1
|
Gomes VCL, Sones JL. From inhibition of trophoblast cell invasion to proapoptosis: what are the potential roles of kisspeptins in preeclampsia? Am J Physiol Regul Integr Comp Physiol 2021; 321:R41-R48. [PMID: 34009045 DOI: 10.1152/ajpregu.00258.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preeclampsia (PE) is a life-threatening human gestational syndrome with incompletely understood etiopathogenesis. The disorder has a spectrum of clinical features, likely due to a complex interaction between maternal predisposing factors and abnormalities at the maternal-fetal interface. Poor trophoblast cell invasion, inadequate uterine vascular remodeling, and placental hypoperfusion are considered as key placental events leading to PE. Kisspeptins, a family of small peptides derived from the KISS1 gene, have been implicated in the development of this syndrome. Most studies of kisspeptin expression in PE have reported an upregulation of kisspeptins and/or their cognate receptor in preeclamptic placentas. Conversely, maternal peripheral blood concentration of kisspeptins is reportedly lower in PE than in uncomplicated pregnancies. This apparent paradox remains to be further elucidated. Although kisspeptins were initially known for inhibiting cellular migration and invasion, other biological activities attributed to these peptides include neuroendocrine regulation of reproduction, metabolism regulation, inhibition of angiogenesis, and induction of apoptosis. This review summarizes the current knowledge on expression and biological activity of kisspeptins at the maternal-fetal interface in the context of PE.
Collapse
Affiliation(s)
- Viviane C L Gomes
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Jenny L Sones
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| |
Collapse
|
2
|
Zhai J, Liu J, Zhao S, Zhao H, Chen ZJ, Du Y, Li W. Kisspeptin-10 inhibits OHSS by suppressing VEGF secretion. Reproduction 2017; 154:355-362. [DOI: 10.1530/rep-17-0268] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 11/08/2022]
Abstract
The aim of the present study was to elucidate the effects of kisspeptin-10 (Kp-10) on ovarian hyperstimulation syndrome (OHSS) and its related mechanism in OHSS rat models, human umbilical vein endothelial cells (HUVECs) and human luteinized granulosa cells. OHSS is a systemic disorder with high vascular permeability (VP) and ovarian enlargement. KISS1R (KISS1 receptor) is the specific receptor of kisspeptin. The kisspeptin/KISS1R system inhibits the expression of vascular endothelial growth factor (VEGF), which is the main regulator of VP. In our study, decreased expression of Kiss1r was observed in both ovaries and lung tissue of OHSS rats. Injection of exogenous Kp-10 inhibited the increase of VP and VEGF while promoting the expression of Kiss1r in both the ovarian and lung tissue of OHSS rats. Using HUVECs, we revealed that a high level of 17-β estradiol (E2), a feature of OHSS, suppressed the expression of KISS1R and increased VEGF and nitric oxide (NO) through estrogen receptors (ESR2). Furthermore, KISS1R mRNA also decreased in the luteinized human granulosa cells of high-risk OHSS patients, and was consistent with the results in rat models and HUVECs. In conclusion, Kp-10 prevents the increased VP of OHSS by the activation of KISS1R and the inhibition of VEGF.
Collapse
|
3
|
Lippincott MF, Chan YM, Rivera Morales D, Seminara SB. Continuous Kisspeptin Administration in Postmenopausal Women: Impact of Estradiol on Luteinizing Hormone Secretion. J Clin Endocrinol Metab 2017; 102:2091-2099. [PMID: 28368443 PMCID: PMC5470760 DOI: 10.1210/jc.2016-3952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/14/2017] [Indexed: 12/22/2022]
Abstract
CONTEXT Kisspeptin stimulates the reproductive endocrine cascade in both men and women. Circulating sex steroids are thought to modulate the ability of kisspeptin to stimulate gonadotropin-releasing hormone (GnRH)-induced luteinizing hormone (LH) release. OBJECTIVE To probe the effects of sex steroids on kisspeptin-stimulated GnRH-induced LH pulses. PARTICIPANTS Eight healthy postmenopausal women. INTERVENTION Subjects underwent every-10-minute blood sampling to measure GnRH-induced LH secretion at baseline and in response to a continuous kisspeptin infusion (12.5 µg/kg/h) over 24 hours. A subset of the participants also received kisspeptin (0.313 µg/kg) and GnRH (75 ng/kg) intravenous boluses. RESULTS Postmenopausal women are resistant to the stimulatory effect of continuous kisspeptin on LH secretion. Postmenopausal women receiving estradiol replacement therapy are also resistant to kisspeptin initially, but they demonstrate a significant increase in LH pulse amplitude in direct proportion to the circulating estradiol concentration and duration of kisspeptin administration. CONCLUSIONS Kisspeptin administration has complex effects on GnRH, and by extension, on LH secretion. The ability of kisspeptin to affect LH secretion can be modulated by the ambient sex-steroid milieu in a time- and dose-dependent manner.
Collapse
Affiliation(s)
- Margaret F. Lippincott
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Yee-Ming Chan
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
- Division of Endocrinology, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115
| | - Dianali Rivera Morales
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Stephanie B. Seminara
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| |
Collapse
|
4
|
Song H, He Y, Ma L, Zhou X, Liu X, Qi J, Zhang Q. Characterisation of kisspeptin system genes in an ovoviviparous teleost: Sebastes schlegeli. Gen Comp Endocrinol 2015; 214:114-25. [PMID: 24955882 DOI: 10.1016/j.ygcen.2014.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/08/2014] [Accepted: 06/12/2014] [Indexed: 11/27/2022]
Abstract
Kisspeptins are neuropeptides that play important roles in the reproduction and the onset of puberty in vertebrate by activating their receptor, Kissr. In the present study, we first isolated kiss1 and kissr4 genes from an ovoviviparous fish, the black rockfish (Sebastes schlegeli) by homologue cloning. Phylogenetic analysis indicated that the kiss and kissr of S. schlegeli belonged to kiss1 and kissr4 respectively. Quantitative real-time PCR analysis showed that the kissr4 was expressed mainly in the brain and testis, while the kiss1 was expressed predominantly in the heart of both sexes. As for the different gonadal maturation stages the kiss1 showed different expression patterns in different tissues. During the early development stage, expression levels of the ligand and receptor genes showed similar increasing trends. The promoter region of kissr4 contained several putative transcription factor (TF) binding sites which may have the function of regulating kisspeptin system gene expression, providing potential targets for future in-depth investigation. These results together confirmed that the kisspeptin system in S. schlegeli may be involved in reproduction and other activities. Furthermore, our study laid the groundwork for further learning about the evolution and function of kisspeptin system in fish even vertebrate.
Collapse
Affiliation(s)
- Huayu Song
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Liman Ma
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiaosu Zhou
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiumei Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
5
|
JMJD2A-dependent silencing of Sp1 in advanced breast cancer promotes metastasis by downregulation of DIRAS3. Breast Cancer Res Treat 2014; 147:487-500. [PMID: 25193278 DOI: 10.1007/s10549-014-3083-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/26/2014] [Indexed: 12/14/2022]
Abstract
Specificity protein 1(Sp1) is a ubiquitous transcription factor and is highly expressed in breast cancer. However, its expression pattern and role in breast cancer progression remain unclear. The purpose of this study is to examine the expression pattern of Sp1 and determine its role in breast cancer progression. Immunohistochemistry (IHC) was performed on breast cancer tissues to reveal the expression pattern of Sp1. Spearman rank correlation was used for clinical statistics. Gene and protein expressions were monitored by IHC analysis, quantitative polymerase chain reaction, and Western blot. Wound-healing and Transwell assays were conducted to assess the role of Sp1 in breast cancer. Co-immunoprecipitation, deletion mutagenesis, chromatin immunoprecipitation, and dual luciferase reporter gene assays were used for investigation of the regulatory network. Sp1 expression was downregulated in late stage breast cancer and in highly invasive breast cancer cell lines. Expression of Sp1 was negatively correlated with TNM staging (P = 0.002) and metastasis status (P = 0.023). Overexpression of Sp1 inhibited breast cancer cell migratory and invasive abilities, whereas knockdown of GTP-binding RAS-like 3 (DIRAS3, also known as ARHI, NOEY2) attenuated the inhibitory effects. Moreover, re-expression of DIRAS3 abolished Sp1 knockdown-mediated cell migration and invasion. Jumonji domain containing 2A (JMJD2A) inhibited Sp1 autoregulation and explains Sp1 expression pattern in breast cancer. Sp1 negatively regulated breast cancer metastasis by transcriptional activation of DIRAS3. Inhibition of Sp1 autoregulation by JMJD2A contributed to Sp1 expression pattern in breast cancer. Our findings provided evidence that targeted therapy against Sp1 might be useful in early stage breast cancer. However, in late stages, development of Sp1 activator may be more promising for breast cancer treatments.
Collapse
|
6
|
Wyatt AK, Zavodna M, Viljoen JL, Stanton JAL, Gemmell NJ, Jasoni CL. Changes in methylation patterns of kiss1 and kiss1r gene promoters across puberty. GENETICS & EPIGENETICS 2013; 5:51-62. [PMID: 25512707 PMCID: PMC4222338 DOI: 10.4137/geg.s12897] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The initiation of mammalian puberty is underpinned by an increase in Kisspeptin (Kiss1) signaling via its receptor (Kiss1r/GPR54) on gonadotropin-releasing hormone (GnRH) neurons. Animals and humans with loss-of-function mutations in Kiss1 or Kiss1r fail to go through puberty. The timing of puberty is dependent on environmental factors, and malleability in puberty timing suggests a mechanism that can translate environmental signals into patterns of Kiss1/Kiss1r gene expression. Epigenetics is a powerful mechanism that can control gene expression in an environment-dependent manner. We investigated whether epigenetic DNA methylation is associated with gene expression changes at puberty. We used bisulfite-PCR-pyrosequencing to define the methylation in the promoters of Kiss1 and Kiss1r before and after puberty in female rats. Both Kiss1 and Kiss1r showed highly significant puberty-specific differential promoter methylation patterns. By identifying key differentially methylated residues associated with puberty, these findings will be important for further studies investigating the control of gene expression across the pubertal transition.
Collapse
Affiliation(s)
- Amanda K Wyatt
- Centre for Neuroendocrinology, Centre for Reproduction and Genomics, Gravida: National Centre for Growth and Development, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Monika Zavodna
- Centre for Neuroendocrinology, Centre for Reproduction and Genomics, Gravida: National Centre for Growth and Development, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Jean L Viljoen
- Centre for Neuroendocrinology, Centre for Reproduction and Genomics, Gravida: National Centre for Growth and Development, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Jo-Ann L Stanton
- Centre for Neuroendocrinology, Centre for Reproduction and Genomics, Gravida: National Centre for Growth and Development, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Neil J Gemmell
- Centre for Neuroendocrinology, Centre for Reproduction and Genomics, Gravida: National Centre for Growth and Development, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Christine L Jasoni
- Centre for Neuroendocrinology, Centre for Reproduction and Genomics, Gravida: National Centre for Growth and Development, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin, New Zealand
| |
Collapse
|
7
|
Mechaly AS, Viñas J, Piferrer F. The kisspeptin system genes in teleost fish, their structure and regulation, with particular attention to the situation in Pleuronectiformes. Gen Comp Endocrinol 2013; 188:258-68. [PMID: 23624122 DOI: 10.1016/j.ygcen.2013.04.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
It is well established that Kisspeptin regulates the onset of puberty in vertebrates through stimulation of the secretion of gonadotropin-releasing hormones. However, the function of kisspeptin in peripheral tissues and in other functions is still poorly understood. Recently, the evolution and distribution of kisspeptin genes in vertebrates has been clarified. In contrast to placental mammals, which have a single gene for the ligand (Kiss) and for the receptor (Kissr), fish may have up to three Kiss genes and up to four Kissr genes because of genome duplications. However, information on the genomic structure of the piscine kiss and kissr genes is still scarce. Furthermore, when data from several species is taken together, interspecific differences in the expression of kiss and kissr during the reproductive cycle are found. Here, we discuss data gathered from several fish species, but mainly from two flatfishes, the Senegalese sole and the Atlantic halibut, to address general questions on kiss gene structure, regulation and function. Flatfish are among the most derived fish species and the two species referred to above have only one ligand and one receptor, probably because of the genome reduction observed in Pleuronectiformes. However, gene analysis shows that both species have an alternative splicing mechanism based on intron retention, but the functions of the alternative isoforms are unclear. In the Senegalese sole, sex-related differences in the temporal and spatial expression of kiss and kissr were observed during a whole reproductive cycle. In addition, recent studies suggested that kisspeptin system gene expression is correlated to energy balance and reproduction. This suggests that kisspeptin signaling may involve different sources of information to synchronize important biological functions in vertebrates, including reproduction. We propose a set of criteria to facilitate the comparison of kiss and kissr gene expression data across species.
Collapse
Affiliation(s)
- Alejandro S Mechaly
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| | | | | |
Collapse
|
8
|
Nocillado JN, Mechaly AS, Elizur A. In silico analysis of the regulatory region of the Yellowtail Kingfish and Zebrafish Kiss and Kiss receptor genes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:59-63. [PMID: 22527613 DOI: 10.1007/s10695-012-9642-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/30/2012] [Indexed: 05/31/2023]
Abstract
We have cloned and analysed the partial putative promoter sequences of the Yellowtail Kingfish (Seriola lalandi) Kiss2 and Kiss2r genes (380 and 420 bp, respectively). We obtained in silico 1.5 kb of the zebrafish (Danio rerio) Kiss1, Kiss2, Kiss1r and zfKiss2r sequences upstream of the putative transcriptional initiation site. Bioinformatic analysis revealed promoter regulatory elements including AP-1, Sp1, GR, ER, PR, AR, GATA-1, TTF-1, YY1 and C/EBP. These regulatory elements may mediate novel roles of the Kiss genes and their receptors in addition to their established role in reproductive function.
Collapse
Affiliation(s)
- J N Nocillado
- School of Science, Education and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | | | | |
Collapse
|
9
|
Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and Reproduction: Physiological Roles and Regulatory Mechanisms. Physiol Rev 2012; 92:1235-316. [DOI: 10.1152/physrev.00037.2010] [Citation(s) in RCA: 529] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Procreation is essential for survival of species. Not surprisingly, complex neuronal networks have evolved to mediate the diverse internal and external environmental inputs that regulate reproduction in vertebrates. Ultimately, these regulatory factors impinge, directly or indirectly, on a final common pathway, the neurons producing the gonadotropin-releasing hormone (GnRH), which stimulates pituitary gonadotropin secretion and thereby gonadal function. Compelling evidence, accumulated in the last few years, has revealed that kisspeptins, a family of neuropeptides encoded by the Kiss1 gene and produced mainly by neuronal clusters at discrete hypothalamic nuclei, are pivotal upstream regulators of GnRH neurons. As such, kisspeptins have emerged as important gatekeepers of key aspects of reproductive maturation and function, from sexual differentiation of the brain and puberty onset to adult regulation of gonadotropin secretion and the metabolic control of fertility. This review aims to provide a comprehensive account of the state-of-the-art in the field of kisspeptin physiology by covering in-depth the consensus knowledge on the major molecular features, biological effects, and mechanisms of action of kisspeptins in mammals and, to a lesser extent, in nonmammalian vertebrates. This review will also address unsolved and contentious issues to set the scene for future research challenges in the area. By doing so, we aim to endow the reader with a critical and updated view of the physiological roles and potential translational relevance of kisspeptins in the integral control of reproductive function.
Collapse
Affiliation(s)
- Leonor Pinilla
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Enrique Aguilar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Dieguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert P. Millar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Abstract
The role of specificity protein 1 (Sp1) in controlling gene expression in lung tumor development and metastasis is not well understood. In this study, we showed that the Sp1 level was highly increased and required for lung tumor growth in transgenic mice bearing Kras-induced lung tumors under the control of doxycycline. Furthermore, the Sp1 level was highly upregulated in lung adenocarcinoma cells with low invasiveness and in patients with stage I lung cancer. We also demonstrated that Sp1 was downregulated in lung adenocarcinoma cells with high invasiveness and in patients with stage IV lung adenocarcinoma. Moreover, Sp1 inversely regulated migration, invasion and metastasis of lung adenocarcinoma cells in vivo. In addition, a decrease in the Sp1 level in highly invasive lung adenocarcinoma cells resulted from instability of the Sp1 protein. Furthermore, overexpression of Sp1 in highly invasive lung adenocarcinoma cells increased expression of E-cadherin, a suppressor of metastasis, and attenuated the translocation of β-catenin into the cellular nucleus that leads to tumor malignancy. Taken together, Sp1 level accumulated strongly in early stage and then declined in late stage, which is important for lung cancer cell proliferation and metastasis during tumorigenesis.
Collapse
|