1
|
Chang L, Niu X, Huang S, Song D, Ran X, Wang J. Detection of structural variants linked to mutton flavor and odor in two closely related black goat breeds. BMC Genomics 2024; 25:979. [PMID: 39425017 PMCID: PMC11490145 DOI: 10.1186/s12864-024-10874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Mutton quality is closely related to genetic variants and gene expression alterations during growth and development, resulting in differences in nutritional values, flavor, and odor. RESULTS We first evaluated and compared the composition of crude protein, crude fat, cholesterol, amino acid (AA), and fatty acid (FA) in the longissimus dorsi muscle of Guizhou black goats (GZB, n = 5) and Yunshang black goats (YBG, n = 6). The contents of cholesterol and FA related to odor in GZB were significantly lower than that in YBG, while the concentrations of umami amino acids and intramuscular fat were significantly higher in GZB. Furthermore, structural variants (SVs) in the genomes of GZB (n = 30) and YBG (n = 11) were explored. It was found that some regions in Chr 10/12/18 were densely involved with a large number of SVs in the genomes of GZB and YBG. By setting FST ≥ 0.25, we got 837 stratified SVs, of which 25 SVs (involved in 12 genes, e.g., CORO1A, CLIC6, PCSK2, and TMEM9) were limited in GZB. Functional enrichment analysis of 14 protein-coding genes (e.g., ENPEP, LIPC, ABCA5, and SLC6A15) revealed multiple terms and pathways related with metabolisms of AA, FA, and cholesterol. The SVs (n = 10) obtained by the whole genome resequencing were confirmed in percentages of 36.67 to 86.67% (n = 96) by PCR method. The SVa and SVd polymorphisms indicated a moderate negative correlation with HMGCS1 activity (n = 17). CONCLUSION This study is the first to comprehensively reveal potential SVs related to mutton nutritional values, flavor, and odor based on genomic compare between two black goat breeds with closely genetic relationship. The SVs generated in this study provide a data resource for deeper studies to understand the genomic characteristics and possible evolutionary outcomes with better nutritional values, flavor and extremely light odor.
Collapse
Affiliation(s)
- Lingle Chang
- College of Animal Science, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Xi Niu
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Shihui Huang
- College of Animal Science, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Derong Song
- Bijie Academy of Agricultural Sciences, Bijie, 551700, China
| | - Xueqin Ran
- College of Animal Science, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| | - Jiafu Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Villa M, Wu J, Hansen S, Pahnke J. Emerging Role of ABC Transporters in Glia Cells in Health and Diseases of the Central Nervous System. Cells 2024; 13:740. [PMID: 38727275 PMCID: PMC11083179 DOI: 10.3390/cells13090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.
Collapse
Affiliation(s)
- Maria Villa
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Stefanie Hansen
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv IL-6997801, Israel
| |
Collapse
|
3
|
Liu W, Mossel P, Schwach V, Slart RHJA, Luurtsema G. Cardiac PET Imaging of ATP Binding Cassette (ABC) Transporters: Opportunities and Challenges. Pharmaceuticals (Basel) 2023; 16:1715. [PMID: 38139840 PMCID: PMC10748140 DOI: 10.3390/ph16121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Adenosine triphosphate binding cassette (ABC) transporters are a broad family of membrane protein complexes that use energy to transport molecules across cells and/or intracellular organelle lipid membranes. Many drugs used to treat cardiac diseases have an affinity for these transporters. Among others, P-glycoprotein (P-gp) plays an essential role in regulating drug concentrations that reach cardiac tissue and therefore contribute to cardiotoxicity. As a molecular imaging modality, positron emission tomography (PET) has emerged as a viable technique to investigate the function of P-gp in organs and tissues. Using PET imaging to evaluate cardiac P-gp function provides new insights for drug development and improves the precise use of medications. Nevertheless, information in this field is limited. In this review, we aim to examine the current applications of ABC transporter PET imaging and its tracers in the heart, with a specific emphasis on P-gp. Furthermore, the opportunities and challenges in this novel field will be discussed.
Collapse
Affiliation(s)
- Wanling Liu
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
| | - Pascalle Mossel
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
| | - Verena Schwach
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherlands;
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
- Department of Biomedical Photonic Imaging, University of Twente, 7500 AE Enschede, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
| |
Collapse
|
4
|
Palmer MA, Dias IHK, Smart E, Benatzy Y, Haslam IS. Cholesterol homeostasis in hair follicle keratinocytes is disrupted by impaired ABCA5 activity. Biochim Biophys Acta Mol Cell Biol Lipids 2023:159361. [PMID: 37348644 DOI: 10.1016/j.bbalip.2023.159361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/27/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
The importance of cholesterol in hair follicle biology is underscored by its links to the pathogenesis of alopecias and hair growth disorders. Reports have associated defects in ABCA5, a membrane transporter, with altered keratinocyte cholesterol distribution in individuals with a form of congenital hypertrichosis, yet the biological basis for this defect in hair growth remains unknown. This study aimed to determine the impact of altered ABCA5 activity on hair follicle keratinocyte behaviour. Primary keratinocytes isolated from the outer root sheath of plucked human hair follicles were utilised as a relevant cell model. Following exogenous cholesterol loading, an increase in ABCA5 co-localisation to intracellular organelles was seen. Knockdown of ABCA5 revealed a dysregulation in cholesterol homeostasis, with LXR agonism leading to partial restoration of the homeostatic response. Filipin staining and live BODIPY cholesterol immunofluorescence microscopy revealed a reduction in endo-lysosomal cholesterol following ABCA5 knockdown. Analysis of oxysterols showed a significant increase in the fold change of 25-hydroxycholesterol and 7-β-hydroxycholesterol following cholesterol loading in ORS keratinocytes, after ABCA5 knockdown. These data suggest a role for ABCA5 in the intracellular compartmentalisation of free cholesterol in primary hair follicle keratinocytes. The loss of normal homeostatic response, following the delivery of excess cholesterol after ABCA5 knockdown, suggests an impact on LXR-mediated transcriptional activity. The loss of ABCA5 in the hair follicle could lead to impaired endo-lysosomal cholesterol transport, impacting pathways known to influence hair growth. This avenue warrants further investigation.
Collapse
Affiliation(s)
- Megan A Palmer
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK; Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | | | - Eleanor Smart
- Centre for Dermatology Research, University of Manchester, UK
| | - Yvonne Benatzy
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Iain S Haslam
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK.
| |
Collapse
|
5
|
Moore JM, Bell EL, Hughes RO, Garfield AS. ABC transporters: human disease and pharmacotherapeutic potential. Trends Mol Med 2023; 29:152-172. [PMID: 36503994 DOI: 10.1016/j.molmed.2022.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are a 48-member superfamily of membrane proteins that actively transport a variety of biological substrates across lipid membranes. Their functional diversity defines an expansive involvement in myriad aspects of human biology. At least 21 ABC transporters underlie rare monogenic disorders, with even more implicated in the predisposition to and symptomology of common and complex diseases. Such broad (patho)physiological relevance places this class of proteins at the intersection of disease causation and therapeutic potential, underlining them as promising targets for drug discovery, as exemplified by the transformative CFTR (ABCC7) modulator therapies for cystic fibrosis. This review will explore the growing relevance of ABC transporters to human disease and their potential as small-molecule drug targets.
Collapse
|
6
|
Identification of ABCA5 among ATP-Binding Cassette Transporter Family as a New Biomarker for Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3399311. [PMID: 35783152 PMCID: PMC9242773 DOI: 10.1155/2022/3399311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022]
Abstract
Background The increasing incidence and mortality of colorectal cancer (CRC) urgently requires updated biomarkers. The ABC transporter family is a widespread family of membrane-bound proteins involved in the transportation of substrates associated with ATP hydrolysis, including metabolites, amino acids, peptides and proteins, sterols and lipids, organic and inorganic ions, sugars, metals, and drugs. They play an important role in the maintenance of homeostasis in the body. Purpose This study aims to search for new markers in the ABC transporter gene family for diagnostic and prognostic purposes through data mining of The Cancer Genome Atlas (TCGA) and GEO (Gene Expression Omnibus) datasets. Methods A total of 980 samples, including 684 CRC patients and 296 controls from five different datasets, were included for analysis. The construction of the PPI (protein-protein interaction) network and pathway analysis were performed in STRING database and DAVID (database for annotation, visualization, and integrated discovery), respectively. In addition, GSEA (gene set enrichment analysis) and WGCNA (weighted gene co-expression network analysis) were also used for functional analysis. Results After several rounds of screening and validation, only the ABCB5 gene was retained among the 49 genes. Conclusions The results demonstrated that ABCA5 expression is reduced in CRC and patients with high ABCA5 expression have better OS, which can provide guidance for better management and treatment of CRC in the future.
Collapse
|
7
|
Zhang L, Luo Y, Cheng T, Chen J, Yang H, Wen X, Jiang Z, Li H, Pan C. Development and Validation of a Prognostic N6-Methyladenosine-Related Immune Gene Signature for Lung Adenocarcinoma. Pharmgenomics Pers Med 2021; 14:1549-1563. [PMID: 34876833 PMCID: PMC8643173 DOI: 10.2147/pgpm.s332683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/23/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose The prognostic value of an N6-methyladenosine (m6A) methylation-related immune gene signature for lung adenocarcinoma (LUAD) was investigated. Patients and Methods Gene expression and clinical phenotype data of LUAD patients were downloaded from The Cancer Genome Atlas database. A list of immune-related genes was retrieved from the InnateDB database. Correlation analysis, survival analysis, and univariate and multivariate Cox regression analyses were performed. After allocating patients into a high-risk or a low-risk group, the corresponding survival rates, immune microenvironment, expression of immune checkpoint genes, and modulation of Kyoto Encyclopedia of Genes and Genomes pathways were examined. Finally, the expression levels of prognostic biomarkers were assessed in the GSE126044 dataset. Results Seven m6A-related immune prognostic genes were identified. High expression of PSMD10P1, DIDO1, ABCA5, and CIITA was associated with high survival rates, while that of PRC1, ZWILCH, and ANLN was associated with low survival rates. The high- and low-risk groups showed significant differences in terms of the abundance of six tumor-infiltrating immune cell types and expression of 12 immune checkpoint genes. The risk group acted as an independent prognostic factor (hazard ratio = 0.398, 95% confidence interval = 0.217–0.729, P = 0.003). Finally, the developed nomogram could predict most efficiently the 1-, 2-, and 3-year survival probability of LUAD patients with a C-index of 0.833. Conclusion A seven-gene risk signature, associated with the immune microenvironment in LUAD, showed independent prognostic value.
Collapse
Affiliation(s)
- Lemeng Zhang
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, 410013, People's Republic of China
| | - Yongzhong Luo
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, 410013, People's Republic of China
| | - Tianli Cheng
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, 410013, People's Republic of China
| | - Jianhua Chen
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, 410013, People's Republic of China
| | - Hua Yang
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, 410013, People's Republic of China
| | - Xiaoping Wen
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, 410013, People's Republic of China
| | - Zhou Jiang
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, 410013, People's Republic of China
| | - Haitao Li
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, 410013, People's Republic of China
| | - Changqie Pan
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, 410013, People's Republic of China
| |
Collapse
|
8
|
Chen LL, Wang WJ. p53 regulates lipid metabolism in cancer. Int J Biol Macromol 2021. [DOI: https://doi.org/10.1016/j.ijbiomac.2021.09.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Chen LL, Wang WJ. p53 regulates lipid metabolism in cancer. Int J Biol Macromol 2021; 192:45-54. [PMID: 34619274 DOI: 10.1016/j.ijbiomac.2021.09.188] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/22/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
Reprogrammed cell metabolism is a well-accepted hallmark of cancer. Metabolism changes provide energy and precursors for macromolecule biosynthesis to satisfy the survival needs of cancer cells. The specific changes in different aspects of lipid metabolism in cancer cells have been focused in recent years. These changes can affect cell growth, proliferation, differentiation and motility through affecting membranes synthesis, energy homeostasis and cell signaling. The tumor suppressor p53 plays vital roles in the control of cell proliferation, senescence, DNA repair, and cell death in cancer through various transcriptional and non-transcriptional activities. Accumulating evidences indicate that p53 also regulates cellular metabolism, which appears to contribute to its tumor suppressive functions. Particularly the role of p53 in regulating lipid metabolism has gained more and more attention in recent decades. In this review, we summarize recent advances in the function of p53 on lipid metabolism in cancer. Further understanding and research on the role of p53 in lipid metabolism regulation will provide a potential therapeutic window for cancer treatment.
Collapse
Affiliation(s)
- Ling-Li Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Wen-Jun Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
10
|
Hoekstra M, Ren B, Laurila PP, Hildebrand RB, Soronen J, Frodermann V, Li Z, Boon MR, Geerling JJ, Rensen PCN, Jauhiainen M, Van Eck M. Hematopoietic upstream stimulating factor 1 deficiency is associated with increased atherosclerosis susceptibility in LDL receptor knockout mice. Sci Rep 2021; 11:16419. [PMID: 34385562 PMCID: PMC8361089 DOI: 10.1038/s41598-021-95858-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Total body upstream stimulatory factor 1 (USF1) deficiency in mice is associated with brown adipose tissue activation and a marked protection against the development of obesity and atherosclerotic lesions. Functional expression of USF1 has also been detected in monocytes and monocyte-derived macrophages. In the current study we therefore tested whether selective hematopoietic USF1 deficiency can also beneficially impact the development of atherosclerosis. For this purpose, LDL receptor knockout mice were transplanted with bone marrow from USF1 knockout mice or their wild-type littermate controls and subsequently fed a Western-type diet for 20 weeks to stimulate atherosclerotic lesion development. Strikingly, absence of USF1 function in bone marrow-derived cells was associated with exacerbated blood leukocyte (+ 100%; P < 0.01) and peritoneal leukocyte (+ 50%; P < 0.05) lipid loading and an increased atherosclerosis susceptibility (+ 31%; P < 0.05). These effects could be attributed to aggravated hyperlipidemia, i.e. higher plasma free cholesterol (+ 33%; P < 0.001) and cholesteryl esters (+ 39%; P < 0.001), and the development of hepatosteatosis. In conclusion, we have shown that hematopoietic USF1 deficiency is associated with an increased atherosclerosis susceptibility in LDL receptor knockout mice. These findings argue against a contribution of macrophage-specific USF1 deficiency to the previously described beneficial effect of total body USF1 deficiency on atherosclerosis susceptibility in mice.
Collapse
Affiliation(s)
- Menno Hoekstra
- Gorlaeus Laboratories, Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | - Baoyan Ren
- Gorlaeus Laboratories, Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Pirkka-Pekka Laurila
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland.,Genomics and Biobank Unit, National Institute for Health and Welfare, Biomedicum 1, Helsinki, Finland.,Institute for Molecular Medicine Finland, FIMM, Helsinki, Finland
| | - Reeni B Hildebrand
- Gorlaeus Laboratories, Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jarkko Soronen
- Genomics and Biobank Unit, National Institute for Health and Welfare, Biomedicum 1, Helsinki, Finland.,Pharmaceuticals Division, Bayer Oy BOF-PH-MRA-MA, Medical Affairs PO, Espoo, Finland
| | - Vanessa Frodermann
- Gorlaeus Laboratories, Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Zhuang Li
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Janine J Geerling
- Gorlaeus Laboratories, Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Miranda Van Eck
- Gorlaeus Laboratories, Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
11
|
Mo R, Xu Z, Wang H, Yan W, Jiang X, Lin Z. Narrowing the Genomic Region of Autosomal-Dominant Congenital Generalized Hypertrichosis Terminalis. JAMA Dermatol 2021; 157:733-735. [PMID: 33881458 DOI: 10.1001/jamadermatol.2021.0748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Ran Mo
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Zhe Xu
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.,Department of Dermatology, Shunyi Maternal and Children's Hospital of Beijing Children's Hospital, Beijing 101300, China
| | - Huijun Wang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Wei Yan
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Xingyuan Jiang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Zhimiao Lin
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| |
Collapse
|
12
|
Localisation and regulation of cholesterol transporters in the human hair follicle: mapping changes across the hair cycle. Histochem Cell Biol 2021; 155:529-545. [PMID: 33404706 PMCID: PMC8134313 DOI: 10.1007/s00418-020-01957-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Cholesterol has long been suspected of influencing hair biology, with dysregulated homeostasis implicated in several disorders of hair growth and cycling. Cholesterol transport proteins play a vital role in the control of cellular cholesterol levels and compartmentalisation. This research aimed to determine the cellular localisation, transport capability and regulatory control of cholesterol transport proteins across the hair cycle. Immunofluorescence microscopy in human hair follicle sections revealed differential expression of ATP-binding cassette (ABC) transporters across the hair cycle. Cholesterol transporter expression (ABCA1, ABCG1, ABCA5 and SCARB1) reduced as hair follicles transitioned from growth to regression. Staining for free cholesterol (filipin) revealed prominent cholesterol striations within the basement membrane of the hair bulb. Liver X receptor agonism demonstrated active regulation of ABCA1 and ABCG1, but not ABCA5 or SCARB1 in human hair follicles and primary keratinocytes. These results demonstrate the capacity of human hair follicles for cholesterol transport and trafficking. Future studies examining the role of cholesterol transport across the hair cycle may shed light on the role of lipid homeostasis in human hair disorders.
Collapse
|
13
|
Family-Based Whole Genome Sequencing Identified Novel Variants in ABCA5 Gene in a Patient with Idiopathic Ventricular Tachycardia. Pediatr Cardiol 2020; 41:1783-1794. [PMID: 32939586 DOI: 10.1007/s00246-020-02446-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
Idiopathic ventricular tachycardia (IVT) is the major cause of sudden cardiac death. Patients with IVT were usually manifested without structural heart disease. In this present study, we performed family-based whole genome sequencing (WGS) and Sanger sequencing for a 5-year-old Chinese boy with IVT and all the unaffected family members in order to identify the candidate gene and disease-causing mutation underlying the disease phenotype. Results showed that a novel heterozygous single-nucleotide duplication (c.128dup) and a novel heterozygous missense (c.3328A > G) variant in ABCA5 gene were identified in the proband. The single-nucleotide duplication (c.128dupT), inherited from his father and patrilineal grandfather, leads to a frameshift which results into the formation of a truncated ABCA5 protein of 50 (p.Leu43Phefs*8) amino acids. Hence, it is a loss-of-function mutation. The missense (c.3328A > G) variant, inherited from his mother, leads to the replacement of isoleucine by valine at the position of 1110 (p.Ile1110Val) of the ABCA5 protein. Multiple sequence alignment showed that p.Ile1110 is evolutionarily conserved among several species indicating both the structural and functional significance of the p.Ile1110 residue in the wild-type ABCA5 protein. Quantitative RT-PCR showed that the ABCA5 mRNA expression levels were decreased in the proband. These two novel variants of ABCA5 gene were co-segregated well among all the members of this family. Our present study also strongly supports the importance of using family-based whole genome sequencing for identifying novel candidate genes associated with IVT.
Collapse
|
14
|
Szakacs G, Abele R. An inventory of lysosomal ABC transporters. FEBS Lett 2020; 594:3965-3985. [DOI: 10.1002/1873-3468.13967] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Gergely Szakacs
- Institute of Enzymology Research Centre of Natural Sciences Eötvös Loránd Research Network Budapest Hungary
- Institute of Cancer Research Medical University of Vienna Vienna Austria
| | - Rupert Abele
- Institute of Biochemistry Goethe‐University Frankfurt am Main Frankfurt am Main Germany
| |
Collapse
|
15
|
Abstract
Cholesterol homeostasis and trafficking are critical to the maintenance of the asymmetric plasma membrane of eukaryotic cells. Disruption or dysfunction of cholesterol trafficking leads to numerous human diseases. ATP-binding cassette (ABC) transporters play several critical roles in this process, and mutations in these sterol transporters lead to disorders such as Tangier disease and sitosterolemia. Biochemical and structural information on ABC sterol transporters is beginning to emerge, with published structures of ABCA1 and ABCG5/G8; these two proteins function in the reverse cholesterol transport pathway and mediate the efflux of cholesterol and xenosterols to high-density lipoprotein and bile salt micelles, respectively. Although both of these transporters belong to the ABC family and mediate the efflux of a sterol substrate, they have many distinct differences. Here, we summarize the current understanding of sterol transport driven by ABC transporters, with an emphasis on these two extensively characterized transporters.
Collapse
Affiliation(s)
- Ashlee M Plummer
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Alan T Culbertson
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
16
|
Kotlyarov SN, Kotlyarova AA. Participation of ABC-transporters in lipid metabolism and pathogenesis of atherosclerosis. GENES & CELLS 2020; 15:22-28. [DOI: 10.23868/202011003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Atherosclerosis is one of the key causes of morbidity and mortality worldwide. It is known that a leading role in the development and progression of atherosclerosis is played by a violation of lipid metabolism. ABC transporters provide lipid cell homeostasis, performing a number of transport functions - moving lipids inside the cell, in the plasma membrane, and also removing lipids from the cell. In a large group of ABC transporters, about 20 take part in lipid homeostasis, playing, among other things, an important role in the pathogenesis of atherosclerosis. It was shown that cholesterol is not only a substrate for a number of ABC transporters, but also able to modulate their activity. Regulation of activity is carried out due to specific lipid-protein interactions.
Collapse
|
17
|
Novel Mechanism of Cholesterol Transport by ABCA5 in Macrophages and Its Role in Dyslipidemia. J Mol Biol 2020; 432:4922-4941. [DOI: 10.1016/j.jmb.2020.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 01/24/2023]
|
18
|
Horodyska J, Hamill RM, Reyer H, Trakooljul N, Lawlor PG, McCormack UM, Wimmers K. RNA-Seq of Liver From Pigs Divergent in Feed Efficiency Highlights Shifts in Macronutrient Metabolism, Hepatic Growth and Immune Response. Front Genet 2019; 10:117. [PMID: 30838035 PMCID: PMC6389832 DOI: 10.3389/fgene.2019.00117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
Liver is a metabolically complex organ that influences nutrient partitioning and potentially modulates the efficiency of converting energy acquired from macronutrients ingestion into a muscle and/or adipose tissue (referred to as feed efficiency, FE). The objective of this study was to sequence the hepatic tissue transcriptome of closely related but differently feed efficient pigs (n = 16) and identify relevant biological processes that underpin the differences in liver phenotype between FE groups. Liver weight did not significantly differ between the FE groups, however, blood parameters showed that total protein, glucose, cholesterol and percentage of lymphocytes were significantly greater in high-FE pigs. Ontology analysis revealed carbohydrate, lipid and protein metabolism to be significantly enriched with differentially expressed genes. In particular, high-FE pigs exhibited gene expression patterns suggesting improved absorption of carbohydrates and cholesterol as well as enhanced reverse cholesterol transport. Furthermore, the inferred decrease in bile acid synthesis in high-FE pigs may contribute to the observed greater levels of serum glucose, which can be then delivered to cells and utilized for growth and maintenance. Gene ontology analysis also suggested that livers of more efficient pigs may be characterized by higher protein turnover and increased epithelial cell differentiation, whereby an enhanced quantity of invariant natural killer T-cells and viability of natural killer cells could induce a quicker and more effective hepatic response to inflammatory stimuli. Our findings suggest that this prompt hepatic response to inflammation in high-FE group may contribute to the more efficient utilization of nutrients for growth in these animals.
Collapse
Affiliation(s)
- Justyna Horodyska
- Teagasc, Food Research Centre, Ashtown, Ireland.,Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | | | - Henry Reyer
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Peadar G Lawlor
- Teagasc, Pig Production Department, AGRIC, Moorepark, Fermoy, Co. Cork, Ireland
| | - Ursula M McCormack
- Teagasc, Pig Production Department, AGRIC, Moorepark, Fermoy, Co. Cork, Ireland
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| |
Collapse
|
19
|
Bi-allelic Mutations in LSS, Encoding Lanosterol Synthase, Cause Autosomal-Recessive Hypotrichosis Simplex. Am J Hum Genet 2018; 103:777-785. [PMID: 30401459 DOI: 10.1016/j.ajhg.2018.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/22/2018] [Indexed: 12/25/2022] Open
Abstract
Hypotrichosis simplex (HS) is a rare form of hereditary alopecia characterized by childhood onset of diffuse and progressive scalp and body hair loss. Although research has identified a number of causal genes, genetic etiology in about 50% of HS cases remains unknown. The present report describes the identification via whole-exome sequencing of five different mutations in the gene LSS in three unrelated families with unexplained, potentially autosomal-recessive HS. Affected individuals showed sparse to absent lanugo-like scalp hair, sparse and brittle eyebrows, and sparse eyelashes and body hair. LSS encodes lanosterol synthase (LSS), which is a key enzyme in the cholesterol biosynthetic pathway. This pathway plays an important role in hair follicle biology. After localizing LSS protein expression in the hair shaft and bulb of the hair follicle, the impact of the mutations on keratinocytes was analyzed using immunoblotting and immunofluorescence. Interestingly, wild-type LSS was localized in the endoplasmic reticulum (ER), whereas mutant LSS proteins were localized in part outside of the ER. A plausible hypothesis is that this mislocalization has potential deleterious implications for hair follicle cells. Immunoblotting revealed no differences in the overall level of wild-type and mutant protein. Analyses of blood cholesterol levels revealed no decrease in cholesterol or cholesterol intermediates, thus supporting the previously proposed hypothesis of an alternative cholesterol pathway. The identification of LSS as causal gene for autosomal-recessive HS highlights the importance of the cholesterol pathway in hair follicle biology and may facilitate novel therapeutic approaches for hair loss disorders in general.
Collapse
|
20
|
Silencing LRH-1 in colon cancer cell lines impairs proliferation and alters gene expression programs. Proc Natl Acad Sci U S A 2015; 112:2467-72. [PMID: 25675535 DOI: 10.1073/pnas.1500978112] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Colorectal cancers (CRCs) account for nearly 10% of all cancer deaths in industrialized countries. Recent evidence points to a central role for the nuclear receptor liver receptor homolog-1 (LRH-1) in intestinal tumorigenesis. Interaction of LRH-1 with the Wnt/β-catenin pathway, highly active in a critical subpopulation of CRC cells, underscores the importance of elucidating LRH-1's role in this disease. Reduction of LRH-1 diminishes tumor burden in murine models of CRC; however, it is not known whether LRH-1 is required for tumorigenesis, for proliferation, or for both. In this work, we address this question through shRNA-mediated silencing of LRH-1 in established CRC cell lines. LRH-1 mRNA knockdown results in significantly impaired proliferation in a cell line highly expressing the receptor and more modest impairment in a cell line with moderate LRH-1 expression. Cell-cycle analysis shows prolongation of G0/G1 with LRH-1 silencing, consistent with LRH-1 cell-cycle influences in other tissues. Cluster analysis of microarray gene expression demonstrates significant genome wide alterations with major effects in cell-cycle regulation, signal transduction, bile acid and cholesterol metabolism, and control of apoptosis. This study demonstrates a critical proproliferative role for LRH-1 in established colon cancer cell lines. LRH-1 exerts its effects via multiple signaling networks. Our results suggest that selected CRC patients could benefit from LRH-1 inhibitors.
Collapse
|
21
|
DeStefano GM, Kurban M, Anyane-Yeboa K, Dall'Armi C, Di Paolo G, Feenstra H, Silverberg N, Rohena L, López-Cepeda LD, Jobanputra V, Fantauzzo KA, Kiuru M, Tadin-Strapps M, Sobrino A, Vitebsky A, Warburton D, Levy B, Salas-Alanis JC, Christiano AM. Mutations in the cholesterol transporter gene ABCA5 are associated with excessive hair overgrowth. PLoS Genet 2014; 10:e1004333. [PMID: 24831815 PMCID: PMC4022463 DOI: 10.1371/journal.pgen.1004333] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 03/07/2014] [Indexed: 01/09/2023] Open
Abstract
Inherited hypertrichoses are rare syndromes characterized by excessive hair growth that does not result from androgen stimulation, and are often associated with additional congenital abnormalities. In this study, we investigated the genetic defect in a case of autosomal recessive congenital generalized hypertrichosis terminalis (CGHT) (OMIM135400) using whole-exome sequencing. We identified a single base pair substitution in the 5' donor splice site of intron 32 in the ABC lipid transporter gene ABCA5 that leads to aberrant splicing of the transcript and a decrease in protein levels throughout patient hair follicles. The homozygous recessive disruption of ABCA5 leads to reduced lysosome function, which results in an accumulation of autophagosomes, autophagosomal cargos as well as increased endolysosomal cholesterol in CGHT keratinocytes. In an unrelated sporadic case of CGHT, we identified a 1.3 Mb cryptic deletion of chr17q24.2-q24.3 encompassing ABCA5 and found that ABCA5 levels are dramatically reduced throughout patient hair follicles. Collectively, our findings support ABCA5 as a gene underlying the CGHT phenotype and suggest a novel, previously unrecognized role for this gene in regulating hair growth.
Collapse
Affiliation(s)
- Gina M. DeStefano
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Mazen Kurban
- Department of Dermatology, Columbia University, New York, New York, United States of America
| | - Kwame Anyane-Yeboa
- Department of Pediatrics, Columbia University Medical Center, New York, New York, United States of America
| | - Claudia Dall'Armi
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York, United States of America
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York, United States of America
| | - Heather Feenstra
- St. Luke's-Roosevelt Hospital Center, New York, New York, United States of America
| | - Nanette Silverberg
- St. Luke's-Roosevelt Hospital Center, New York, New York, United States of America
| | - Luis Rohena
- Department of Pediatrics, Columbia University Medical Center, New York, New York, United States of America
| | | | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Katherine A. Fantauzzo
- Department of Dermatology, Columbia University, New York, New York, United States of America
| | - Maija Kiuru
- Department of Dermatology, Columbia University, New York, New York, United States of America
| | - Marija Tadin-Strapps
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Antonio Sobrino
- New York Presbyterian Hospital, New York, New York, United States of America
| | - Anna Vitebsky
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Dorothy Warburton
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
- Department of Pediatrics, Columbia University Medical Center, New York, New York, United States of America
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | | | - Angela M. Christiano
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
- Department of Dermatology, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
23
|
Goldstein I, Rotter V. Regulation of lipid metabolism by p53 - fighting two villains with one sword. Trends Endocrinol Metab 2012; 23:567-75. [PMID: 22819212 DOI: 10.1016/j.tem.2012.06.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 01/01/2023]
Abstract
Both cellular and systemic metabolism of lipids are paramount for homeostasis, and their malfunction leads to devastating pathologies. Recently, exciting findings have linked the p53 tumor suppressor to the regulation of lipid metabolism. Here, we summarize these findings showing a clear role for p53 in enhancing lipid catabolism while inhibiting its anabolism. We also describe the multitude of genes regulated by p53 that participate in or regulate systemic lipid transport. From the compilation of available data a scenario is emerging in which p53 regulates genes involved in lipid metabolism - both in a cancer-preventive effort and, intriguingly, as a means to prevent atherosclerosis. Thus, by regulating lipid metabolism, p53 fights the two major causes of death worldwide - atherosclerosis and cancer.
Collapse
Affiliation(s)
- Ido Goldstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | |
Collapse
|
24
|
Aparicio-Vergara M, Shiri-Sverdlov R, Koonen DPY, Hofker MH. Bone marrow transplantation as an established approach for understanding the role of macrophages in atherosclerosis and the metabolic syndrome. Curr Opin Lipidol 2012; 23:111-21. [PMID: 22274753 DOI: 10.1097/mol.0b013e3283508c4f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Bone marrow transplantation (BMT) technology is a firmly established tool for studying atherosclerosis. Only recently it is helping us to understand the inflammatory mechanisms leading to the development of obesity, insulin resistance and type 2 diabetes. Here we review the use of BMT as a tool for studying the metabolic syndrome. RECENT FINDINGS Bone marrow-derived cells, and particularly monocytes and macrophages, have been a major subject in the study of atherogenesis, and they are highly amenable for research purposes because of their application in bone marrow transplantations. For example, the many pathways studied using BMT have helped unmask ABC transporters as the genes controlling reverse cholesterol transport and foam cell formation, as well as other genes like CCR2 and IκBα controlling leukocyte development, migration and activation. The invasion of leukocytes, not only in the vessel wall, but also in adipose tissue and liver, shares many common mechanisms relevant to atherosclerosis and metabolic diseases. SUMMARY BMT is an efficient and versatile tool for assessing the roles of specific genes that are restricted to hematopoietic cells, and especially the monocytes and macrophages in metabolic syndrome and its related pathologies.
Collapse
Affiliation(s)
- Marcela Aparicio-Vergara
- Molecular Genetics, Medical Biology Section, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
25
|
Meurs I, Calpe-Berdiel L, Habets KLL, Zhao Y, Korporaal SJA, Mommaas AM, Josselin E, Hildebrand RB, Ye D, Out R, Kuiper J, Van Berkel TJC, Chimini G, Van Eck M. Effects of deletion of macrophage ABCA7 on lipid metabolism and the development of atherosclerosis in the presence and absence of ABCA1. PLoS One 2012; 7:e30984. [PMID: 22403608 PMCID: PMC3293875 DOI: 10.1371/journal.pone.0030984] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/29/2011] [Indexed: 11/19/2022] Open
Abstract
ABCA7, a close relative of ABCA1 which facilitates cholesterol efflux to lipid-poor apoproteins, has been implicated in macrophage lipid efflux and clearance of apoptotic cells in in vitro studies. In the current study, we investigated the in vivo effects of macrophage ABCA7 deficiency on lipid metabolism and atherosclerosis. Chimeras with dysfunctional ABCA7 in macrophages and other blood cells were generated by transplantation of bone marrow from ABCA7 knockout (KO) mice into irradiated low-density lipoprotein receptor (LDLr) KO mice. Unexpectedly, macrophage ABCA7 deficiency did not significantly affect atherosclerosis susceptibility of LDLr KO mice after 10 weeks Western-type diet feeding. However, ABCA7 deficiency was associated with 2-fold (p<0.05) higher macrophage ABCA1 mRNA expression levels. Combined disruption of ABCA1 and ABCA7 in bone-marrow-derived cells increased atherosclerotic lesion development (1.5-fold (p>0.05) as compared to wild type transplanted mice. However, single deletion of ABCA1 had a similar effect (1.8-fold, p<0.05). Macrophage foam cell accumulation in the peritoneal cavity was reduced in ABCA1/ABCA7 dKO transplanted animals as compared to single ABCA1 KO transplanted mice, which was associated with increased ABCG1 expression. Interestingly, spleens of ABCA1/ABCA7 double KO transplanted mice were significantly larger as compared to the other 3 groups and showed massive macrophage lipid accumulation, a reduction in CD3+ T-cells, and increased expression of key regulators of erythropoiesis. In conclusion, deletion of ABCA7 in bone marrow-derived cells does not affect atherogenesis in the arterial wall neither in the absence or presence of ABCA1. Interestingly, combined deletion of bone marrow ABCA1 and ABCA7 causes severe splenomegaly associated with cellular lipid accumulation, a reduction in splenic CD3+ T cells, and induced markers of erythropoeisis. Our data indicate that ABCA7 may play a role in T cell proliferation and erythropoeisis in spleen.
Collapse
Affiliation(s)
- Illiana Meurs
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
- Current position at Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura Calpe-Berdiel
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Kim L. L. Habets
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Ying Zhao
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Suzanne J. A. Korporaal
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - A. Mieke Mommaas
- Electron Microscopy Section, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emmanuelle Josselin
- Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Université de la Méditerranée, Marseille, France
| | - Reeni B. Hildebrand
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Dan Ye
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Ruud Out
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Theo J. C. Van Berkel
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Giovanna Chimini
- Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Université de la Méditerranée, Marseille, France
| | - Miranda Van Eck
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
26
|
Piehler AP, Ozcürümez M, Kaminski WE. A-Subclass ATP-Binding Cassette Proteins in Brain Lipid Homeostasis and Neurodegeneration. Front Psychiatry 2012; 3:17. [PMID: 22403555 PMCID: PMC3293240 DOI: 10.3389/fpsyt.2012.00017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/19/2012] [Indexed: 12/24/2022] Open
Abstract
The A-subclass of ATP-binding cassette (ABC) transporters comprises 12 structurally related members of the evolutionarily highly conserved superfamily of ABC transporters. ABCA transporters represent a subgroup of "full-size" multispan transporters of which several members have been shown to mediate the transport of a variety of physiologic lipid compounds across membrane barriers. The importance of ABCA transporters in human disease is documented by the observations that so far four members of this protein family (ABCA1, ABCA3, ABCA4, ABCA12) have been causatively linked to monogenetic disorders including familial high-density lipoprotein deficiency, neonatal surfactant deficiency, degenerative retinopathies, and congenital keratinization disorders. Recent research also point to a significant contribution of several A-subfamily ABC transporters to neurodegenerative diseases, in particular Alzheimer's disease (AD). This review will give a summary of our current knowledge of the A-subclass of ABC transporters with a special focus on brain lipid homeostasis and their involvement in AD.
Collapse
|
27
|
|
28
|
Zhao Y, Van Berkel TJ, Van Eck M. Relative roles of various efflux pathways in net cholesterol efflux from macrophage foam cells in atherosclerotic lesions. Curr Opin Lipidol 2010; 21:441-53. [PMID: 20683325 DOI: 10.1097/mol.0b013e32833dedaa] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Cholesterol efflux mechanisms are essential for macrophage cholesterol homeostasis. HDL, an important cholesterol efflux acceptor, comprises a class of heterogeneous particles that induce cholesterol efflux via distinct pathways. This review focuses on the understanding of the different cholesterol efflux pathways and physiological acceptors involved, and their regulation in atherosclerotic lesions. RECENT FINDINGS The synergistic interactions of ATP-binding cassette transporters A1 and G1 as well as ATP-binding cassette transporter A1 and scavenger receptor class B type I are essential for cellular cholesterol efflux and the prevention of macrophage foam cell formation. However, the importance of aqueous diffusion should also not be underestimated. Significant progress has been made in understanding the mechanisms underlying ATP-binding cassette A1-mediated cholesterol efflux and regulation of its expression and trafficking. Conditions locally in the atherosclerotic lesion, for example, lipids, cytokines, oxidative stress, and hypoxia, as well as systemic factors, including inflammation and diabetes, critically influence the expression of cholesterol transporters on macrophage foam cells. Furthermore, HDL modification and remodeling in atherosclerosis, inflammation, and diabetes impairs its function as an acceptor for cellular cholesterol. SUMMARY Recent advances in the understanding of the regulation of cholesterol transporters and their acceptors in atherosclerotic lesions indicate that HDL-based therapies should aim to enhance the activity of cholesterol transporters and improve both the quantity and quality of HDL.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, University of Leiden, Leiden, The Netherlands
| | | | | |
Collapse
|