1
|
Tsakraklides V, Brevnova E, Stephanopoulos G, Shaw AJ. Improved Gene Targeting through Cell Cycle Synchronization. PLoS One 2015; 10:e0133434. [PMID: 26192309 PMCID: PMC4507847 DOI: 10.1371/journal.pone.0133434] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/26/2015] [Indexed: 01/27/2023] Open
Abstract
Gene targeting is a challenge in organisms where non-homologous end-joining is the predominant form of recombination. We show that cell division cycle synchronization can be applied to significantly increase the rate of homologous recombination during transformation. Using hydroxyurea-mediated cell cycle arrest, we obtained improved gene targeting rates in Yarrowia lipolytica, Arxula adeninivorans, Saccharomyces cerevisiae, Kluyveromyces lactis and Pichia pastoris demonstrating the broad applicability of the method. Hydroxyurea treatment enriches for S-phase cells that are active in homologous recombination and enables previously unattainable genomic modifications.
Collapse
Affiliation(s)
| | - Elena Brevnova
- Total New Energies, Emeryville, California, United States of America
| | - Gregory Stephanopoulos
- Novogy Inc., Cambridge, Massachusetts, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - A. Joe Shaw
- Novogy Inc., Cambridge, Massachusetts, United States of America
| |
Collapse
|
2
|
Suzuki K, Inoue H. Recombination and Gene Targeting in Neurospora. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10142-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Da Ines O, White CI. Gene Site-Specific Insertion in Plants. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Nishizawa-Yokoi A, Nonaka S, Saika H, Kwon YI, Osakabe K, Toki S. Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice. THE NEW PHYTOLOGIST 2012; 196:1048-1059. [PMID: 23050791 PMCID: PMC3532656 DOI: 10.1111/j.1469-8137.2012.04350.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/23/2012] [Indexed: 05/13/2023]
Abstract
Evidence for the involvement of the nonhomologous end joining (NHEJ) pathway in Agrobacterium-mediated transferred DNA (T-DNA) integration into the genome of the model plant Arabidopsis remains inconclusive. Having established a rapid and highly efficient Agrobacterium-mediated transformation system in rice (Oryza sativa) using scutellum-derived calli, we examined here the involvement of the NHEJ pathway in Agrobacterium-mediated stable transformation in rice. Rice calli from OsKu70, OsKu80 and OsLig4 knockdown (KD) plants were infected with Agrobacterium harboring a sensitive emerald luciferase (LUC) reporter construct to evaluate stable expression and a green fluorescent protein (GFP) construct to monitor transient expression of T-DNA. Transient expression was not suppressed, but stable expression was reduced significantly, in KD plants. Furthermore, KD-Ku70 and KD-Lig4 calli exhibited an increase in the frequency of homologous recombination (HR) compared with control calli. In addition, suppression of OsKu70, OsKu80 and OsLig4 induced the expression of HR-related genes on treatment with DNA-damaging agents. Our findings suggest strongly that NHEJ is involved in Agrobacterium-mediated stable transformation in rice, and that there is a competitive and complementary relationship between the NHEJ and HR pathways for DNA double-strand break repair in rice.
Collapse
Affiliation(s)
- Ayako Nishizawa-Yokoi
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Satoko Nonaka
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hiroaki Saika
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Yong-Ik Kwon
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Kihara Institute for Biological Research, Yokohama City University641-12 Maioka-cho, Yokohama 244-0813, Japan
| | - Keishi Osakabe
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Institute for Environmental Science and Technology, Saitama UniversityShimo-Okubo 255, Sakura-ku, Saitama-shi, 338-8570 Japan
| | - Seiichi Toki
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Kihara Institute for Biological Research, Yokohama City University641-12 Maioka-cho, Yokohama 244-0813, Japan
| |
Collapse
|
5
|
Kwon YI, Abe K, Osakabe K, Endo M, Nishizawa-Yokoi A, Saika H, Shimada H, Toki S. Overexpression of OsRecQl4 and/or OsExo1 enhances DSB-induced homologous recombination in rice. PLANT & CELL PHYSIOLOGY 2012; 53:2142-52. [PMID: 23161853 DOI: 10.1093/pcp/pcs155] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
During homologous recombination (HR)-mediated DNA double-strand break (DSB) repair in eukaryotes, an initial step is the creation of a 3'-single-stranded DNA (ssDNA) overhang via resection of a 5' end. Rad51 polymerizes on this ssDNA to search for a homologous sequence, and the gapped sequence is then repaired using an undamaged homologous DNA strand as template. Recent studies in eukaryotes indicate that resection of the DSB site is promoted by the cooperative action of RecQ helicase family proteins: Bloom helicase (BLM) in mammals or Sgs1 in yeast, and exonuclease 1 (Exo1). However, the role of RecQ helicase and exonuclease during the 5'-resection process of HR in plant cells has not yet been defined. Here, we demonstrate that overexpression of rice proteins OsRecQl4 (BLM counterpart) and/or OsExo1 (Exo1 homolog) can enhance DSB processing, as evaluated by recombination substrate reporter lines in rice. These results could be applied to construct an efficient gene targeting system in rice.
Collapse
Affiliation(s)
- Yong-Ik Kwon
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Scientific opinion addressing the safety assessment of plants developed using Zinc Finger Nuclease 3 and other Site‐Directed Nucleases with similar function. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2943] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
7
|
Lloyd AH, Wang D, Timmis JN. Single molecule PCR reveals similar patterns of non-homologous DSB repair in tobacco and Arabidopsis. PLoS One 2012; 7:e32255. [PMID: 22389691 PMCID: PMC3289645 DOI: 10.1371/journal.pone.0032255] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/25/2012] [Indexed: 12/28/2022] Open
Abstract
DNA double strand breaks (DSBs) occur constantly in eukaryotes. These potentially lethal DNA lesions are repaired efficiently by two major DSB repair pathways: homologous recombination and non-homologous end joining (NHEJ). We investigated NHEJ in Arabidopsis thaliana and tobacco (Nicotiana tabacum) by introducing DNA double-strand breaks through inducible expression of I-SceI, followed by amplification of individual repair junction sequences by single-molecule PCR. Using this process over 300 NHEJ repair junctions were analysed in each species. In contrast to previously published variation in DSB repair between Arabidopsis and tobacco, the two species displayed similar DSB repair profiles in our experiments. The majority of repair events resulted in no loss of sequence and small (1-20 bp) deletions occurred at a minority (25-45%) of repair junctions. Approximately ~1.5% of the observed repair events contained larger deletions (>20 bp) and a similar percentage contained insertions. Strikingly, insertion events in tobacco were associated with large genomic deletions at the site of the DSB that resulted in increased micro-homology at the sequence junctions suggesting the involvement of a non-classical NHEJ repair pathway. The generation of DSBs through inducible expression of I-SceI, in combination with single molecule PCR, provides an effective and efficient method for analysis of individual repair junctions and will prove a useful tool in the analysis of NHEJ.
Collapse
Affiliation(s)
- Andrew H Lloyd
- School of Molecular and Biomedical Science, The University of Adelaide, South Australia, Australia.
| | | | | |
Collapse
|
8
|
Waterworth WM, Drury GE, Bray CM, West CE. Repairing breaks in the plant genome: the importance of keeping it together. THE NEW PHYTOLOGIST 2011; 192:805-822. [PMID: 21988671 DOI: 10.1111/j.1469-8137.2011.03926.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
DNA damage threatens the integrity of the genome and has potentially lethal consequences for the organism. Plant DNA is under continuous assault from endogenous and environmental factors and effective detection and repair of DNA damage are essential to ensure the stability of the genome. One of the most cytotoxic forms of DNA damage are DNA double-strand breaks (DSBs) which fragment chromosomes. Failure to repair DSBs results in loss of large amounts of genetic information which, following cell division, severely compromises daughter cells that receive fragmented chromosomes. This review will survey recent advances in our understanding of plant responses to chromosomal breaks, including the sources of DNA damage, the detection and signalling of DSBs, mechanisms of DSB repair, the role of chromatin structure in repair, DNA damage signalling and the link between plant recombination pathways and transgene integration. These mechanisms are of critical importance for maintenance of plant genome stability and integrity under stress conditions and provide potential targets for the improvement of crop plants both for stress resistance and for increased precision in the generation of genetically improved varieties.
Collapse
Affiliation(s)
| | - Georgina E Drury
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Clifford M Bray
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
9
|
Dumont M, Massot S, Doutriaux MP, Gratias A. Characterization of Brca2-deficient plants excludes the role of NHEJ and SSA in the meiotic chromosomal defect phenotype. PLoS One 2011; 6:e26696. [PMID: 22039535 PMCID: PMC3198793 DOI: 10.1371/journal.pone.0026696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/02/2011] [Indexed: 12/22/2022] Open
Abstract
In somatic cells, three major pathways are involved in the repair of DNA double-strand breaks (DBS): Non-Homologous End Joining (NHEJ), Single-Strand Annealing (SSA) and Homologous Recombination (HR). In somatic and meiotic HR, DNA DSB are 5′ to 3′ resected, producing long 3′ single-stranded DNA extensions. Brca2 is essential to load the Rad51 recombinase onto these 3′ overhangs. The resulting nucleofilament can thus invade a homologous DNA sequence to copy and restore the original genetic information. In Arabidopsis, the inactivation of Brca2 specifically during meiosis by an RNAi approach results in aberrant chromosome aggregates, chromosomal fragmentation and missegregation leading to a sterility phenotype. We had previously suggested that such chromosomal behaviour could be due to NHEJ. In this study, we show that knock-out plants affected in both BRCA2 genes show the same meiotic phenotype as the RNAi-inactivated plants. Moreover, it is demonstrated that during meiosis, neither NHEJ nor SSA compensate for HR deficiency in BRCA2-inactivated plants. The role of the plant-specific DNA Ligase6 is also excluded. The possible mechanism(s) involved in the formation of these aberrant chromosomal bridges in the absence of HR during meiosis are discussed.
Collapse
Affiliation(s)
- Marilyn Dumont
- Institut de Biologie des Plantes, CNRS UMR8618, Université Paris Sud-11, Orsay, France
| | - Sophie Massot
- Institut de Biologie des Plantes, CNRS UMR8618, Université Paris Sud-11, Orsay, France
| | | | - Ariane Gratias
- Institut de Biologie des Plantes, CNRS UMR8618, Université Paris Sud-11, Orsay, France
- * E-mail:
| |
Collapse
|