1
|
Dhamodaran K, Baidouri H, Nartey A, Staverosky J, Keller K, Acott T, Vranka J, Raghunathan V. Endogenous expression of Notch pathway molecules in human trabecular meshwork cells. Exp Eye Res 2022; 216:108935. [PMID: 35033558 PMCID: PMC8885976 DOI: 10.1016/j.exer.2022.108935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Cells in the trabecular meshwork sense and respond to a myriad of physical forces through a process known as mechanotransduction. Whilst the effect of substratum stiffness or stretch on TM cells have been investigated in the context of transforming growth factor (TGF-β), Wnt and YAP/TAZ pathways, the role of Notch signaling, an evolutionarily conserved pathway, recently implicated in mechanotransduction, has not been investigated in trabecular meshwork (TM) cells. Here, we compare the endogenous expression of Notch pathway molecules in TM cells from glaucomatous and non-glaucomatous donors, segmental flow regions, and when subjected to cyclical strain, or grown on hydrogels of varying rigidity. METHODS Primary TM from glaucomatous (GTM), non-glaucomatous (NTM) donors, and from segmental flow regions [high flow (HF), low flow (LF)], were utilized between passages 2-6. Cells were (i) plated on tissue culture plastic, (ii) subjected to cyclical strain (6 h and 24 h), or (iii) cultured on 3 kPa and 80 kPa hydrogels. mRNA levels of Notch receptors/ligands/effectors in the TM cells was determined by qRT-PCR. Phagocytosis was determined as a function of substratum stiffness in NTM-HF/LF cells in the presence or absence of 100 nM Dexamethasone treatment. RESULTS Innate expression of Notch pathway genes were significantly overexpressed in GTM cells with no discernible differences observed between HF/LF cells in either NTM or GTM cells cultured on plastic substrates. With 6 h of cyclical strain, a subset of Notch pathway genes presented with altered expression. Expression of Notch receptors/ligands/receptors/inhibitors progressively declined with increasing stiffness and this correlated with phagocytic ability of NTM cells. Dexamethasone treatment decreased phagocytosis regardless of stiffness or cells isolated from segmental outflow regions. CONCLUSIONS We demonstrate here that the Notch expression in cultured TM cells differ intrinsically between GTM vs NTM, and by substratum cues (cyclical strain and stiffness). Of import, the most apparent differences in gene expression were observed as a function of substratum stiffness which closely followed phagocytic ability of cells. Interestingly, on soft substrates (mimicking normal TM stiffness) Notch expression and phagocytosis was highest, while both expression and phagocytosis was significantly lower on stiffer substrates (mimicking glaucomatous stiffness) regardless of DEX treatment. Such context dependent changes suggest Notch pathway may play differing roles in disease vs homeostasis. Studies focused on understanding the mechanistic role of Notch (if any) in outflow homeostasis are thus warranted.
Collapse
Affiliation(s)
- Kamesh Dhamodaran
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Hasna Baidouri
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Andrews Nartey
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Julia Staverosky
- Casey Eye Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Kate Keller
- Casey Eye Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Ted Acott
- Casey Eye Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Janice Vranka
- Casey Eye Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA,Department of Biomedical Engineering, University of Houston, Houston, TX, USA,Correspondence should be sent to: VijayKrishna Raghunathan, Ph.D., University of Houston, College of Optometry, 4901 Calhoun Rd, Houston, TX, 77204, Phone: (713)-743-8331,
| |
Collapse
|
2
|
Amiri N, Golin AP, Jalili RB, Ghahary A. Roles of cutaneous cell-cell communication in wound healing outcome: An emphasis on keratinocyte-fibroblast crosstalk. Exp Dermatol 2021; 31:475-484. [PMID: 34932841 DOI: 10.1111/exd.14516] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/28/2021] [Accepted: 12/19/2021] [Indexed: 01/13/2023]
Abstract
Tissue repair is a very complex event and involves a continuously orchestrated sequence of signals and responses from platelets, fibroblasts, epithelial, endothelial and immune cells. The details of interaction between these signals, which are mainly growth factors and cytokines, have been widely discussed. However, it is still not clear how activated cells at wound sites lessen their activities after epithelialization is completed. Termination of the wound healing process requires a fine balance between extracellular matrix (ECM) deposition and degradation. Maintaining this balance requires highly accurate epithelial-mesenchymal communication and correct information exchange between keratinocytes and fibroblasts. As it has been reported in the literature, a disruption in epithelialization during the process of wound healing increases the frequency of developing chronic wounds or fibrotic conditions, as seen in a variety of clinical cases. Conversely, the potential stop signal for wound healing should have a regulatory role on both ECM synthesis and degradation to reach a successful wound healing outcome. This review briefly describes the potential roles of growth factors and cytokines in controlling the early phase of wound healing and predominantly explores the role of releasable factors from epithelial-mesenchymal interaction in controlling during and the late stage of the healing process. Emphasis will be given on the crosstalk between keratinocytes and fibroblasts in ECM modulation and the healing outcome following a brief discussion of the wound healing initiation mechanism. In particular, we will review the termination of acute dermal wound healing, which frequently leads to the development of hypertrophic scarring.
Collapse
Affiliation(s)
- Nafise Amiri
- Department of Surgery, International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew P Golin
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Reza B Jalili
- Department of Surgery, International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Aziz Ghahary
- Department of Surgery, International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Lu Q, Zhang Y, Kasetti RB, Gaddipati S, Cvm NK, Borchman D, Li Q. Heterozygous Loss of Yap1 in Mice Causes Progressive Cataracts. Invest Ophthalmol Vis Sci 2021; 61:21. [PMID: 33085740 PMCID: PMC7585397 DOI: 10.1167/iovs.61.12.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Yap1 encodes an evolutionarily conserved transcriptional coactivator and functions as a down-stream effector of the Hippo signaling pathway that controls tissue size and cell growth. Yap1 contributes to lens epithelial development. However, the effect of Yap1 haplodeficiency on the lens epithelium and its role in the development of cataracts has not been reported. The aim of the current study is to investigate Yap1 function and its regulatory mechanisms in lens epithelial cells (LECs). Methods Lens phenotypes were investigated in Yap1 heterozygous mutant mice by visual observation and histological and biochemical methods. Primary LEC cultures were used to study regulatory molecular mechanism. Results The heterozygous inactivation of Yap1 in mice caused cataracts during adulthood with defective LEC phenotypes. Despite a normal early development of the eye including the lens, the majority of Yap1 heterozygotes developed cataracts in the first six months of age. Cataract was preceded by multiple morphological defects in the lens epithelium, including decreased cell density and abnormal cell junctions. The low LEC density was coincident with reduced LEC proliferation. In addition, expression of the Yap1 target gene Crim1 was reduced in the Yap1+/− LEC, and overexpression of Crim1 restored Yap1+/− LEC cell proliferation in vitro. Conclusions Homozygosity of the Yap1 gene was critical for adequate Crim1 expression needed to maintain the constant proliferation of LEC and to maintain a normal-sized lens. Yap1 haplodeficiency leads to cataracts.
Collapse
Affiliation(s)
- Qingxian Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Yingnan Zhang
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Ramesh Babu Kasetti
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Subhash Gaddipati
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Naresh Kumar Cvm
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Douglas Borchman
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Qiutang Li
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| |
Collapse
|
4
|
|
5
|
Dhamodaran K, Subramani M, Krishna L, Matalia H, Jayadev C, Chinnappaiah N, Shetty R, Das D. Temporal Regulation of Notch Signaling and Its Influence on the Differentiation of Ex Vivo Cultured Limbal Epithelial Cells. Curr Eye Res 2019; 45:459-470. [PMID: 31558050 DOI: 10.1080/02713683.2019.1673436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Purpose: Notch signaling plays a vital role in the differentiation and proliferation of corneal epithelial cells from limbal stem cells. The temporal regulation of Notch signaling during this differentiation remains unknown. Hence, we investigated the importance of temporal activation/blockage of Notch signaling during corneal differentiation.Methods: Human limbal epithelial cultures were established with and without Notch activators (rec-Human Jagged1 Fc chimera) and pharmacological blockers (LY-411575). The modulation of Notch signaling was done at different time points during cell differentiation, which were collected on Day 14 for further analysis of differentiation, proliferation, maturation and apoptosis using RT-qPCR and immunofluorescence staining.Results: The activation of Notch signaling at Day 8 resulted in the highest number of mature corneal epithelial cells (p = .008) and pro-apoptosis marker BAX (p = .0001) with no increase in the number of corneal progenitors, and proliferation marker Ki67 compared to untreated controls. Cultures grown in the presence of Notch signaling blockers showed a significantly higher number of corneal progenitors (p = .0001) and proliferation marker Ki67 (p = .02) but lower corneal epithelial marker CK3/CK12 (p = .0007) and no difference in the pro-apoptotic marker BAX compared to untreated controls.Conclusion: During the differentiation of limbal epithelial cells to the corneal epithelial cell type, Day 8 seems to be a crucial window to modulate Notch signaling for a customized outcome.
Collapse
Affiliation(s)
- Kamesh Dhamodaran
- Stem Cell Research Lab, GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Murali Subramani
- Stem Cell Research Lab, GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Lekshmi Krishna
- Stem Cell Research Lab, GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Himanshu Matalia
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Chaitra Jayadev
- Department of Vitreo-retinal services, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Nandini Chinnappaiah
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Debashish Das
- Stem Cell Research Lab, GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| |
Collapse
|
6
|
Haberzettl P, Conklin DJ, Abplanalp WT, Bhatnagar A, O'Toole TE. Inhalation of Fine Particulate Matter Impairs Endothelial Progenitor Cell Function Via Pulmonary Oxidative Stress. Arterioscler Thromb Vasc Biol 2017; 38:131-142. [PMID: 29191925 DOI: 10.1161/atvbaha.117.309971] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 11/20/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Exposure to fine particulate matter (PM2.5) air pollution is associated with the depletion of circulating endothelial progenitor cells (EPCs), as well as vascular injury and dysfunction. Nevertheless, it remains unclear whether PM2.5 exposure leads to significant impairments in EPC function. Hence, we studied the effects of PM2.5 on EPC-mediated recovery of vascular perfusion after hindlimb ischemia and examined the mechanisms whereby PM2.5 exposure affects EPC abundance and function. APPROACH AND RESULTS In comparison with EPCs isolated from mice breathing filtered air, EPCs from mice exposed for 9 consecutive days (6 hours per day) to concentrated ambient PM2.5 (CAP) had defects in both proliferation and tube formation. However, CAP exposure of mice overexpressing extracellular superoxide dismutase (ecSOD-Tg) in the lungs did not affect EPC tube formation. Exposure to CAP also suppressed circulating EPC levels, VEGF (vascular endothelial growth factor)-stimulated aortic Akt phosphorylation, and plasma NO levels in wild-type but not in ecSOD-Tg mice. EPCs from CAP-exposed wild-type mice failed to augment basal recovery of hindlimb perfusion when injected into unexposed mice subjected to hindlimb ischemia; however, these deficits in recovery of hindlimb perfusion were absent when using EPCs derived from CAP-exposed ecSOD-Tg mice. The improved reparative function of EPCs from CAP-exposed ecSOD-Tg mice was also reflected by greater expression of Mmp-9 and Nos3 when compared with EPCs from CAP-exposed wild-type mice. CONCLUSIONS Exposure to PM2.5 impairs EPC abundance and function and prevents EPC-mediated vascular recovery after hindlimb ischemia. This defect is attributed, in part, to pulmonary oxidative stress and was associated with vascular VEGF resistance and a decrement in NO bioavailability.
Collapse
Affiliation(s)
- Petra Haberzettl
- From the Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, KY
| | - Daniel J Conklin
- From the Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, KY
| | - Wesley T Abplanalp
- From the Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, KY
| | - Aruni Bhatnagar
- From the Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, KY
| | - Timothy E O'Toole
- From the Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, KY.
| |
Collapse
|
7
|
Piras C, Guo Y, Soggiu A, Chanrot M, Greco V, Urbani A, Charpigny G, Bonizzi L, Roncada P, Humblot P. Changes in protein expression profiles in bovine endometrial epithelial cells exposed to E. coli LPS challenge. MOLECULAR BIOSYSTEMS 2017; 13:392-405. [PMID: 28070584 DOI: 10.1039/c6mb00723f] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
E. coli is one of the most frequently involved bacteria in uterine diseases. Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria involved in pathogenic processes leading to post-partum metritis and endometritis in cattle. It also causes inflammation of the endometrium. The increase of cell proliferation by LPS is part of the inflammatory process. The aim of this study was to investigate possible changes in protein expression in relation to the proliferative response of bEECs after challenge with E. coli-LPS. In vitro culture of bEECs was performed from cow genital tracts collected at a slaughterhouse. In passage 5, bEECs from each of 9 cows (3 series of 3 cows) were exposed to 0, 8, and 16 μg ml-1 LPS for 72 h. At time 0 and 72 h later, attached cells/living cells were counted and for each time and LPS dosage, cells were frozen for proteomic analyses. All samples from the 3 series were analyzed by 2-D gel electrophoresis coupled to MALDI-TOF/TOF mass spectrometry. The samples from the first series were subjected to shotgun nLC-MS/MS analysis. From the whole differential proteomics analysis, 38 proteins were differentially expressed (p < 0.05 to p < 0.001) following exposure to LPS. Among them, twenty-eight were found to be up-regulated in the LPS groups in comparison to control groups and ten were down-regulated. Differentially expressed proteins were associated with cell proliferation and apoptosis, transcription, destabilization of cell structure, oxidative stress, regulation of histones, allergy and general cell metabolism pathways. The de-regulations induced by LPS were consistent with the proliferative phenotype and indicated strong alterations of several cell functions. In addition, some of the differentially expressed proteins relates to pathways activated at the time of implantation. The specific changes induced through those signals may have negative consequences for the establishment of pregnancy.
Collapse
Affiliation(s)
- Cristian Piras
- Dipartimento di Medicina Veterinaria, Università degli studi di Milano, Milano, Italy
| | - Yongzhi Guo
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, Sweden
| | - Alessio Soggiu
- Dipartimento di Medicina Veterinaria, Università degli studi di Milano, Milano, Italy
| | - Metasu Chanrot
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, Sweden and Rajamangala University of Srivijaya (RMUTSV), Thungyai, Thailand
| | - Viviana Greco
- Proteomics and Metabonomics Unit Fondazione Santa Lucia - IRCCS, Rome, Italy
| | - Andrea Urbani
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica, Roma, Italy
| | - Gilles Charpigny
- INRA, Biologie du Développement et Reproduction, 78350, Jouy en Josas, France
| | - Luigi Bonizzi
- Dipartimento di Medicina Veterinaria, Università degli studi di Milano, Milano, Italy
| | - Paola Roncada
- Dipartimento di Medicina Veterinaria, Università degli studi di Milano, Milano, Italy and Istituto Sperimentale Italiano L. Spallanzani, Milano and TechnologieS srl, via Celoria 10, 20133 Milano, Italy.
| | - Patrice Humblot
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, Sweden
| |
Collapse
|
8
|
Proteomic and histopathological characterization of the interface between oral squamous cell carcinoma invasion fronts and non-cancerous epithelia. Exp Mol Pathol 2017; 102:327-336. [DOI: 10.1016/j.yexmp.2017.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/23/2017] [Indexed: 11/21/2022]
|
9
|
Tang Y, Lu Q, Wei Y, Han L, Ji R, Li Q, Lu Q. Mertk deficiency alters expression of micrornas in the retinal pigment epithelium cells. Metab Brain Dis 2015; 30:943-50. [PMID: 25604732 PMCID: PMC4492868 DOI: 10.1007/s11011-015-9653-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
Phagocytic clearance of the spent photoreceptor outer segments (OS) by RPE cells is regulated by circadian rhythm cycle and is essential for photoreceptor integrity and function. Mertk regulates RPE phagocytosis and a deficiency in Mertk causes photoreceptor degeneration and visual loss. This study aimed to investigate Mertk regulation of the microRNAs (miRNA), potentially regulating expression of their target genes, which affect phagocytosis. The differentially expressed miRNAs were identified using miRCURY(TM) microRNA Arrays from total RNA isolated at 0900 h and 1900 h from the mechanically dissociated RPE sheets of the WT and Mertk (-/-) mice, which were housed in a 12-h light-dark cycle with the lighting onset at 0700 h (7:00am). Validation of the differentially expressed miRNAs and assessment of the putative miRNA target gene expression were performed by real-time PCR. Among the differentially expressed miRNAs in the Mertk (-/-) RPE, seven miRNAs were up-regulated and 13 were down-regulated in the morning groups. Similarly, 24 miRNAs were found to be up-regulated and 13 were down-regulated in the evening groups. To search for those that may participate in regulating expression of cytoskeletal proteins, we examined the predicted target genes that might participate in phagocytosis were examined by real-time PCR. Of nine potential altered targets, four deregulated genes were myosin subunits. Notably, multiple members of the 21 up-regulated miRNAs can theoretically recognize these down-regulated mRNAs, particularly MyH14 and Myl3. This study shows that loss of Mertk alters miRNA expression, which in turn affects expression of the downstream target genes, potentially affecting phagocytosis.
Collapse
Affiliation(s)
- Yong Tang
- Faculty of Basic Medical Science, Capital Medical
University, Beijing 100069, China
| | - Qingjun Lu
- Faculty of Basic Medical Science, Capital Medical
University, Beijing 100069, China
- Beijing Institute of Ophthalmology, Beijing Tong-Ren
Hospital, Capital Medical University, Beijing 100069, China
- Beijing Tong-Ren Eye Center, Beijing Tong-Ren Hospital,
Capital Medical University, Beijing 100069, China
| | - Yunrong Wei
- Faculty of Basic Medical Science, Capital Medical
University, Beijing 100069, China
| | - Lixia Han
- Departments of Ophthalmology and Visual Sciences, and
Biochemistry and Molecular Biology; University of Louisville, KY, 40202, USA
| | - Rui Ji
- Departments of Ophthalmology and Visual Sciences, and
Biochemistry and Molecular Biology; University of Louisville, KY, 40202, USA
| | - Qiutang Li
- Departments of Ophthalmology and Visual Sciences, and
Biochemistry and Molecular Biology; University of Louisville, KY, 40202, USA
| | - Qingxian Lu
- Faculty of Basic Medical Science, Capital Medical
University, Beijing 100069, China
- Departments of Ophthalmology and Visual Sciences, and
Biochemistry and Molecular Biology; University of Louisville, KY, 40202, USA
- Address correspondence to: Qingxian Lu,
University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd.,
Louisville, KY 40202, Phone: 1-(502)-852-4768, Fax: 1-(502)-852-6909,
| |
Collapse
|
10
|
Dhamodaran K, Subramani M, Jeyabalan N, Ponnalagu M, Chevour P, Shetty R, Matalia H, Shetty R, Prince SE, Das D. Characterization of ex vivo cultured limbal, conjunctival, and oral mucosal cells: A comparative study with implications in transplantation medicine. Mol Vis 2015; 21:828-45. [PMID: 26283864 PMCID: PMC4522244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 07/29/2015] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Limbal epithelial stem cell deficiency is caused by exposure of the cornea to thermal, chemical, or radiation burns or by diseases (aniridia and Stevens-Johnson syndrome). Autologous cell transplantation is a widely used therapeutic modality for restoring the corneal surface in such pathological conditions. Ex vivo cultured limbal, conjunctival, and oral biopsies have been widely used to reconstruct the corneal surface with variable outcomes. Culture characterization of the ex vivo cultured cells would provide insight and clues into the underlying signaling mechanisms that would aid in determining the probable transplantation outcome. Comparison of the vital proteins and genes among the three ex vivo cultured tissues has implications in clinical practice. To address this issue, we characterized and compared the proliferative and differentiated properties of ex vivo cultured limbal, conjunctival, and oral biopsies used for cell-based therapy for corneal surface restoration. METHODS Limbal, conjunctival, and oral biopsies were collected with informed patient consent. Explant cultures were established on the denuded human amniotic membrane with corneal lineage differentiation medium. The day 14 cultures were characterized for epithelial and corneal lineage-specific markers using reverse transcription (RT)-PCR for cytokeratin 3, 4, 12, 13, 15, connexin 43, vimentin, p63α, and ABCG2 markers. mRNA expression was estimated in day 14 cultures with real-time quantitative real time (qRT)-PCR for pluripotency markers (OCT4, SOX2, NANOG), putative corneal stem cell markers (ABCG2 and p63α), proliferation markers (cyclin d1, Ki-67, PCNA, and CDC20), apoptotic markers (BCL2, BAX, caspase 3, and caspase 9), Notch signaling pathway markers (Notch1, Jagged1, Hes1, Hes3, Hes5, and Hey1), and autophagic markers (LC3A, LC3B, ATG7, RAB7, LAMP1, and LAMP2). Fluorescence-activated cell sorter profiling was performed for pluripotent markers and putative corneal stem cell markers ABCG2 and p63α. RESULTS The protein and mRNA expression levels of the pluripotent markers were lower, whereas those of the putative stem/progenitor markers ABCG2, ΔNp63α, and Notch signaling molecules (Notch1 and Jagged1) were elevated in limbal cultures. The gene expression levels of the autophagy markers (LC3A, LC3B, and LAMP1) were significantly increased in the limbal cultures compared to the oral and conjunctival cultures. CONCLUSIONS In conclusion, the limbal epithelial cultures showed higher expression of proliferative, limbal stem cell marker, Notch signaling, and autophagy markers suggesting a role in stem cell maintenance and differentiation. This implicates the probable factors that might drive a successful transplantation. Our findings provide the initial steps toward understanding transplantation medicine in an ex vivo model.
Collapse
Affiliation(s)
- Kamesh Dhamodaran
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India,School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Murali Subramani
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India,Post-graduate & Research Department of Biotechnology, Jamal Mohamed College, Bharathidasan University, Tiruchirappalli, India
| | - Nallathambi Jeyabalan
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Murugeswari Ponnalagu
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Priyanka Chevour
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Reshma Shetty
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Himanshu Matalia
- Department of Cornea and Refractive surgery, Narayana Nethralaya Post Graduate Institute of Ophthalmology, Narayana Nethralaya Foundation, Narayana Health City, Bommasandra, Bangalore, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive surgery, Narayana Nethralaya Post Graduate Institute of Ophthalmology, Narayana Nethralaya Foundation, Narayana Health City, Bommasandra, Bangalore, Karnataka, India
| | - Sabina Evan Prince
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Debashish Das
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| |
Collapse
|
11
|
14-3-3σ regulates keratinocyte proliferation and differentiation by modulating Yap1 cellular localization. J Invest Dermatol 2015; 135:1621-1628. [PMID: 25668240 PMCID: PMC4430425 DOI: 10.1038/jid.2015.42] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 11/26/2022]
Abstract
The homozygous repeated epilation (Er/Er) mouse mutant of the gene encoding 14-3-3σ displays an epidermal phenotype characterized by hyperproliferative keratinocytes and undifferentiated epidermis. Heterozygous Er/+ mice develop spontaneous skin tumors and are highly sensitive to tumor-promoting DMBA/TPA induction. The molecular mechanisms underlying 14-3-3σ regulation of epidermal proliferation, differentiation, and tumor formation have not been well elucidated. In the present study, we found that Er/Er keratinocytes failed to sequester Yap1 in the cytoplasm, leading to its nuclear localization during epidermal development in vivo and under differentiation-inducing culture conditions in vitro. In addition, enhanced Yap1 nuclear localization was also evident in DMBA/TPA-induced tumors from Er/+ skin. Furthermore, shRNA knockdown of Yap1 expression in Er/Er keratinocytes inhibited their proliferation, suggesting that YAP1 functions as a downstream effector of 14-3-3σ controlling epidermal proliferation. We then demonstrated that keratinocytes express all seven 14-3-3 protein isoforms, some of which form heterodimers with 14-3-3σ, either full-length WT or the mutant form found in Er/Er mice. However Er 14-3-3σ does not interact with Yap1, as demonstrated by co-immunoprecipitation. We conclude that Er 14-3-3σ disrupts the interaction between 14-3-3 and Yap1, thus fails to block Yap1 nuclear transcriptional function, causing continued progenitor expansion and inhibition of differentiation in Er/Er epidermis.
Collapse
|
12
|
Movahedan A, Afsharkhamseh N, Sagha HM, Shah JR, Milani BY, Milani FY, Logothetis HD, Chan CC, Djalilian AR. Loss of Notch1 disrupts the barrier repair in the corneal epithelium. PLoS One 2013; 8:e69113. [PMID: 23874882 PMCID: PMC3715447 DOI: 10.1371/journal.pone.0069113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/06/2013] [Indexed: 11/24/2022] Open
Abstract
The corneal epithelium is the outermost layer of the cornea that directly faces the outside environment, hence it plays a critical barrier function. Previously, conditional loss of Notch1 on the ocular surface was found to cause inflammation and keratinization of the corneal epithelium. This was in part attributed to impaired vitamin A metabolism, loss of the meibomian glands and recurrent eyelid trauma. We hypothesized that Notch1 plays an essential role in the corneal epithelial barrier function and is a contributing factor in the pathologic changes in these mice. Notch1 was conditionally deleted in adult Notch1flox/flox, K14-Cre-ERT+/- mice using hydroxy-tamoxifen. The results indicated that conditional deletion of Notch1 on the ocular surface leads to progressive impairment of the epithelial barrier function before the onset of corneal opacification and keratinization. Loss of the barrier was demonstrated both by an increase in in vivo corneal fluorescein staining and by enhanced penetration of a small molecule through the epithelium. Corneal epithelial wounding resulted in significant delay in recovery of the barrier function in conditional Notch1-/- mice compared to wild type. Mice with conditional deletion of Notch1 did not demonstrate any evidence of dry eyes based on aqueous tear production and had normal conjunctival goblet cells. In a calcium switch experiment in vitro, Notch1-/- cells demonstrated delayed membrane localization of the tight junction protein ZO-1 consistent with a defect in the epithelial tight junction formation. These findings highlight the role of Notch1 in epithelial differentiation and suggest that intrinsic defects in the corneal epithelial barrier recovery after wounding is an important contributing factor to the development of inflammatory keratinization in Notch1-/- mice.
Collapse
Affiliation(s)
- Asadolah Movahedan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Neda Afsharkhamseh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Hossein M. Sagha
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jarna R. Shah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Behrad Y. Milani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Farnoud Y. Milani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Hercules D. Logothetis
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Chi-Chao Chan
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
13
|
Priya CG, Prasad T, Prajna NV, Muthukkaruppan V. Identification of Human Corneal Epithelial Stem Cells on the Basis of High ABCG2 Expression Combined With a LargeN/C Ratio. Microsc Res Tech 2012; 76:242-8. [DOI: 10.1002/jemt.22159] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/11/2012] [Indexed: 12/13/2022]
Affiliation(s)
- Chidambaranathan Gowri Priya
- Department of Immunology; Stem Cell Biology; Aravind Medical Research Foundation; Dr. G. Venkataswamy Eye Research Institute; Madurai; 625 020; Tamil Nadu; India
| | - Tilak Prasad
- Department of Immunology; Stem Cell Biology; Aravind Medical Research Foundation; Dr. G. Venkataswamy Eye Research Institute; Madurai; 625 020; Tamil Nadu; India
| | | | - Veerappan Muthukkaruppan
- Department of Immunology; Stem Cell Biology; Aravind Medical Research Foundation; Dr. G. Venkataswamy Eye Research Institute; Madurai; 625 020; Tamil Nadu; India
| |
Collapse
|
14
|
Bell SM, Zhang L, Xu Y, Besnard V, Wert SE, Shroyer N, Whitsett JA. Kruppel-like factor 5 controls villus formation and initiation of cytodifferentiation in the embryonic intestinal epithelium. Dev Biol 2012; 375:128-39. [PMID: 23266329 DOI: 10.1016/j.ydbio.2012.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/29/2012] [Accepted: 12/14/2012] [Indexed: 12/16/2022]
Abstract
Kruppel-like factor 5 (Klf5) is a transcription factor expressed by embryonic endodermal progenitors that form the lining of the gastrointestinal tract. A Klf5 floxed allele was efficiently deleted from the intestinal epithelium by a Cre transgene under control of the Shh promoter resulting in the inhibition of villus morphogenesis and epithelial differentiation. Although proliferation of the intestinal epithelium was maintained, the expression of Elf3, Pparγ, Atoh1, Ascl2, Neurog3, Hnf4α, Cdx1, and other genes associated with epithelial cell differentiation was inhibited in the Klf5-deficient intestines. At E18.5, Klf5(Δ/Δ) fetuses lacked the apical brush border characteristic of enterocytes, and a loss of goblet and enteroendocrine cells was observed. The failure to form villi was not attributable to the absence of HH or PDGF signaling, known mediators of this developmental process. Klf5-deletion blocked the decrease in FoxA1 and Sox9 expression that accompanies normal villus morphogenesis. KLF5 directly inhibited activity of the FoxA1 promoter, and in turn FOXA1 inhibited Elf3 gene expression in vitro, linking the observed loss of Elf3 with the persistent expression of FoxA1 observed in Klf5-deficient mice. Genetic network analysis identified KLF5 as a key transcription factor regulating intestinal cell differentiation and cell adhesion. These studies indicate a novel requirement for KLF5 to initiate morphogenesis of the early endoderm into a compartmentalized intestinal epithelium comprised of villi and terminally differentiated cells.
Collapse
Affiliation(s)
- Sheila M Bell
- Perinatal Institute, Divisions of Neonatology-Perinatal-Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Hammond NL, Headon DJ, Dixon MJ. The cell cycle regulator protein 14-3-3σ is essential for hair follicle integrity and epidermal homeostasis. J Invest Dermatol 2012; 132:1543-53. [PMID: 22377760 PMCID: PMC3378636 DOI: 10.1038/jid.2012.27] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The 14-3-3σ (Stratifin; Sfn) is a cell cycle regulator intimately involved in the program of epithelial keratinization. 14-3-3σ is unique in that it is expressed primarily in epithelial cells and is frequently silenced in epithelial cancers. Despite its well-documented role as a cell cycle regulator and as a tumor suppressor, the function of 14-3-3σ in the intricate balance of proliferation and differentiation in epithelial development is poorly understood. A mutation in 14-3-3σ was found to be responsible for the repeated epilation (Er) phenotype. It has previously been shown that Sfn(+/Er) mice are characterized by repeated hair loss and regrowth, whereas Sfn(Er/Er) mice die at birth displaying severe oral fusions and limb abnormalities as a result of defects in keratinizing epithelia. Here we show that mice heterozygous for the 14-3-3σ mutation have severe defects in hair shaft differentiation, resulting in destruction of the hair shaft during morphogenesis. Furthermore, we report that the interfollicular epidermis and sebaceous glands are hyperproliferative, coincident with expanded nuclear Yap1 (Yes-associated protein 1)--a critical modulator of epidermal stem cell proliferation. We also report that hair follicle stem cells in the bulge cycle abnormally, raising important questions as to the role of 14-3-3σ in the bulge.
Collapse
Affiliation(s)
- Nigel L. Hammond
- Faculty of Medical and Human Science and Faculty of Life Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester M13 9PT
| | - Denis J. Headon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, EH25 9PS
| | - Michael J. Dixon
- Faculty of Medical and Human Science and Faculty of Life Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester M13 9PT
| |
Collapse
|
16
|
Logan PC, Steiner M, Ponnampalam AP, Mitchell MD. Cell cycle regulation of human endometrial stromal cells during decidualization. Reprod Sci 2012; 19:883-94. [PMID: 22534328 DOI: 10.1177/1933719112438447] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Differentiation of endometrial stromal cells into decidual cells is crucial for optimal endometrial receptivity. Data from our previous microarray study implied that expression of many cell cycle regulators are changed during decidualization and inhibition of DNA methylation in vitro. In this study, we hypothesized that both the classic progestin treatment and DNA methylation inhibition would inhibit stromal cell proliferation and cell cycle transition. METHODS The human endometrial stromal cell line (HESC) was treated from 2 days to 18 days with the DNA methylation inhibitor, 5-aza-2'-deoxycytidine (AZA), a mixture of estradiol/progestin/cyclic adenosine monophosphate ([cAMP]; medroxy-progesterone acetate [MPA mix]) or both. Cell growth was measured by cell counting, cell cycle transition and apoptosis were analyzed by flow cytometry, expression of cell cycle regulators were analyzed by quantitative polymerase chain reaction (qPCR) and Western blotting, and change in DNA methylation profiles were detected by methylation-specific PCR. RESULTS Both AZA and MPA mix inhibited the proliferation of HESC for at least 7 days. Treatment with MPA mix resulted in an early G0/G1 inhibition followed by G2/M phase inhibition at 18 days. In contrast, AZA treatment inhibited cell cycle progression at the G2/M phase throughout. The protein levels of p21(Cip1)and 14-3-3σ were increased with both AZA and MPA mix treatments without any change in the DNA methylation profiles of the genes. CONCLUSIONS Our data imply that the decidualization of HESC is associated with cell cycle arrest at G0/G1 phase initially and G2/M phase at later stages. Our results also suggest that p53 pathway members play a role in the cell cycle regulation of endometrial stromal cells.
Collapse
Affiliation(s)
- Philip C Logan
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
17
|
Li Q, Sambandam SAT, Lu HJ, Thomson A, Kim SH, Lu H, Xin Y, Lu Q. 14-3-3σ and p63 play opposing roles in epidermal tumorigenesis. Carcinogenesis 2011; 32:1782-8. [PMID: 21926108 DOI: 10.1093/carcin/bgr207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
14-3-3σ plays a regulatory role in epidermal epithelial differentiation and loss of 14-3-3σ leads to increased proliferation and impaired differentiation. A tumor suppressor function for 14-3-3σ has been proposed based on the fact that some epithelial-derived tumors lose 14-3-3σ expression. p63, a p53 family member, is a master regulator of epidermal epithelial proliferation and differentiation and is necessary for the epidermal development. The function of p63 in tumorigenesis is still controversial and poorly defined as multiple isoforms have been found to play either collaborative or opposing roles. By using 'repeated epilation' heterozygous (Er/+) mice containing a dominant-negative 14-3-3σ mutation, the functional relationship of p63 with 14-3-3σ in epidermal proliferation, differentiation and tumorigenesis was investigated. It was found that p63, particularly the ΔNp63α isoform, was strongly expressed in 14-3-3σ-deficient keratinocytes and knockdown of p63 remarkably inhibited proliferation in these cells. To study the functional roles of 14-3-3σ and p63 in epidermal tumorigenesis, we adopted a 7,12-dimethylbenzanthracene/12-O-tetradecanoyl-phorbol-13-acetate (DMBA/TPA) two-stage tumorigenesis procedure to induce formation of skin papillomas and squamous cell carcinomas in Er/+ mice and identified strong p63 expression in resultant tumors. The loss of one allele of p63 caused by the generation of Er/+/p63(+/-) double compound mice decreased the sensitivity to DMBA-/TPA-induced tumorigenesis as compared with Er/+ mice. This study shows that p63 and 14-3-3σ play opposing roles in the development of skin tumors and that the accumulation of p63 is essential for Ras/14-3-3σ mutation-induced papilloma formation and squamous cell carcinoma carcinogenesis.
Collapse
Affiliation(s)
- Qiutang Li
- James Graham Brown Cancer Center, University of Louisville School of Medicine, 301 East Muhammad Ali Boulevard, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lu Q, Xin Y, Ye F, Foulks G, Li Q. 14-3-3σ controls corneal epithelium homeostasis and wound healing. Invest Ophthalmol Vis Sci 2011; 52:2389-96. [PMID: 21228373 DOI: 10.1167/iovs.09-4981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the functional role of 14-3-3σ in regulation of the corneal epithelial proliferation, differentiation, and wound-healing response. METHODS Corneal phenotypes were investigated in heterozygous repeated epilation (Er) mice carrying mutations in the sfn (14-3-3σ) gene. Immunohistochemistry was used to study the corneal morphogenesis of the Er/Er embryos at embryonic day (E)18.5. Corneal homeostasis and the wound-healing response were investigated macroscopically and microscopically in the adult heterozygous Er mice. Corneal epithelial cell proliferation and differentiation were assessed by BrdU incorporation and immunohistochemistry with specific antibodies for differentiation markers. Furthermore, corneal stroma neovascularization and meibomian gland degeneration were examined by immunohistochemistry. The healing of corneal wounds after debridement was monitored and visualized by fluorescent staining. RESULTS Homozygous mutation of 14-3-3σ led to defects in embryonic corneal epithelial development and differentiation, whereas young heterozygotes showed normal corneal development and homeostasis. However, older heterozygotes displayed a dramatic corneal wound-healing defect characterized by hyperplastic basal progenitor cells (some of which undergo a differentiation switch to express markers of keratinized epidermis); cornea stroma changes including neovascularization; and corneal opacity, leading to plaque formation. Aged heterozygotes also showed meibomian gland atrophy. CONCLUSIONS 14-3-3σ is essential for corneal epithelium differentiation, and plays an important role in corneal epithelium development and daily renewal of the adult corneal epithelium.
Collapse
Affiliation(s)
- Qingxian Lu
- J. G. Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | | | |
Collapse
|
19
|
Joseph R, Srivastava OP, Pfister RR. Differential epithelial and stromal protein profiles in keratoconus and normal human corneas. Exp Eye Res 2011; 92:282-98. [PMID: 21281627 DOI: 10.1016/j.exer.2011.01.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 01/06/2023]
Abstract
The purpose of the study was to identify epithelial and stromal proteins that exhibit up- or down-regulation in keratoconus (KC) vs. normal human corneas. Because previous proteomic studies utilized whole human corneas or epithelium alone, thereby diluted the specificity of the proteome of each tissue, we selectively analyzed the epithelium and stromal proteins. Individual preparations of epithelial and stromal proteins from KC and age-matched normal corneas were analyzed by two independent methods, i.e., a shotgun proteomic using a Nano-Electrospray Ionization Liquid Chromatography Tandem Mass Spectrometry [Nano-ESI-LC-MS (MS)(2)] and two-dimensional-difference gel electrophoresis (2D-DIGE) coupled with mass spectrometric methods. The label-free Nano-ESI-LC-MS (MS)(2) method identified 104 epithelial and 44 stromal proteins from both normal and KC corneas, and also quantified relative changes in levels of selected proteins, in both the tissues using spectral counts in a proteomic dataset. Relative to normal corneal epithelial proteins, six KC epithelial proteins (lamin-A/C, keratin type I cytoskeletal 14, tubulin beta chain, heat shock cognate 71 kDa protein, keratin type I cytoskeletal 16 and protein S100-A4) exhibited up-regulation and five proteins (transketolase, pyruvate kinase, 14-3-3 sigma isoform, phosphoglycerate kinase 1, and NADPH dehydrogenase (quinone) 1) showed down-regulation. A similar relative analysis showed that three KC stromal proteins (decorin, vimentin and keratocan) were up-regulated and five stromal proteins (TGF-betaig h3 (Bigh3), serotransferrin, MAM domain-containing protein 2 and isoforms 2C2A of collagen alpha-2[VI] chain) were down-regulated. The 2D-DIGE-mass spectrometry followed by Decyder software analysis showed that relative to normal corneas, the KC corneal epithelium exhibited up-regulation of four proteins (serum albumin, keratin 5, L-lactate dehydrogenase and annexin A8) and down-regulation of four proteins (FTH1 [Ferritin heavy chain protein 1], calpain small subunit 1, heat shock protein beta 1 and annexin A2). A similar relative analysis of stroma by this method also showed up-regulation of aldehyde dehydrogenase 3A1 (ALDH3A1), keratin 12, apolipoprotein A-IV precursor, haptoglobin precursor, prolipoprotein and lipoprotein Gln in KC corneas. Together, the results suggested that the Nano-ESI-LC-MS(MS)(2) method was superior than the 2D-DIGE method as it identified a greater number of proteins with altered levels in KC corneas. Further, the epithelial and stromal structural proteins of KC corneas exhibited altered levels compared to normal corneas, suggesting that they are affected due to structural remodeling during KC development and progression. Additionally, because several epithelial and stromal enzymes exhibited up- or down-regulation in the KC corneas relative to normal corneas, the two layers of KC corneas were under metabolic stress to adjust their remodeling.
Collapse
Affiliation(s)
- R Joseph
- Department of Vision Sciences, University of Alabama at Birmingham, 924 18th Street South, Birmingham, AL 35294-4390, USA
| | | | | |
Collapse
|
20
|
Abstract
To identify the role of the Notch signaling pathway in corneal wound healing, rat corneas receiving either epithelial or stromal wounds were placed in organ culture for up to 3 and 14 days, respectively. Localization of Notch receptors--Notch1, Notch2, and their ligands--Delta1, Jagged1 was determined by immunofluorescence. Wounds were treated with a γ-secretase inhibitor to suppress Notch signaling or recombinant Jagged1 to enhance Notch signaling and morphological changes in the epithelium and stroma were recorded. The expressions of markers of cell proliferation (Ki67) and epithelial differentiation (cytokeratin 3) were assessed by immunohistology. Notch1 and Notch2 were localized to suprabasal epithelial cells in normal corneas. During corneal wound healing, both Notch receptors were detected in suprabasal and superficial epithelial layers. Delta1 and Jagged1 were observed throughout all corneal epithelial cell layers and occasional keratocytes of the stroma in normal and wounded corneas. γ-secretase inhibition of Notch resulted in increased epithelial cell layers, with recombinant Jagged1 activation of Notch leading to a reduction in epithelial cell layers during corneal wound healing. Correspondingly, the activation of Notch resulted in a decreased cytokeratin 3 expression in the corneal epithelium, with no effect on cellular expression of Ki67. Notch signaling pathway suppressed corneal epithelial differentiation during corneal wound healing, but had no effect on epithelial cell proliferation.
Collapse
Affiliation(s)
- Aihua Ma
- Department of Pediatrics, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | | | | | | |
Collapse
|
21
|
D'Alessandro A, Zolla L, Scaloni A. The bovine milk proteome: cherishing, nourishing and fostering molecular complexity. An interactomics and functional overview. MOLECULAR BIOSYSTEMS 2010; 7:579-97. [PMID: 20877905 DOI: 10.1039/c0mb00027b] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bovine milk represents an essential source of nutrients for lactating calves and a key raw material for human food preparations. A wealth of data are present in the literature dealing with massive proteomic analyses of milk fractions and independent targeted studies on specific groups of proteins, such as caseins, globulins, hormones and cytokines. In this study, we merged data from previous investigations to compile an exhaustive list of 573 non-redundant annotated protein entries. This inventory was exploited for integrated in silico studies, including functional GO term enrichment (FatiGO/Babelomics), multiple pathway and network analyses. As expected, most of the milk proteins were grouped under pathways/networks/ontologies referring to nutrient transport, lipid metabolism and objectification of the immune system response. Notably enough, another functional family was observed as the most statistically significant one, which included proteins involved in the induction of cellular proliferation processes as well as in anatomical and haematological system development. Although the latter function for bovine milk proteins has long been postulated, studies reported so far mainly focused on a handful of molecules and missed the whole overview resulting from an integrated holistic analysis. A preliminary map of the bovine milk proteins interactome was also built up, which will be refined in future as result of the widespread use of quantitative methods in protein interaction studies and consequent reduction of false-positives within associated databases.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Environmental Sciences, University of Tuscia, Largo dell'Università, SNC, 01100 Viterbo, Italy
| | | | | |
Collapse
|
22
|
Ling C, Zuo D, Xue B, Muthuswamy S, Muller WJ. A novel role for 14-3-3sigma in regulating epithelial cell polarity. Genes Dev 2010; 24:947-56. [PMID: 20439433 DOI: 10.1101/gad.1896810] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The loss of epithelial polarity is thought to play an important role during mammary tumor progression. Using a unique transgenic mouse model of ErbB2-induced mammary tumorigenesis, we demonstrated previously that amplification of ErbB2 is frequently accompanied by loss of the 14-3-3sigma gene. Here, we demonstrate that ectopic expression of 14-3-3sigma results in restoration of epithelial polarity in ErbB2-transformed mammary tumor cells. We further demonstrate that targeted deletion of 14-3-3sigma within primary mammary epithelial cells increases their proliferative capacity and adversely affects their ability to form polarized structures. Finally, we show that 14-3-3sigma can specifically form complexes with Par3, a protein that is essential for the maintenance of a polarized epithelial state. Taken together, these observations suggest that 14-3-3sigma plays a critical role in retaining epithelial polarity.
Collapse
Affiliation(s)
- Chen Ling
- Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | | | | | | | | |
Collapse
|