cells and a higher percentage of neurotrophin secreted is in the proNGF form. Moreover, using Surface Plasmon Resonance we showed that the R100W mutation does not affect NGF binding to TrkA, while it abolishes NGF binding to p75NTR receptors. However, it remains to be clarified whether the major impact of the mutation is on the biological function of proNGF or of mature NGF and to what extent the effects of the R100W mutation on the HSAN V clinical phenotype are developmental, or whether they reflect an impaired effectiveness of NGF to regulate and mediate nociceptive transmission in adult sensory neurons. Here we show that the R100 mutation selectively alters some of the signaling pathways activated downstream of TrkA NGF receptors. NGFR100 mutants maintain identical neurotrophic and neuroprotective properties in a variety of cell assays, while displaying a significantly reduced pain-inducing activity in vivo (n = 8-10 mice/group). We also show that proNGF has a significantly reduced nociceptive activity, with respect to NGF. Both sets of results jointly contribute to elucidating the mechanisms underlying the clinical HSAN V manifestations, and to clarifying which receptors and intracellular signaling cascades participate in the pain sensitizing action of NGF.
Collapse
Affiliation(s)
- Simona Capsoni
- European Brain Research Institute, Rome,
Italy
- Scuola Normale Superiore, Pisa,
Italy
| | | | - Sara Marinelli
- Institute of Neuroscience, Consiglio Nazionale
delle Ricerche, Rome, Italy
| | | | - Antonietta Bernardo
- Department of Cell Biology and Neurosciences,
Istituto Superiore di Sanità, Rome, Italy
| | - Luisa Minghetti
- Department of Cell Biology and Neurosciences,
Istituto Superiore di Sanità, Rome, Italy
| | | | - Flaminia Pavone
- Institute of Neuroscience, Consiglio Nazionale
delle Ricerche, Rome, Italy
| | - Antonino Cattaneo
- European Brain Research Institute, Rome,
Italy
- Scuola Normale Superiore, Pisa,
Italy
| |
Collapse
|
40
|
Calissano P, Amadoro G, Matrone C, Ciafrè S, Marolda R, Corsetti V, Ciotti MT, Mercanti D, Di Luzio A, Severini C, Provenzano C, Canu N. Does the term ‘trophic’ actually mean anti-amyloidogenic? The case of NGF. Cell Death Differ 2010; 17:1126-33. [DOI: 10.1038/cdd.2010.38] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|