1
|
Kuhlmann L, Stritzelberger J, Fietkau R, Distel LV, Hamer HM. Radiosensitivity in individuals with tuberous sclerosis complex. Discov Oncol 2024; 15:525. [PMID: 39367202 PMCID: PMC11452609 DOI: 10.1007/s12672-024-01395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Benign tumors, but rarely cancer, are common in patients with tuberous sclerosis complex (TSC). Blood samples from patients undergoing treatment for TSC at our institution were analyzed for their individual sensitivity to ionizing radiation. Blood samples were collected from 13 adult patients with TSC. The samples were irradiated ex vivo and analyzed by 3-color fluorescence in situ hybridization. In each patient, aberrations were analyzed in 200 metaphases of chromosomes 1, 2, and 4 and scored as breaks. Radiosensitivity was determined by mean breaks per metaphase (B/M) and compared to both healthy donors and oncologic patients. The radiosensitivity (B/M) of the TSC patient cohort (n = 13; female: 46.2%, B/M: 0.48 ± 0.11) was clearly increased compared to healthy individuals of similar age (n = 90; female: 54.4%; B/M: 0.40 ± 0.09; p = 0.001). There was no difference compared to age-matched oncological patients (n = 78; female: 67.9%; B/M 0.49 ± 0.14; p = 0.246). Similarly, the proportion of radiosensitive (B/M > 0.5) and distinctly radiosensitive individuals (B/M > 0.6) was increased in the TSC and oncological patient cohorts (TSC: 30.8% and 7.7%, oncological patients: 46.2% and 14.1%) compared to the healthy individuals (11.1% and 2.2%). Although patients with TSC develop mostly benign and rarely malignant tumors, they are similarly sensitive to radiation as patients with malignant tumors.
Collapse
Affiliation(s)
- Lukas Kuhlmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, 91054, Erlangen, Germany
| | - Jenny Stritzelberger
- ERN EpiCARE, Epilepsy Center, Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, 91054, Erlangen, Germany
| | - Luitpold V Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN, 91054, Erlangen, Germany.
| | - Hajo M Hamer
- ERN EpiCARE, Epilepsy Center, Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Kitano T, Nishikawa K, Takagaki T, Sugitani Y, Hino O, Kobayashi T. Induction by rapamycin and proliferation‑promoting activity of Hspb1 in a Tsc2‑deficient cell line. Exp Ther Med 2023; 26:315. [PMID: 37273756 PMCID: PMC10236050 DOI: 10.3892/etm.2023.12014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/21/2023] [Indexed: 06/06/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is an intractable inherited disease caused by a germline mutation in either the TSC complex subunit 1 (TSC1) or TSC2 tumor suppressor genes. Recent progress in the treatment of TSC with rapamycin has provided benefits to patients with TSC. However, the complete elimination of tumors is difficult to achieve as regrowth often occurs after a drug is suspended; thus, more efficient medication and novel therapeutic targets are required. To overcome tumor remnants in the treatment of TSC, the present study investigated rapamycin-responsive signaling pathways in Tsc2-deficient tumor cells, focusing on heat shock protein-related pathways. The expression levels of heat shock protein family B (small) member 1 (Hspb1; also known as HSP25/27) were increased by rapamycin treatment. The phosphorylation of Hspb1 was also increased. The knockdown of Hspb1 suppressed cell proliferation in the absence of rapamycin, and the overexpression of Hspb1 enhanced cell proliferation both in the presence and absence of rapamycin. Pathways associated with Hspb1 may present target candidates for treatment of TSC.
Collapse
Affiliation(s)
- Takayuki Kitano
- Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Keiko Nishikawa
- Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Tetsuya Takagaki
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Yoshinobu Sugitani
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Okio Hino
- Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Toshiyuki Kobayashi
- Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
3
|
Backe SJ, Woodford MR, Ahanin E, Sager RA, Bourboulia D, Mollapour M. Impact of Co-chaperones and Posttranslational Modifications Toward Hsp90 Drug Sensitivity. Subcell Biochem 2023; 101:319-350. [PMID: 36520312 PMCID: PMC10077965 DOI: 10.1007/978-3-031-14740-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modifications (PTMs) regulate myriad cellular processes by modulating protein function and protein-protein interaction. Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone whose activity is responsible for the stabilization and maturation of more than 300 client proteins. Hsp90 is a substrate for numerous PTMs, which have diverse effects on Hsp90 function. Interestingly, many Hsp90 clients are enzymes that catalyze PTM, demonstrating one of the several modes of regulation of Hsp90 activity. Approximately 25 co-chaperone regulatory proteins of Hsp90 impact structural rearrangements, ATP hydrolysis, and client interaction, representing a second layer of influence on Hsp90 activity. A growing body of literature has also established that PTM of these co-chaperones fine-tune their activity toward Hsp90; however, many of the identified PTMs remain uncharacterized. Given the critical role of Hsp90 in supporting signaling in cancer, clinical evaluation of Hsp90 inhibitors is an area of great interest. Interestingly, differential PTM and co-chaperone interaction have been shown to impact Hsp90 binding to its inhibitors. Therefore, understanding these layers of Hsp90 regulation will provide a more complete understanding of the chaperone code, facilitating the development of new biomarkers and combination therapies.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
4
|
Shi H, Wang J, Liu F, Hu X, Lu Y, Yan S, Dai D, Yang X, Zhu Z, Guo Q. Proteome and phosphoproteome profiling reveals the regulation mechanism of hibernation in a freshwater leech (Whitmania pigra). J Proteomics 2020; 229:103866. [PMID: 32736137 DOI: 10.1016/j.jprot.2020.103866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/15/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Abstract
Hibernation is an energy-saving and adaptive strategy adopted by leech, an important medicinal resource in Asia, to survive low temperature. Reversible protein phosphorylation (RPP) plays a key role in the regulation of mammalian hibernation processes but has never been documented in freshwater invertebrate such as leech. In this study, we detected the effects of hibernation on the proteome and phosphoproteome of the leech Whitmania pigra. A total of 2184 proteins and 2598 sites were quantified. Deep-hibernation resulted in 85 up-regulated and 107 down-regulated proteins and 318 up-regulated and 204 down-regulated phosphosites using a 1.5-fold threshold (P<0.05). Proteins involved in protein digestion and absorption, amino acid metabolism and N-glycan biosynthesis were significantly down-regulated during deep-hibernation. However, proteins involved in maintaining cell structure stability in hibernating animals were up-regulated. Differentially phosphorylated proteins provided the first global picture of a shift in energy metabolism, protein synthesis, cytoprotection and signaling during deep hibernation. Furthermore, AMP-activated protein kinase and protein kinase C play major roles in the regulation of these functional processes. These data significantly improve our understanding of the regulatory mechanisms of leech hibernation processes and provides substantial candidate phosphorylated proteins that could be important for functionally adapt in freshwater animals. SIGNIFICANCE: The leech Whitmania pigra as an important medicinal resource in Asia is an excellent model freshwater invertebrate for studies of environmentally-induced hibernation. The present study provides the first quantitative proteomics and phosphoproteomic analysis of leech hibernation using isobaric tag based TMT labeling and high-resolution mass spectrometry. These data significantly improve our understanding of the regulatory mechanisms when ectotherm animals face environmental stress and provides substantial candidate phosphorylated proteins that could be important for functionally adapt in freshwater animals.
Collapse
Affiliation(s)
- Hongzhuan Shi
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Wang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Liu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangjing Hu
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Yiming Lu
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Shimeng Yan
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Daoxin Dai
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Xibin Yang
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Zaibiao Zhu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Natarajan N, Shaik A, Thiruvenkatam V. Recombinant Tumor Suppressor TSC1 Differentially Interacts with Escherichia coli DnaK and Human HSP70. ACS OMEGA 2020; 5:19131-19139. [PMID: 32775915 PMCID: PMC7408181 DOI: 10.1021/acsomega.0c02480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Tuberous sclerosis complex (TSC) is a neurological syndrome manifested by non-cancerous tumors in several organs. Mutations in either TSC1 or TSC2 tumor suppressor gene cause the disease. In the cell, TSC1 is known to form a heterodimer with TSC2 because of which an active complex is formed that negatively regulates the mTORC1 activity during cellular stress. Hence, mutation in TSC1 or TSC2 is manifested by excess proliferation of the cells leading to the development of numerous benign tumors. The TSC1 and TSC2 complex is known to interact with several protein-binding partners. One such significant interaction of this complex is with the molecular chaperone HSP70. The role of TSC1 in that interaction is still elusive. Here, we have expressed and purified TSC1 (302-420 residues) in a bacterial expression system and have shown that this region directly interacts with HSP70. We have shown that TSC1 increases the ATPase activity of Escherichia coli DnaK, a HSP70 homologue. On the contrary, TSC1 was found to show inhibitory activity toward human HSP70. Our result suggests that TSC1 (302-420 aa) shows differential interaction between the HSP70 homologues. This points toward the evolutionary significance of chaperoning system and the importance of eukaryotic tetratricopeptide repeat domain interaction motif -EEVD. Our study shows the evidence that TSC1 interacts with HSP70 and has a role to play in the chaperoning activity to maintain cellular homeostasis.
Collapse
Affiliation(s)
- Nalini Natarajan
- Discipline
of Biological Engineering, Indian Institute
of Technology Gandhinagar, Simkheda, Palaj, Gandhinagar, 382355 Gujarat, India
| | - Althaf Shaik
- Discipline
of Chemistry, Indian Institute of Technology
Gandhinagar, Simkheda, Palaj, Gandhinagar, 382355 Gujarat, India
| | - Vijay Thiruvenkatam
- Discipline
of Biological Engineering, Indian Institute
of Technology Gandhinagar, Simkheda, Palaj, Gandhinagar, 382355 Gujarat, India
| |
Collapse
|
6
|
Inoue H, Uyama T, Hayashi J, Watanabe A, Kobayashi KI, Tadokoro T, Yamamoto Y. N-Formyl-3,4-methylenedioxy-benzylidene-gamma-butyrolaetam, KNK437 induces caspase-3 activation through inhibition of mTORC1 activity in Cos-1 cells. Biochem Biophys Res Commun 2010; 395:56-60. [PMID: 20350529 DOI: 10.1016/j.bbrc.2010.03.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 03/20/2010] [Indexed: 01/12/2023]
Abstract
The mammalian target of rapamycin complex 1 (mTORC1: mTOR-raptor interaction) and heat shock protein 70 (Hsp70) regulate various cellular processes and are crucial for the progression of many cancers and metabolic diseases. In the recent study, we reported that interaction of Hsp70 with tuberous sclerosis complex 1 (TSC1) regulated apoptosis. This study was designed to elucidate the underlying mechanism in Cos-1 cells. Here, we show that N-formyl-3,4-methylenedioxy-benzylidene-gamma-butyrolaetam (KNK437), which inhibits the expression level of Hsp70, abrogated phosphorylation of mTOR and S6K in response to insulin, and inhibited mTORC1 activity via disruption of an interaction between mTOR and raptor. In addition, KNK437 did not alter TSC1/2 complex formation. Furthermore, KNK437 inhibited the mTOR-raptor interaction on the outer membrane of the mitochondria and triggered caspase-3 activation. A reduction in the level of Hsp70 could result in the inhibition of the mTORC1 signaling pathway, thereby inducing apoptosis.
Collapse
Affiliation(s)
- Hirofumi Inoue
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | | | | | | | |
Collapse
|