1
|
Kato S, Demura S, Kitagawa R, Yokogawa N, Shimizu T, Kobayashi M, Yamada Y, Nagatani S, Murakami H, Kawahara N, Tsuchiya H. Clinical outcomes following total en bloc spondylectomy for spinal metastases from lung cancer. J Orthop Sci 2024; 29:908-913. [PMID: 37149482 DOI: 10.1016/j.jos.2023.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND The current guidelines for the treatment of non-small cell lung cancer encourage local curative treatment for selected patients with oligometastases. This study evaluated the surgical results of total en bloc spondylectomy (TES) for isolated spinal metastases originating from lung cancer in carefully selected patients. METHODS We retrospectively reviewed 14 patients (7 men and 7 women) who underwent TES for spinal metastases originating from lung cancer between 2000 and 2017. The primary outcome measure was the postoperative overall survival time. The histological types included adenocarcinoma (n = 12), pleomorphic carcinoma (n = 1), and small cell lung carcinoma (SCLC) (n = 1 patient). We assessed postoperative survival using Kaplan-Meier analysis and the log-rank test. RESULTS The median postoperative survival time was 83.0 months (6-162 months) in 13 patients with non-small cell lung carcinoma (NSCLC) and 6 months in 1 patient with SCLC. The 3-, 5-, and 10-year overall survival rates in patients with NSCLC were 61.5%, 53.8%, and 15.4%, respectively. Poor postoperative performance status (PS) and Frankel grade, and preoperative irradiation to the vertebrae to be resected were significantly associated with short-term survival after TES in patients with NSCLC (p < 0.05). CONCLUSIONS The surgical results of TES for spinal metastases of lung cancer were relatively favorable among carefully selected patients. TES may be indicated for spinal metastases of lung cancer in patients with controlled primary lung cancer, NSCLC histology, prospect of good postoperative PS, and preferably no irradiation to the target vertebrae.
Collapse
Affiliation(s)
- Satoshi Kato
- Dept. of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| | - Satoru Demura
- Dept. of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ryo Kitagawa
- Dept. of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Noriaki Yokogawa
- Dept. of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takaki Shimizu
- Dept. of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Motoya Kobayashi
- Dept. of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yohei Yamada
- Dept. of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Satoshi Nagatani
- Dept. of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hideki Murakami
- Dept. of Orthopaedic Surgery, Nagoya City University, Nagoya, Japan
| | - Norio Kawahara
- Dept. of Orthopaedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Hiroyuki Tsuchiya
- Dept. of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
2
|
Tanaka T, Ide T, Itoh K, Kai K, Noshiro H. Laparoscopic liver resection for local recurrence after carbon‑ion radiotherapy for hepatocellular carcinoma: A case report. Oncol Lett 2024; 27:78. [PMID: 38192671 PMCID: PMC10773218 DOI: 10.3892/ol.2023.14211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Numerous potentially curative treatments have become available for patients with hepatocellular carcinoma (HCC) on the basis of the individual patient and tumor characteristics. Carbon-ion radiotherapy (C-ion RT) is a novel treatment option to reduce the physical burden in patients with HCC. However, the long-term outcomes and the clinical and pathological features of locoregional recurrence after initial C-ion RT are unclear. The present study reports the case of a patient who underwent a curative laparoscopic liver resection for the local recurrence of HCC after C-ion RT. A 73-year-old man was diagnosed with chronic hepatitis C and achieved a sustained virological response. During subsequent surveillance, a solitary HCC of 2.3 cm in diameter appeared in liver segment 7 (S7). While surgical resection was considered the best option, the patient chose C-ion RT as the initial HCC treatment. Although C-ion RT appeared to be successful for the primary lesion, enhanced computed tomography revealed that a hypervascular tumor had reappeared in the same area 16 months later. As HCC recurrence was suspected, several different examinations were performed. Computed tomography and magnetic resonance imaging showed that the recurrent tumor had irregular margins, and communication was suspected with the intrahepatic portal vein. A laparoscopic partial liver resection of S7 was planned. Histopathological examination of the excised specimen revealed proliferation of viable moderately to poorly differentiated HCC, with marked invasive growth and numerous portal vein infiltrations. To the best of our knowledge, this is the first report of surgery for locally recurrent HCC after C-ion RT. Oncological outcomes following C-ion RT for HCC remain unclear. Notably, there are cases of unusual recurrence with massive vascular invasion after C-ion RT. In the present case, the histological features were confirmed after C-ion RT for HCC. This case may raise concerns about the true efficacy of C-ion RT and warns against the easy choice of C-ion RT in spite of a resectable HCC.
Collapse
Affiliation(s)
- Tomokazu Tanaka
- Department of Surgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Takao Ide
- Department of Surgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Kotaro Itoh
- Department of Surgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Keita Kai
- Department of Pathology, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Hirokazu Noshiro
- Department of Surgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| |
Collapse
|
3
|
Yokogawa N, Kato S, Shimizu T, Kurokawa Y, Kobayashi M, Yamada Y, Nagatani S, Kawai M, Uto T, Murakami H, Kawahara N, Demura S. Clinical Outcomes of Total En Bloc Spondylectomy for Previously Irradiated Spinal Metastases: A Retrospective Propensity Score-Matched Comparative Study. J Clin Med 2023; 12:4603. [PMID: 37510719 PMCID: PMC10380676 DOI: 10.3390/jcm12144603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
This study aimed to investigate the clinical outcomes of total en bloc spondylectomy (TES) for spinal metastases previously treated with radiotherapy (RT). This study enrolled 142 patients who were divided into two groups: those with and those without an RT history. Forty-two patients were selected from each group through propensity score matching, and postoperative complications, local recurrence, and overall survival rates were compared. The incidence of postoperative complications was significantly higher in the group with an RT history than in the group without an RT history (57.1% vs. 35.7%, respectively). The group with an RT history had a higher local recurrence rate than the group without an RT history (1-year rate: 17.5% vs. 0%; 2-year rate: 20.8% vs. 2.9%; 5-year rate: 24.4% vs. 6.9%). The overall postoperative survival tended to be lower in the group with an RT history; however, there was no significant difference between the two groups (2-year survival: 64.3% vs. 66.7%; 5-year survival: 47.3% vs. 57.1%). When planning a TES for irradiated spinal metastases, the risk of postoperative complications and local recurrence should be fully considered.
Collapse
Affiliation(s)
- Noriaki Yokogawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Satoshi Kato
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Takaki Shimizu
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Yuki Kurokawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Motoya Kobayashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Yohei Yamada
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Satoshi Nagatani
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Masafumi Kawai
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Takaaki Uto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hideki Murakami
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Norio Kawahara
- Department of Orthopaedic Surgery, Kanazawa Medical University, Kahoku 920-0293, Japan
| | - Satoru Demura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| |
Collapse
|
4
|
Tsutsumi K, Chiba A, Tadaki Y, Minaki S, Ooshima T, Takahashi H. Contribution of Neuropilin-1 in Radiation-Survived Subclones of NSCLC Cell Line H1299. Curr Issues Mol Biol 2021; 43:1203-1211. [PMID: 34698100 PMCID: PMC8928997 DOI: 10.3390/cimb43030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 11/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is an aggressive lung cancer accounting for approximately 85% of all lung cancer patients. For the patients with Stages IIIA, IIIB, and IIIC, the 5-year survival is low though with the combination with radiotherapy and chemotherapy. In addition, the occurrence of tumor cells (repopulated tumors) that survive irradiation remains a challenge. In our previous report, we subcloned the radiation-surviving tumor cells (IR cells) using the human NSCLC cell line, H1299, and found that the expression of neuropilin-1 (NRP-1) was upregulated in IR cells by the microarray analysis. Here, we investigated the contribution of neuropilin-1 to changes in the characteristics of IR cells. Although there were no differences in angiogenic activity in the tube formation assay between parental and IR cells, the cell motility was increased in IR cells compared to parental cells in the cell migration assay. This enhanced cell motility was suppressed by pretreatment with anti-NRP-1 antibody. Although further studies are necessary to identify other molecules associated with NRP-1, the increase in cellular motility in IR cells might be due to the contribution of NRP-1. Inhibition of NRP-1 would help control tumor malignancy in radiation-surviving NSCLC.
Collapse
Affiliation(s)
- Kaori Tsutsumi
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Correspondence: ; Tel.: +81-11-706-3421
| | - Ayaka Chiba
- Division of Radiology and Nuclear Medicine, Sapporo Medical University Hospital, Sapporo 060-8556, Japan;
| | - Yuta Tadaki
- Department of Radiological Technology, Saiseikai Otaru Hospital, Otaru 047-0008, Japan;
| | - Shima Minaki
- Department of Radiological Technology, Sapporo Spine Clinic, Sapporo 060-0042, Japan;
| | - Takahito Ooshima
- Department of Radiological Technology, Tomakomai City Hospital, Tomakomai 053-8567, Japan;
| | - Haruka Takahashi
- Department of X-ray Technology, Sapporo City General Hospital, Sapporo 060-8604, Japan;
| |
Collapse
|
5
|
Kang HR, Moon JY, Ediriweera MK, Song YW, Cho M, Kasiviswanathan D, Cho SK. Dietary flavonoid myricetin inhibits invasion and migration of radioresistant lung cancer cells (A549-IR) by suppressing MMP-2 and MMP-9 expressions through inhibition of the FAK-ERK signaling pathway. Food Sci Nutr 2020; 8:2059-2067. [PMID: 32328272 PMCID: PMC7174229 DOI: 10.1002/fsn3.1495] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Myricetin is a commonly found dietary flavonoid. In the present study, we investigated the effects of myricetin on migration and invasion of radioresistant lung cancer cells (A549-IR). Transcriptome analysis of A549-IR cells identified several differentially expressed genes (DEGs) in A549-IR cells compared to parental A549 cells. Functional enrichment analysis revealed that most of the DEGs were linked with PI3K-AKT signaling, proteoglycans, focal adhesion, and ECM-receptor interactions. A549-IR cells demonstrated enhanced migratory potential with increased expression of vimentin, snail and slug, and reduced expression of E-cadherin. A549-IR cells exposed to myricetin displayed reduced migration and suppressed MMP-2 and MMP-9 expression. Notably, myricetin inhibited the phosphorylation of focal adhesion kinase (FAK) and altered the F-actin/G-actin ratio in A549-IR cells, without modulation of EMT markers. These findings suggest that myricetin can inhibit migration of A549-IR cells by suppressing MMP-2 and MMP-9 expressions through inhibition of the FAK-ERK signaling pathway.
Collapse
Affiliation(s)
- Hye R. Kang
- Interdisciplinary Graduate Program in Advanced Convergence Technology and ScienceJeju National UniversityJejuKorea
| | - Jeong Y. Moon
- Subtropical/Tropical Organism Gene BankJeju National UniversityJejuKorea
| | | | - Yeon W. Song
- Faculty of BiotechnologyCollege of Applied Life SciencesSARIJeju National UniversityJejuKorea
| | - Moonjae Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and ScienceJeju National UniversityJejuKorea
- Department of BiochemistrySchool of MedicineJeju National UniversityJejuKorea
| | | | - Somi K. Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and ScienceJeju National UniversityJejuKorea
- Subtropical/Tropical Organism Gene BankJeju National UniversityJejuKorea
- Faculty of BiotechnologyCollege of Applied Life SciencesSARIJeju National UniversityJejuKorea
- School of Biomaterial Science and TechnologyCollege of Applied Life SciencesJeju National UniversityJejuKorea
| |
Collapse
|
6
|
Shahhoseini E, Feltis BN, Nakayama M, Piva TJ, Pouniotis D, Alghamdi SS, Geso M. Combined Effects of Gold Nanoparticles and Ionizing Radiation on Human Prostate and Lung Cancer Cell Migration. Int J Mol Sci 2019; 20:ijms20184488. [PMID: 31514328 PMCID: PMC6770098 DOI: 10.3390/ijms20184488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 01/15/2023] Open
Abstract
The effect of 15 nm-sized gold nanoparticles (AuNPs) and/or ionizing radiation (IR) on the migration and adhesion of human prostate (DU145) and lung (A549) cancer cell lines was investigated. Cell migration was measured by observing the closing of a gap created by a pipette tip on cell monolayers grown in 6-well plates. The ratio of the gap areas at 0 h and 24 h were used to calculate the relative migration. The relative migration of cells irradiated with 5 Gy was found to be 89% and 86% for DU145 and A549 cells respectively. When the cells were treated with 1 mM AuNPs this fell to ~75% for both cell lines. However, when the cells were treated with both AuNPs and IR an additive effect was seen, as the relative migration rate fell to ~60%. Of interest was that when the cells were exposed to either 2 or 5 Gy IR, their ability to adhere to the surface of a polystyrene culture plate was significantly enhanced, unlike that seen for AuNPs. The delays in gap filling (cell migration) in cells treated with IR and/or AuNPs can be attributed to cellular changes which also may have altered cell motility. In addition, changes in the cytoskeleton of the cancer cells may have also affected adhesiveness and thus the cancer cell's motility response to IR.
Collapse
Affiliation(s)
- Elham Shahhoseini
- Discipline of Medical Radiation, School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
| | - Bryce N Feltis
- Discipline of Human Bioscience, School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
| | - Masao Nakayama
- Discipline of Medical Radiation, School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
| | - Terrence J Piva
- Discipline of Human Bioscience, School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
| | - Dodie Pouniotis
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
| | - Salem S Alghamdi
- Department of Radiological Sciences, Collage of Applied Medical Science, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia.
| | - Moshi Geso
- Discipline of Medical Radiation, School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
| |
Collapse
|
7
|
Blockhuys S, Liu N, Agarwal NR, Enejder A, Loitto V, Sun XF. X-radiation enhances the collagen type I strap formation and migration potentials of colon cancer cells. Oncotarget 2018; 7:71390-71399. [PMID: 27655687 PMCID: PMC5342086 DOI: 10.18632/oncotarget.12111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/13/2016] [Indexed: 12/22/2022] Open
Abstract
Rectal cancer treatment still fails with local and distant relapses of the disease. It is hypothesized that radiotherapy could stimulate cancer cell dissemination and metastasis. In this study, we evaluated the effect of X-radiation on collagen type I strap formation potential, i.e. matrix remodeling associated with mesenchymal cell migration, and behaviors of SW480, SW620, HCT116 p53+/+ and HCT116 p53−/− colon cancer cells. We determined a radiation-induced increase in collagen type I strap formation and migration potentials of SW480 and HCT116 p53+/+. Further studies with HCT116 p53+/+, indicated that after X-radiation strap forming cells have an increased motility. More, we detected a decrease in adhesion potential and mature integrin β1 expression, but no change in non-muscle myosin II expression for HCT116 p53+/+ after X-radiation. Integrin β1 neutralization resulted in a decreased cell adhesion and collagen type I strap formation in both sham and X-radiated conditions. Our study indicates collagen type I strap formation as a potential mechanism of colon cancer cells with increased migration potential after X-radiation, and suggests that other molecules than integrin β1 and non-muscle myosin II are responsible for the radiation-induced collagen type I strap formation potential of colon cancer cells. This work encourages further molecular investigation of radiation-induced migration to improve rectal cancer treatment outcome.
Collapse
Affiliation(s)
- Stephanie Blockhuys
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Molecular Microscopy, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Na Liu
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Nisha Rani Agarwal
- Molecular Microscopy, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Annika Enejder
- Molecular Microscopy, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Vesa Loitto
- Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Xiao-Feng Sun
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
8
|
Ishihara S, Aoki K, Mizutani T, Amano M, Nishimura SI, Haga H. Glycosphingolipid GM2 Induces Invasiveness in Irradiation-tolerant Lung Cancer Cells. Cell Struct Funct 2018; 43:177-185. [DOI: 10.1247/csf.18026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
| | - Kei Aoki
- Faculty of Advanced Life Science, Hokkaido University
| | - Takeomi Mizutani
- Department of Life Science and Technology, Faculty of Engineering, Hokkai-Gakuen University
| | - Maho Amano
- Faculty of Advanced Life Science, Hokkaido University
| | | | - Hisashi Haga
- Faculty of Advanced Life Science, Hokkaido University
| |
Collapse
|
9
|
Yamauchi Y, Safi S, Orschiedt L, Gardyan A, Brons S, Rieber J, Nicolay NH, Huber PE, Eichhorn M, Dienemann H, Herth FJF, Weber KJ, Debus J, Hoffmann H, Rieken S. Low-dose photon irradiation induces invasiveness through the SDF-1α/CXCR4 pathway in malignant mesothelioma cells. Oncotarget 2017; 8:68001-68011. [PMID: 28978091 PMCID: PMC5620231 DOI: 10.18632/oncotarget.19134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 06/10/2017] [Indexed: 11/28/2022] Open
Abstract
Background Low-dose photon irradiation has repeatedly been suspected to increase a risk of promoting local recurrence of disease or even systemic dissemination. The purpose of this study was to investigate the motility of malignant pleural mesothelioma (MPM) cell lines after low-doses of photon irradiation and to elucidate the mechanism of the detected phenotype. Methods H28 and H226 MPM cells were examined in clonogenic survival experiments and migration assays with and without various doses of photon and carbon ion irradiation. C-X-C chemokine receptor type 4 (CXCR4), SDF-1α, β1 integrin, α3 integrin, and α5 integrin expressions were analyzed by quantitative FACS analysis, ELISA and western blots. Apoptosis was assessed via Annexin-V-staining. Results The migration of MPM cells was stimulated by both fetal bovine serum and by stromal cell-derived factor 1α (SDF-1α). Low doses of photon irradiation (1 Gy and 2 Gy) suppressed clonogenicity, but promoted migration of both H28 and H226 cells through the SDF-1α/CXCR4 pathway. Hypermigration was inhibited by the administration of CXCR4 antagonist, AMD3100. In contrast, corresponding doses of carbon ion irradiation (0.3 Gy and 1 Gy) suppressed clonogenicity, but did not promote MPM cell migration. Conclusion Our findings suggest that the co-administration of photon irradiation and the CXCR4-antagonist AMD3100 or the use of carbon ions instead of photons may be possible solutions to reduce the risk of locoregional tumor recurrence after radiotherapy for MPM.
Collapse
Affiliation(s)
- Yoshikane Yamauchi
- Department of Thoracic Surgery, Thorax Clinic, Heidelberg University, Heidelberg, Germany
| | - Seyer Safi
- Department of Thoracic Surgery, Thorax Clinic, Heidelberg University, Heidelberg, Germany
| | - Lena Orschiedt
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Adriane Gardyan
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Ion Treatment Facility (HIT), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Juliane Rieber
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany.,Heidelberg Ion Treatment Facility (HIT), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany.,Heidelberg Ion Treatment Facility (HIT), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Peter E Huber
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Martin Eichhorn
- Department of Thoracic Surgery, Thorax Clinic, Heidelberg University, Heidelberg, Germany
| | - Hendrik Dienemann
- Department of Thoracic Surgery, Thorax Clinic, Heidelberg University, Heidelberg, Germany
| | - Felix J F Herth
- Pneumology and Critical Care Medicine, Thorax Clinic, Heidelberg University, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRCH), Heidelberg, Germany, Member of the German Center for Lung Research (DZL)
| | - Klaus-Josef Weber
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany.,Heidelberg Ion Treatment Facility (HIT), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany.,Heidelberg Ion Treatment Facility (HIT), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Hans Hoffmann
- Department of Thoracic Surgery, Thorax Clinic, Heidelberg University, Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany.,Heidelberg Ion Treatment Facility (HIT), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
10
|
Ishihara S, Yasuda M, Ishizu A, Ishikawa M, Shirato H, Haga H. Activating transcription factor 5 enhances radioresistance and malignancy in cancer cells. Oncotarget 2016; 6:4602-14. [PMID: 25682872 PMCID: PMC4467102 DOI: 10.18632/oncotarget.2912] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/11/2014] [Indexed: 11/25/2022] Open
Abstract
Radiotherapy is effective for treating various types of tumors. However, some cancer cells survive after irradiation and repopulate tumors with highly malignant phenotypes that correlate with poor prognosis. It is not known how cancer cells survive and generate malignant tumors after irradiation. Here, we show that activating transcription factor 5 (ATF5) promotes radioresistance and malignancy in cancer cells after irradiation. In the G1-S phase of the cell cycle, cancer cells express high levels of ATF5, which promotes cell cycle progression and thereby increases radioresistance. Furthermore, ATF5 increases malignant phenotypes, such as cell growth and invasiveness, in cancer cells in vitro and in vivo. We have identified a new mechanism for the regeneration of highly malignant tumors after irradiation and shown that ATF5 plays a key role in the process.
Collapse
Affiliation(s)
- Seiichiro Ishihara
- Faculty of Advanced Life Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan.,Research Center for Cooperative Projects, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan
| | - Motoaki Yasuda
- Department of Oral Pathobiological Science, Graduate School of Dental Medicine, Hokkaido University, Kita-ku, Sapporo 060-8586, Japan
| | - Akihiro Ishizu
- Division of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Masayori Ishikawa
- Department of Medical Physics, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan
| | - Hiroki Shirato
- Department of Radiology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan
| | - Hisashi Haga
- Faculty of Advanced Life Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan.,Research Center for Cooperative Projects, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
11
|
Wang DD, Liu W, Chang JJ, Cheng X, Zhang XZ, Xu H, Feng D, Yu LJ, Wang XL. Bioengineering three-dimensional culture model of human lung cancer cells: an improved tool for screening EGFR targeted inhibitors. RSC Adv 2016. [DOI: 10.1039/c6ra00229c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bioengineering a three-dimensional culture model of human lung cancer cells for screening EGFR targeted inhibitors.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Wei Liu
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Jing-Jie Chang
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Xu Cheng
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Xiu-Zhen Zhang
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Hong Xu
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Di Feng
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Li-Jun Yu
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Xiu-Li Wang
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| |
Collapse
|
12
|
Ishihara S, Haga H. ATF5: development of oncogenic resistance to radiotherapy. Aging (Albany NY) 2015; 7:453-4. [PMID: 26187904 PMCID: PMC4543028 DOI: 10.18632/aging.100775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Seiichiro Ishihara
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hisashi Haga
- Faculty of Advanced Life Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
- Research Center for Cooperative Projects, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
13
|
Iguchi Y, Ishihara S, Uchida Y, Tajima K, Mizutani T, Kawabata K, Haga H. Filamin B Enhances the Invasiveness of Cancer Cells into 3D Collagen Matrices. Cell Struct Funct 2015; 40:61-7. [PMID: 25925610 DOI: 10.1247/csf.15001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Numerous types of cancer cells migrate into extracellular tissues. This phenomenon is termed invasion, and is associated with poor prognosis in cancer patients. In this study, we demonstrated that filamin B (FLNb), an actin-binding protein, is highly expressed in cancer cell lines that exhibit high invasiveness, with a spindle morphology, into 3D collagen matrices. In addition, we determined that knockdown of FLNb in invasive cancer cells converts cell morphology from spindle-shaped, which is associated with high invasiveness, to round-shaped with low invasiveness. Furthermore, di-phosphorylation of myosin regulatory light chain (MRLC) and phosphorylation of focal adhesion kinase (FAK) are inhibited in FLNb-knockdown cancer cells. These results suggest that FLNb enhances invasion of cancer cells through phosphorylation of MRLC and FAK. Therefore, FLNb may be a new therapeutic target for invasive cancers.
Collapse
Affiliation(s)
- Yuta Iguchi
- Faculty of Advanced Life Science, Hokkaido University
| | | | | | | | | | | | | |
Collapse
|
14
|
Ishida S, Tanaka R, Yamaguchi N, Ogata G, Mizutani T, Kawabata K, Haga H. Epithelial sheet folding induces lumen formation by Madin-Darby canine kidney cells in a collagen gel. PLoS One 2014; 9:e99655. [PMID: 25170757 PMCID: PMC4149355 DOI: 10.1371/journal.pone.0099655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/18/2014] [Indexed: 11/19/2022] Open
Abstract
Lumen formation is important for morphogenesis; however, an unanswered question is whether it involves the collective migration of epithelial cells. Here, using a collagen gel overlay culture method, we show that Madin-Darby canine kidney cells migrated collectively and formed a luminal structure in a collagen gel. Immediately after the collagen gel overlay, an epithelial sheet folded from the periphery, migrated inwardly, and formed a luminal structure. The inhibition of integrin-β1 or Rac1 activity decreased the migration rate of the peripheral cells after the sheets folded. Moreover, lumen formation was perturbed by disruption of apical-basolateral polarity induced by transforming growth factor-β1. These results indicate that cell migration and cell polarity play an important role in folding. To further explore epithelial sheet folding, we developed a computer-simulated mechanical model based on the rigidity of the extracellular matrix. It indicated a soft substrate is required for the folding movement.
Collapse
Affiliation(s)
- Sumire Ishida
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Ryosuke Tanaka
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Naoya Yamaguchi
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Genki Ogata
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takeomi Mizutani
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kazushige Kawabata
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Hisashi Haga
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
- Research Center for Cooperative Projects, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
15
|
Moncharmont C, Levy A, Guy JB, Falk AT, Guilbert M, Trone JC, Alphonse G, Gilormini M, Ardail D, Toillon RA, Rodriguez-Lafrasse C, Magné N. Radiation-enhanced cell migration/invasion process: a review. Crit Rev Oncol Hematol 2014; 92:133-42. [PMID: 24908570 DOI: 10.1016/j.critrevonc.2014.05.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 04/25/2014] [Accepted: 05/09/2014] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is a keystone treatment in cancer. Photon radiation has proved its benefits in overall survival in many clinical studies. However, some patients present local recurrences or metastases when cancer cells survive to treatment. Metastasis is a process which includes adhesion of the cell to the extracellular matrix, degradation of the matrix by proteases, cell motility, intravasation in blood or lymphatic vessels, extravasation in distant parenchyma and development of cell colonies. Several studies demonstrated that ionizing radiation might promote migration and invasion of tumor cells by intricate implications in the micro-environment, cell-cell junctions, extracellular matrix junctions, proteases secretion, and induction of epithelial-mesenchymal transition. This review reports various cellular pathways involved in the photon-enhanced cell invasion process for which potential therapeutic target may be employed for enhancing antitumor effectiveness. Understanding these mechanisms could lead to therapeutic strategies to counter the highly invasive cell lines via specific inhibitors or carbon-ion therapy.
Collapse
Affiliation(s)
- Coralie Moncharmont
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France; Department of Radiotherapy, Institut de Cancérologie de la Lucien Neuwirth, St Priest en Jarez, France
| | - Antonin Levy
- Department of Radiotherapy, GustaveRoussy, Villejuif, France
| | - Jean-Baptiste Guy
- Department of Radiotherapy, Institut de Cancérologie de la Lucien Neuwirth, St Priest en Jarez, France
| | - Alexander T Falk
- Department of Radiotherapy, Centre Antoine Lacassagne, Nice, France
| | - Matthieu Guilbert
- INSERM U908, Growth Factor Signalling in Breast Cancer, Functional Proteomics, University Lille 1, IFR-147, 59000 Villeneuve d'Ascq, France
| | - Jane-Chloé Trone
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France
| | - Gersende Alphonse
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France
| | - Marion Gilormini
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France
| | - Dominique Ardail
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France
| | - Robert-Alain Toillon
- INSERM U908, Growth Factor Signalling in Breast Cancer, Functional Proteomics, University Lille 1, IFR-147, 59000 Villeneuve d'Ascq, France
| | - Claire Rodriguez-Lafrasse
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France
| | - Nicolas Magné
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France; Department of Radiotherapy, Institut de Cancérologie de la Lucien Neuwirth, St Priest en Jarez, France.
| |
Collapse
|
16
|
Li X, Ishihara S, Yasuda M, Nishioka T, Mizutani T, Ishikawa M, Kawabata K, Shirato H, Haga H. Lung cancer cells that survive ionizing radiation show increased integrin α2β1- and EGFR-dependent invasiveness. PLoS One 2013; 8:e70905. [PMID: 23951036 PMCID: PMC3738636 DOI: 10.1371/journal.pone.0070905] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/26/2013] [Indexed: 12/22/2022] Open
Abstract
Ionizing radiation (IR)-enhanced tumor invasiveness is emerging as a contributor to the limited benefit of radiotherapy; however, its mechanism is still unclear. We previously showed that subcloned lung adenocarcinoma A549 cells (P cells), which survived 10 Gy IR (IR cells), acquired high invasiveness in vitro. Here, we tried to identify the mechanism by which IR cells increase their invasiveness by examining altered gene expression and signaling pathways in IR cells compared with those in P cells. To simulate the microenvironment in vivo, cells were embedded in a three-dimensional (3D) collagen type I gel, in which the IR cells were elongated, while the P cells were spherical. The integrin expression pattern was surveyed, and expression levels of the integrin α2 and β1 subunits were significantly elevated in IR cells. Knockdown of α2 expression or functional blockade of integrin α2β1 resulted in a round morphology of IR cells, and abrogated their invasion in the collagen matrix, suggesting the molecule's essential role in cell spread and invasion in 3D collagen. Epidermal growth factor receptor (EGFR) also presented enhanced expression and activation in IR cells. Treatment with EGFR tyrosine kinase inhibitor, PD168393, decreased the ratio of elongated cells and cell invasiveness. Signaling molecules, including extracellular signal-regulated kinase-1/2 (Erk1/2) and Akt, exhibited higher activation in IR cells. Inhibition of Akt activation by treating with phosphoinositide 3-kinase (PI3K) inhibitor LY294002 decreased IR cell invasion, whereas inhibition of Erk1/2 activation by mitogen-activated protein kinase kinase (MEK) inhibitor U0126 did not. Our results show that integrin α2β1 and EGFR cooperatively promote higher invasiveness of IR-survived lung cancer cells, mediated in part by the PI3K/Akt signaling pathway, and might serve as alternative targets in combination with radiotherapy.
Collapse
Affiliation(s)
- Xue Li
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Seiichiro Ishihara
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Motoaki Yasuda
- Department of Oral Pathobiological Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Nishioka
- Department of Biomedical Sciences and Engineering, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Takeomi Mizutani
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Masayori Ishikawa
- Department of Medical Physics, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazushige Kawabata
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Hiroki Shirato
- Department of Radiology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hisashi Haga
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
17
|
Ishihara S, Yasuda M, Nishioka T, Mizutani T, Kawabata K, Shirato H, Haga H. Irradiation-tolerant lung cancer cells acquire invasive ability dependent on dephosphorylation of the myosin regulatory light chain. FEBS Lett 2013; 587:732-6. [PMID: 23391761 DOI: 10.1016/j.febslet.2013.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/19/2013] [Accepted: 01/28/2013] [Indexed: 02/02/2023]
Abstract
Radiotherapy is one of the major treatment modalities for malignancies. However, cells surviving irradiation often display high levels of invasiveness. This study shows that irradiation-tolerant lung adenocarcinoma demonstrates high invasive capability depending on dephosphorylation of the myosin regulatory light chain (MRLC). In a collagen gel overlay condition, low-invasive subclones of lung adenocarcinoma (A549P-3) showed a round morphology and diphosphorylation of MRLC. In contrast, irradiation-tolerant A549P-3 cells (A549P-3IR) displayed high invasiveness and a lower level of MRLC diphosphorylation. In addition, inhibition of MRLC phosphatase activity decreased the invasive activity. These findings suggest that A549P-3IR cells acquire high invasiveness through MRLC dephosphorylation.
Collapse
Affiliation(s)
- Seiichiro Ishihara
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Investigation of the change in marker geometry during respiration motion: a preliminary study for dynamic-multi-leaf real-time tumor tracking. Radiat Oncol 2012; 7:218. [PMID: 23249681 PMCID: PMC3552716 DOI: 10.1186/1748-717x-7-218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The use of stereotactic body radiotherapy (SBRT) is rapidly increasing. Presently, the most accurate method uses fiducial markers implanted near the tumor. A shortcoming of this method is that the beams turn off during the majority of the respiratory cycle, resulting in a prolonged treatment time. Recent advances in collimation technology have enabled continuous irradiation to a moving tumor. However, the lung is a dynamic organ characterized by inhalation exhalation cycles, during which marker/tumor geometry may change (i.e., misalignment), resulting in under-dosing to the tumor. FINDINGS Eight patients with lung cancer who were candidates for stereotactic radiotherapy were examined with 4D high-resolution CT. As a marker surrogate, virtual bronchoscopy using the pulmonary artery (VBPA) was conducted. To detect possible marker/tumor misalignment during the respiration cycle, the distance between the peripheral bronchus, where a marker could be implanted, and the center of gravity of a tumor were calculated for each respiratory phase. When the respiration cycle was divided into 10 phases, the median value was significantly larger for the 30%-70% respiratory phases compared to that for the 10% respiratory phase (P<0.05, Mann-Whitney U-test). CONCLUSIONS These results demonstrate that physiological aspect must be considered when continuous tumor tracking is applied to a moving tumor. To minimize an "additional" internal target volume (ITV) margin, a marker should be placed approximately 2.5 cm from the tumor.
Collapse
|
19
|
Koo CX, Fang W, Salto-Tellez M, Leong DT. Coexpressing shRNA with fluorescence tags for quantification of cell migration studies. Mol Biol Rep 2012; 39:7695-703. [PMID: 22350264 DOI: 10.1007/s11033-012-1605-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/02/2012] [Indexed: 11/24/2022]
Abstract
Understanding migration of cells has many implications in human physiology; some examples include developmental biology, healing, immune responses and tissue remodeling. On the other hand, invasive migration by tumor cells is pathological and is a major cause of mortality amongst cancer sufferers. Cell migration assays have been widely used to quantify potentially metastatic genes. In recent years, the use of RNAi has significantly increased the tools available in cell migration research due to its specific gene targeting for knockdown. The inability to ensure 100% transfection/transduction efficiency reduces the sensitivity of cell migration assays because cells not successfully transfected/transduced with the RNAi are also included in the calculations. This study introduces a different experimental setup mathematically expressed in our named normalized relative infected cell count (N-RICC) that analyses cell migration assays by co-expressing retrovirally transduced shRNA with fluorescence tags from a single vector. Vectors transduced into cells are visible under fluorescence, thus alleviating the problems involved with transduction efficiency by individually identifying cells with targeted genes. Designed shRNAs were targeted against a list of potentially metastatic genes in a highly migratory breast cancer cell line model, MDA-MB-231. We have successfully applied N-RICC analysis to show greater sensitivity of integrin alpha5 (ITGA5) and Ras homologue A (RhoA) in cell metastasis over conventional methods in scratch-wound assays and migration chambers assays.
Collapse
Affiliation(s)
- Christine Xing'er Koo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | | | | | | |
Collapse
|
20
|
Hypoxic-inducible factor-1α might up-regulate matrix metalloproteinase in subclones that survive 10-Gy X-irradiation. Jpn J Radiol 2011; 29:226-7. [PMID: 21519999 DOI: 10.1007/s11604-010-0530-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
|