1
|
Liu Y, Yang J, Wang Y, Zeng Q, Fan Y, Huang A, Fan H. The proteasome activator subunit PSME1 promotes HBV replication by inhibiting the degradation of HBV core protein. Genes Dis 2024; 11:101142. [PMID: 39281837 PMCID: PMC11400625 DOI: 10.1016/j.gendis.2023.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2024] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a leading cause of liver cirrhosis and hepatocellular carcinoma, representing a global health problem for which a functional cure is difficult to achieve. The HBV core protein (HBc) is essential for multiple steps in the viral life cycle. It is the building block of the nucleocapsid in which viral DNA reverse transcription occurs, and its mediation role in viral-host cell interactions is critical to HBV infection persistence. However, systematic studies targeting HBc-interacting proteins remain lacking. Here, we combined HBc with the APEX2 to systematically identify HBc-related host proteins in living cells. Using functional screening, we confirmed that proteasome activator subunit 1 (PSME1) is a potent HBV-associated host factor. PSME1 expression was up-regulated upon HBV infection, and the protein level of HBc decreased after PSME1 knockdown. Mechanistically, the interaction between PSME1 and HBc inhibited the degradation of HBc by the 26S proteasome, thereby improving the stability of the HBc protein. Furthermore, PSME1 silencing inhibits HBV transcription in the HBV infection system. Our findings reveal an important mechanism by which PSME1 regulates HBc proteins and may facilitate the development of new antiviral therapies targeting PSME1 function.
Collapse
Affiliation(s)
- Yu Liu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Jiaxin Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Yanyan Wang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Qiqi Zeng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Yao Fan
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ailong Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Hui Fan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Predictive value of portal fibrosis and inflammation in transplanted liver grafts treated with hypothermic oxygenated perfusion. Pathol Res Pract 2023; 243:154361. [PMID: 36801508 DOI: 10.1016/j.prp.2023.154361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Hypothermic oxygenated perfusion (HOPE) has become widespread for the preservation of liver grafts, making tangled the relationship among the use of extended criteria donors (ECD), graft histology and transplant outcome. AIMS To prospectively validate the impact of the graft histology on transplant outcome in recipient receiving liver grafts from ECD after HOPE. METHODS Ninety-three ECD grafts were prospectively enrolled; 49 (52.7 %) were perfused with HOPE according to our protocols. All clinical, histological and follow-up data were collected. RESULTS Grafts with portal fibrosis stage ≥ 3 according to Ishak's (evaluated with Reticulin stain) had a significantly higher incidence of early allograft dysfunction (EAD) and 6-month-dysfunction (p = 0.026 and p = 0.049), with more days in Intensive Care Unit (p = 0.050). Lobular fibrosis correlated with post-liver transplant kidney function (p = 0.019). Moderate-to-severe chronic portal inflammation was correlated with graft survival on both multivariate and univariate analyses (p < 0.001), but this risk factor is sensibly reduced by the execution of HOPE. CONCLUSIONS The use of liver grafts with portal fibrosis stage ≥ 3 implies a higher risk of post-transplant complications. Portal inflammation represents an important prognostic factor as well, but the execution of HOPE represents a valid tool to improve graft survival.
Collapse
|
3
|
Tripathi SC, Vedpathak D, Ostrin EJ. The Functional and Mechanistic Roles of Immunoproteasome Subunits in Cancer. Cells 2021; 10:cells10123587. [PMID: 34944095 PMCID: PMC8700164 DOI: 10.3390/cells10123587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cell-mediated immunity is driven by antigenic peptide presentation on major histocompatibility complex (MHC) molecules. Specialized proteasome complexes called immunoproteasomes process viral, bacterial, and tumor antigens for presentation on MHC class I molecules, which can induce CD8 T cells to mount effective immune responses. Immunoproteasomes are distinguished by three subunits that alter the catalytic activity of the proteasome and are inducible by inflammatory stimuli such as interferon-γ (IFN-γ). This inducible activity places them in central roles in cancer, autoimmunity, and inflammation. While accelerated proteasomal degradation is an important tumorigenic mechanism deployed by several cancers, there is some ambiguity regarding the role of immunoproteasome induction in neoplastic transformation. Understanding the mechanistic and functional relevance of the immunoproteasome provides essential insights into developing targeted therapies, including overcoming resistance to standard proteasome inhibition and immunomodulation of the tumor microenvironment. In this review, we discuss the roles of the immunoproteasome in different cancers.
Collapse
Affiliation(s)
- Satyendra Chandra Tripathi
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
- Correspondence: (S.C.T.); (E.J.O.)
| | - Disha Vedpathak
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
| | - Edwin Justin Ostrin
- Department of General Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (S.C.T.); (E.J.O.)
| |
Collapse
|
4
|
Immunoproteasome Function in Normal and Malignant Hematopoiesis. Cells 2021; 10:cells10071577. [PMID: 34206607 PMCID: PMC8305381 DOI: 10.3390/cells10071577] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a central part of protein homeostasis, degrading not only misfolded or oxidized proteins but also proteins with essential functions. The fact that a healthy hematopoietic system relies on the regulation of protein homeostasis and that alterations in the UPS can lead to malignant transformation makes the UPS an attractive therapeutic target for the treatment of hematologic malignancies. Herein, inhibitors of the proteasome, the last and most important component of the UPS enzymatic cascade, have been approved for the treatment of these malignancies. However, their use has been associated with side effects, drug resistance, and relapse. Inhibitors of the immunoproteasome, a proteasomal variant constitutively expressed in the cells of hematopoietic origin, could potentially overcome the encountered problems of non-selective proteasome inhibition. Immunoproteasome inhibitors have demonstrated their efficacy and safety against inflammatory and autoimmune diseases, even though their development for the treatment of hematologic malignancies is still in the early phases. Various immunoproteasome inhibitors have shown promising preliminary results in pre-clinical studies, and one inhibitor is currently being investigated in clinical trials for the treatment of multiple myeloma. Here, we will review data on immunoproteasome function and inhibition in hematopoietic cells and hematologic cancers.
Collapse
|
5
|
D'Errico A, Riefolo M, Serenari M, De Pace V, Santandrea G, Monica M, de Cillia C, Ravaioli M, Cescon M, Vasuri F. The histological assessment of liver fibrosis in grafts from extended criteria donors predicts the outcome after liver transplantation: A retrospective study. Dig Liver Dis 2020; 52:185-189. [PMID: 31155489 DOI: 10.1016/j.dld.2019.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/07/2019] [Accepted: 05/04/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The use of extended criteria donors (ECD) in liver transplantation is increasing due to the organ shortage. Histological evaluation of the liver graft in the context of procurement is an important tool for extending the donor pool without affecting the quality of the transplanted organs. Macrovesicular steatosis is widely accepted as predictor of early allograft dysfunction (EAD), while other features, such as portal fibrosis, are poorly studied. AIM To identify morphological features, other than macrovesicular steatosis, that may affect recipients' outcome. METHODS Between 2014 and 2016, 132 donors with extended criteria underwent pre-transplant liver biopsy during procurement. Histological variables of the graft, donors'/recipients' clinical data, EAD and patient/graft survival were registered. RESULTS The recipients who received a graft with histological-proven portal fibrosis had a significant lower patient and graft survival in comparison to patients without fibrosis (P = 0.044 and P = 0.039, respectively). Donors' dyslipidemia was significantly associated with the occurrence of EAD (P = 0.021). When dyslipidemia was combined with histological liver fibrosis a 54.5% incidence of EAD was observed (P = 0.012). CONCLUSIONS The histological assessment of liver fibrosis in pre-transplant biopsy of ECD grafts, together with donor's clinical data, provides important information on recipients' outcome.
Collapse
Affiliation(s)
- Antonia D'Errico
- Pathology Unit, S.Orsola-Malpighi University Hospital, Bologna, Italy.
| | - Mattia Riefolo
- Pathology Unit, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Matteo Serenari
- General and Transplant Surgery Unit, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Vanessa De Pace
- General and Transplant Surgery Unit, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | | | - Melissa Monica
- Pathology Unit, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Carlo de Cillia
- Regional Transplant Center, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Matteo Ravaioli
- General and Transplant Surgery Unit, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Matteo Cescon
- General and Transplant Surgery Unit, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Francesco Vasuri
- Pathology Unit, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | | |
Collapse
|
6
|
Cellular Responses to Proteasome Inhibition: Molecular Mechanisms and Beyond. Int J Mol Sci 2019; 20:ijms20143379. [PMID: 31295808 PMCID: PMC6678303 DOI: 10.3390/ijms20143379] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
Proteasome inhibitors have been actively tested as potential anticancer drugs and in the treatment of inflammatory and autoimmune diseases. Unfortunately, cells adapt to survive in the presence of proteasome inhibitors activating a variety of cell responses that explain why these therapies have not fulfilled their expected results. In addition, all proteasome inhibitors tested and approved by the FDA have caused a variety of side effects in humans. Here, we describe the different types of proteasome complexes found within cells and the variety of regulators proteins that can modulate their activities, including those that are upregulated in the context of inflammatory processes. We also summarize the adaptive cellular responses activated during proteasome inhibition with special emphasis on the activation of the Autophagic-Lysosomal Pathway (ALP), proteaphagy, p62/SQSTM1 enriched-inclusion bodies, and proteasome biogenesis dependent on Nrf1 and Nrf2 transcription factors. Moreover, we discuss the role of IRE1 and PERK sensors in ALP activation during ER stress and the involvement of two deubiquitinases, Rpn11 and USP14, in these processes. Finally, we discuss the aspects that should be currently considered in the development of novel strategies that use proteasome activity as a therapeutic target for the treatment of human diseases.
Collapse
|
7
|
Yasutomo K. Dysregulation of immunoproteasomes in autoinflammatory syndromes. Int Immunol 2018; 31:631-637. [DOI: 10.1093/intimm/dxy059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/30/2018] [Indexed: 12/30/2022] Open
Abstract
Abstract
Immunoproteasomes degrade ubiquitin-coupled proteins and play a role in creating peptides for presentation by MHC class I proteins. Studies of gene-deficient mice, in which each immunoproteasomal subunit was affected, have demonstrated that dysfunction of immunoproteasomes leads to immunodeficiency, i.e. reduced expression of MHC class I and attenuation of CD8 T-cell responses. Recent studies, however, have uncovered a new type of autoinflammatory syndrome characterized by fever, nodular erythema and progressive partial lipodystrophy that is caused by genetic mutations in immunoproteasome subunits. These mutations disturbed the assembly of immunoproteasomes, which led to reduced proteasomal activity and thus accumulation of ubiquitin-coupled proteins. Those findings suggest that immunoproteasomes function as anti-inflammatory machinery in humans. The discovery of a new type of autoinflammatory syndrome caused by dysregulated immunoproteasomes provides novel insights into the important roles of immunoproteasomes in inflammation as well as the spectrum of autoinflammatory diseases.
Collapse
Affiliation(s)
- Koji Yasutomo
- Department of Immunology & Parasitology, Graduate School of Medicine, Tokushima University, Kuramoto, Tokushima, Japan
| |
Collapse
|
8
|
Ogorevc E, Schiffrer ES, Sosič I, Gobec S. A patent review of immunoproteasome inhibitors. Expert Opin Ther Pat 2018; 28:517-540. [PMID: 29865878 DOI: 10.1080/13543776.2018.1484904] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The ubiquitin-proteasome system is responsible for maintaining protein homeostasis and regulating a variety of cellular processes. The constitutive proteasome is expressed in all cells while the immunoproteasome (IP) is predominantly found in cells of hematopoietic origin. In other cells, the expression of IP can be induced under the influence of cytokines released by T cells during acute immune and stress responses. Inhibitors of IP are of significant interest, because it is expected that selective inhibition of the IP would cause fewer adverse effects. AREAS COVERED There is a considerable interest on patenting IP-specific inhibitors. Relevant patents and patent applications disclosing IP inhibitors are summarized and divided into two parts according to the chemical characteristics of compounds. We also briefly report on the biochemical methods used in the patents to profile the characteristics of IP inhibitors. EXPERT OPINION Several selective inhibitors of IP with a promising ability to address autoimmune and inflammatory diseases are being developed. Peptidic compounds are prevalent and the most advanced IP-selective compounds to date, ONX-0914 and KZR-616, are tripeptide epoxyketone-based molecules. However, some patents disclose that IP-selective inhibition is possible with compounds possessing non-peptidic scaffolds indicating countless possibilities to address inhibition of IP in the future.
Collapse
Affiliation(s)
- Eva Ogorevc
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| | | | - Izidor Sosič
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| | - Stanislav Gobec
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
9
|
Athanasopoulou S, Chondrogianni N, Santoro A, Asimaki K, Delitsikou V, Voutetakis K, Fabbri C, Pietruszka B, Kaluza J, Franceschi C, Gonos ES. Beneficial Effects of Elderly Tailored Mediterranean Diet on the Proteasomal Proteolysis. Front Physiol 2018; 9:457. [PMID: 29765333 PMCID: PMC5938393 DOI: 10.3389/fphys.2018.00457] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022] Open
Abstract
Aging is a multifactorial process characterized by the accumulation of proteins undergoing oxidative modifications, either due to enhanced levels of oxidative stress or due to their decreased clearance; both facts are related to the establishment of chronic inflammatory processes. These processes are directly associated with functional and structural modifications of a key cellular component, namely the proteasome. In this study, levels of oxidized proteins, along with proteasome and immunoproteasome composition and activity on a selected group of 120 elderly volunteers were analyzed before and after the administration of a specific dietary protocol, based on an elderly tailored Mediterranean diet (the "NU-AGE diet"). A significant negative correlation between levels of oxidized/carbonylated proteins and proteasome function was confirmed, both before and after intervention. Furthermore, it was demonstrated that subgroups of non-frail subjects and women receive a greater benefit after the intervention, concerning specifically the proteasome content and activity. These data highlight the putative beneficial effects of Mediterranean diet on the major cellular proteolytic mechanism, the proteasome, in elderly people.
Collapse
Affiliation(s)
- Sophia Athanasopoulou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- C.I.G. Interdepartmental Centre “L. Galvani”, University of Bologna, Bologna, Italy
| | - Konstantina Asimaki
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Vasiliki Delitsikou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Konstantinos Voutetakis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Cristina Fabbri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- C.I.G. Interdepartmental Centre “L. Galvani”, University of Bologna, Bologna, Italy
| | - Barbara Pietruszka
- Department of Human Nutrition, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Joanna Kaluza
- Department of Human Nutrition, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Efstathios S. Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
10
|
Matuszczak E, Weremijewicz A, Komarowska M, Sankiewicz A, Markowska D, Debek W, Gorodkiewicz E, Milewski R, Hermanowicz A. Immunoproteasome in the Plasma of Pediatric Patients With Moderate and Major Burns, and Its Correlation With Proteasome and UCHL1 Measured by SPR Imaging Biosensors. J Burn Care Res 2018. [DOI: 10.1093/jbcr/iry011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ewa Matuszczak
- Department of Pediatric Surgery, Medical University of Bialystok, Poland
| | - Artur Weremijewicz
- Department of Pediatric Surgery, Medical University of Bialystok, Poland
| | - Marta Komarowska
- Department of Pediatric Surgery, Medical University of Bialystok, Poland
| | - Anna Sankiewicz
- Department of Electrochemistry, University of Bialystok, Poland
| | - Diana Markowska
- Department of Electrochemistry, University of Bialystok, Poland
| | - Wojciech Debek
- Department of Pediatric Surgery, Medical University of Bialystok, Poland
| | | | - Robert Milewski
- Department of Statistics, Medical University of Bialystok, Poland
| | - Adam Hermanowicz
- Department of Pediatric Surgery, Medical University of Bialystok, Poland
| |
Collapse
|
11
|
Matuszczak E, Sankiewicz A, Debek W, Gorodkiewicz E, Milewski R, Hermanowicz A. Immunoproteasome in the blood plasma of children with acute appendicitis, and its correlation with proteasome and UCHL1 measured by SPR imaging biosensors. Clin Exp Immunol 2017; 191:125-132. [PMID: 28940383 DOI: 10.1111/cei.13056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to determinate the immunoproteasome concentration in the blood plasma of children with appendicitis, and its correlation with circulating proteasome and ubiquitin carboxyl-terminal hydrolase L1 (UCHL1). Twenty-seven children with acute appendicitis, managed at the Paediatric Surgery Department, were included randomly into the study (age 2 years 9 months up to 14 years, mean age 9·5 ± 1 years). There were 10 girls and 17 boys; 18 healthy, age-matched subjects, admitted for planned surgeries served as controls. Mean concentrations of immunoproteasome, 20S proteasome and UCHL1 in the blood plasma of children with appendicitis before surgery 24 h and 72 h after the appendectomy were higher than in the control group. The immunoproteasome, 20S proteasome and UCHL1 concentrations in the blood plasma of patients with acute appendicitis were highest before surgery. The immunoproteasome, 20S proteasome and UCHL1 concentration measured 24 and 72 h after the operation decreased slowly over time and still did not reach the normal range (P < 0·05). There was no statistical difference between immunoproteasome, 20S proteasome and UCHL1 concentrations in children operated on laparoscopically and children after classic appendectomy. The immunoproteasome concentration may reflect the metabolic response to acute state inflammation, and the process of gradual ebbing of the inflammation may thus be helpful in the assessment of the efficacy of treatment. The method of operation - classic open appendectomy or laparoscopic appendectomy - does not influence the general trend in immunoproteasome concentration in children with appendicitis.
Collapse
Affiliation(s)
- E Matuszczak
- Paediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| | - A Sankiewicz
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - W Debek
- Paediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| | - E Gorodkiewicz
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - R Milewski
- Statistics Department, Medical University of Bialystok, Bialystok, Poland
| | - A Hermanowicz
- Paediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
12
|
Sankiewicz A, Markowska A, Lukaszewski Z, Puzan B, Gorodkiewicz E. Methods for 20S Immunoproteasome and 20S Constitutive Proteasome Determination Based on SPRI Biosensors. Cell Mol Bioeng 2017; 10:174-185. [PMID: 28356996 PMCID: PMC5352758 DOI: 10.1007/s12195-017-0478-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 01/17/2017] [Indexed: 11/03/2022] Open
Abstract
The 20S proteasome, released into the circulation, is a novel cancer biomarker. It exists in two forms: the constitutive proteasome (20Sc) and the immunoproteasome (20Si), which both have separate diagnostic significance. The aim of this work was to develop new methods for 20Si and 20Sc determination. Five alternative specific biosensors usable with the surface plasmon resonance imaging (SPRI) technique for 20Si determination have been developed. Specific 20Si entrapment on the biosensor surface from an analyzed solution was achieved by means of an immobilized specific 20Si receptor. Four of the biosensors contain newly synthesized specific 20Si receptors, while the fifth contains the inhibitor ONX 0914. A method for 20Sc determination using an SPRI biosensor containing PSI inhibitor has been developed. By the introduction of an inhibitor blocking 20Si, 20Sc is selectively determined. All of the methods developed for 20Si and 20Sc determination exhibit good selectivity and satisfactory precision, recoveries and dynamic response ranges. 20Si and 20Sc were determined in blood plasma samples from healthy donors and patients with acute leukemia. In the case of these patients 20Si was the major component, and its level was more than one order of magnitude higher than in the healthy donors.
Collapse
Affiliation(s)
- Anna Sankiewicz
- Department of Electrochemistry, Institute of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Agnieszka Markowska
- Department of Organic Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Zenon Lukaszewski
- Faculty of Chemical Technology, Poznan University of Technology, pl. Sklodowskiej-Curie 5, 60-965 Poznan, Poland
| | - Beata Puzan
- Department of Electrochemistry, Institute of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Ewa Gorodkiewicz
- Department of Electrochemistry, Institute of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| |
Collapse
|
13
|
van Scheppingen J, Broekaart DWM, Scholl T, Zuidberg MRJ, Anink JJ, Spliet WG, van Rijen PC, Czech T, Hainfellner JA, Feucht M, Mühlebner A, van Vliet EA, Aronica E. Dysregulation of the (immuno)proteasome pathway in malformations of cortical development. J Neuroinflammation 2016; 13:202. [PMID: 27566410 PMCID: PMC5002182 DOI: 10.1186/s12974-016-0662-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
Background The proteasome is a multisubunit enzyme complex involved in protein degradation, which is essential for many cellular processes. During inflammation, the constitutive subunits are replaced by their inducible counterparts, resulting in the formation of the immunoproteasome. Methods We investigated the expression pattern of constitutive (β1, β5) and immunoproteasome (β1i, β5i) subunits using immunohistochemistry in malformations of cortical development (MCD; focal cortical dysplasia (FCD) IIa and b, cortical tubers from patients with tuberous sclerosis complex (TSC), and mild MCD (mMCD)). Glial cells in culture were used to elucidate the mechanisms regulating immunoproteasome subunit expression. Results Increased expression was observed in both FCD II and TSC; β1, β1i, β5, and β5i were detected (within cytosol and nucleus) in dysmorphic neurons, balloon/giant cells, and reactive astrocytes. Glial and neuronal nuclear expression positively correlated with seizure frequency. Positive correlation was also observed between the glial expression of constitutive and immunoproteasome subunits and IL-1β. Accordingly, the proteasome subunit expression was modulated by IL-1β in human astrocytes in vitro. Expression of both constitutive and immunoproteasome subunits in FCD II-derived astroglial cultures was negatively regulated by treatment with the immunomodulatory drug rapamycin (inhibitor of the mammalian target of rapamycin (mTOR) pathway, which is activated in both TSC and FCD II). Conclusions These observations support the dysregulation of the proteasome system in both FCD and TSC and provide new insights on the mechanism of regulation the (immuno)proteasome in astrocytes and the molecular links between inflammation, mTOR activation, and epilepsy. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0662-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J van Scheppingen
- Academic Medical Center, Department of (Neuro)Pathology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - D W M Broekaart
- Academic Medical Center, Department of (Neuro)Pathology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - T Scholl
- Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - M R J Zuidberg
- Academic Medical Center, Department of (Neuro)Pathology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - J J Anink
- Academic Medical Center, Department of (Neuro)Pathology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - W G Spliet
- Department of Pathology, Rudolf Magnus Institute for Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P C van Rijen
- Department of Neurosurgery, Rudolf Magnus Institute for Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - T Czech
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - J A Hainfellner
- Department of Pathology, Medical University Vienna, Vienna, Austria
| | - M Feucht
- Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - A Mühlebner
- Academic Medical Center, Department of (Neuro)Pathology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - E A van Vliet
- Academic Medical Center, Department of (Neuro)Pathology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - E Aronica
- Academic Medical Center, Department of (Neuro)Pathology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands. .,Stichting Epilepsie Instellingen Nederland (SEIN), ᅟ, The Netherlands.
| |
Collapse
|
14
|
Kirschner F, Reppe K, Andresen N, Witzenrath M, Ebstein F, Kloetzel PM. Proteasome β5i Subunit Deficiency Affects Opsonin Synthesis and Aggravates Pneumococcal Pneumonia. PLoS One 2016; 11:e0153847. [PMID: 27100179 PMCID: PMC4839637 DOI: 10.1371/journal.pone.0153847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/05/2016] [Indexed: 11/18/2022] Open
Abstract
Immunoproteasomes, harboring the active site subunits β5i/LMP7, β1i/LMP2, and β2i/MECL1 exert protective, regulatory or modulating functions during infection-induced immune responses. Immunoproteasomes are constitutively expressed in hematopoietic derived cells, constituting the first line of defense against invading pathogens. To clarify the impact of immunoproteasomes on the innate immune response against Streptococcus pneumoniae, we characterized the progression of disease and analyzed the systemic immune response in β5i/LMP7-/- mice. Our data show that β5i/LMP7 deficiency, which affected the subunit composition of proteasomes in murine macrophages and liver, was accompanied by reduced transcription of genes encoding immune modulating molecules such as pentraxins, ficolins, and collectins. The diminished opsonin expression suggested an impaired humoral immune response against invading pneumococci resulting in an aggravated systemic dissemination of S. pneumoniae in β5i/LMP7-/- mice. The impaired bacterial elimination in β5i/LMP7-/- mice was accompanied by an aggravated course of pneumonia with early mortality as a consequence of critical illness during the late phase of disease. In summary our results highlight an unsuspected role for immuno-subunits in modulating the innate immune response to extracellular bacterial infections.
Collapse
Affiliation(s)
- Felicia Kirschner
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin Reppe
- Department of Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine Andresen
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Frédéric Ebstein
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
15
|
Brown HR, Castellino S, Groseclose MR, Elangbam CS, Mellon-Kusibab K, Yoon LW, Gates LD, Krull DL, Cariello NF, Arrington-Brown L, Tillman T, Fowler S, Shah V, Bailey D, Miller RT. Drug-induced Liver Fibrosis. Toxicol Pathol 2016; 44:112-31. [DOI: 10.1177/0192623315617033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nevirapine (NVP) is associated with hepatotoxicity in 1–5% of patients. In rodent studies, NVP has been shown to cause hepatic enzyme induction, centrilobular hypertrophy, and skin rash in various rat strains but not liver toxicity. In an effort to understand whether NVP is metabolized differently in a transiently inflamed liver and whether a heightened immune response alters NVP-induced hepatic responses, female brown Norway rats were dosed with either vehicle or NVP alone (75 mg/kg/day for 15 days) or galactosamine alone (single intraperitoneal [ip] injection on day 7 to mimic viral hepatitis) or a combination of NVP (75/100/150 mg/kg/day for 15 days) and galactosamine (single 750 mg/kg ip on day 7). Livers were collected at necropsy for histopathology, matrix-assisted laser desorption/ionization imaging mass spectrometry and gene expression. Eight days after galactosamine, hepatic fibrosis was noted in rats dosed with the combination of NVP and galactosamine. No fibrosis occurred with NVP alone or galactosamine alone. Gene expression data suggested a viral-like response initiated by galactosamine via RNA sensors leading to apoptosis, toll-like receptor, and dendritic cell responses. These were exacerbated by NVP-induced growth factor, retinol, apoptosis, and periostin effects. This finding supports clinical reports warning against exacerbation of fibrosis by NVP in patients with hepatitis C.
Collapse
Affiliation(s)
- H. Roger Brown
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Stephen Castellino
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - M. Reid Groseclose
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Chandikumar S. Elangbam
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Kathryn Mellon-Kusibab
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Lawrence W. Yoon
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Lisa D. Gates
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - David L. Krull
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Neal F. Cariello
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Leigh Arrington-Brown
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Tony Tillman
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Serita Fowler
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Vishal Shah
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - David Bailey
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Richard T. Miller
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| |
Collapse
|
16
|
Bellavista E, Martucci M, Vasuri F, Santoro A, Mishto M, Kloss A, Capizzi E, Degiovanni A, Lanzarini C, Remondini D, Dazzi A, Pellegrini S, Cescon M, Capri M, Salvioli S, D'Errico-Grigioni A, Dahlmann B, Grazi GL, Franceschi C. Lifelong maintenance of composition, function and cellular/subcellular distribution of proteasomes in human liver. Mech Ageing Dev 2014; 141-142:26-34. [PMID: 25265087 DOI: 10.1016/j.mad.2014.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 11/29/2022]
Abstract
Owing to organ shortage, livers from old donors are increasingly used for transplantation. The function and duration of such transplanted livers are apparently comparable to those from young donors, suggesting that, despite some morphological and structural age-related changes, no major functional changes do occur in liver with age. We tested this hypothesis by performing a comprehensive study on proteasomes, major cell organelles responsible for proteostasis, in liver biopsies from heart-beating donors. Oxidized and poly-ubiquitin conjugated proteins did not accumulate with age and the three major proteasome proteolytic activities were similar in livers from young and old donors. Analysis of proteasomes composition showed an age-related increased of β5i/α4 ratio, suggesting a shift toward proteasomes containing inducible subunits and a decreased content of PA28α subunit, mainly in the cytosol of hepatocytes. Thus our data suggest that, proteasomes activity is well preserved in livers from aged donors, concomitantly with subtle changes in proteasome subunit composition which might reflect the occurrence of a functional remodelling to maintain an efficient proteostasis. Gender differences are emerging and they deserve further investigations owing to the different aging trajectories between men and women. Finally, our data support the safe use of livers from old donors for transplantation.
Collapse
Affiliation(s)
- Elena Bellavista
- Interdepartmental Centre "L. Galvani" for Integrated Studies on Biophysics, Bioinformatics and Biocomplexity (CIG), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Morena Martucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Francesco Vasuri
- "F. Addarii" Institute of Oncology and Transplant Pathology at Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, 40138 Bologna, Italy.
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Michele Mishto
- Institute of Biochemistry, Charité Universitaetsmedizin Berlin, 10117 Berlin, Germany; Centro Interdipartimentale di Ricerca sul Cancro "Giorgio Prodi" (CIRC), University of Bologna, 40126 Bologna, Italy.
| | - Alexander Kloss
- Institute of Biochemistry, Charité Universitaetsmedizin Berlin, 10117 Berlin, Germany.
| | - Elisa Capizzi
- "F. Addarii" Institute of Oncology and Transplant Pathology at Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, 40138 Bologna, Italy.
| | - Alessio Degiovanni
- "F. Addarii" Institute of Oncology and Transplant Pathology at Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, 40138 Bologna, Italy.
| | - Catia Lanzarini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Daniel Remondini
- Interdepartmental Centre "L. Galvani" for Integrated Studies on Biophysics, Bioinformatics and Biocomplexity (CIG), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; Department of Physics and Astronomy (DIFA) and INFN Sez. Bologna, Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy.
| | - Alessandro Dazzi
- Department of General Surgery and Organ Transplantation, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy.
| | - Sara Pellegrini
- Department of General Surgery and Organ Transplantation, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy.
| | - Matteo Cescon
- Department of General Surgery and Organ Transplantation, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy.
| | - Miriam Capri
- Interdepartmental Centre "L. Galvani" for Integrated Studies on Biophysics, Bioinformatics and Biocomplexity (CIG), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Stefano Salvioli
- Interdepartmental Centre "L. Galvani" for Integrated Studies on Biophysics, Bioinformatics and Biocomplexity (CIG), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Antonia D'Errico-Grigioni
- "F. Addarii" Institute of Oncology and Transplant Pathology at Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, 40138 Bologna, Italy.
| | - Burkhardt Dahlmann
- Institute of Biochemistry, Charité Universitaetsmedizin Berlin, 10117 Berlin, Germany.
| | | | - Claudio Franceschi
- Interdepartmental Centre "L. Galvani" for Integrated Studies on Biophysics, Bioinformatics and Biocomplexity (CIG), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; IRCCS Institute of Neurological Sciences, 40139 Bologna, Italy; National Research Council of Italy, CNR, Institute for Organic Synthesis and Photoreactivity (ISOF), 40129 Bologna, Italy; National Research Council of Italy, CNR, Institute of Molecular Genetics, Unit of Bologna IOR, 40136 Italy.
| |
Collapse
|
17
|
Miller Z, Ao L, Kim KB, Lee W. Inhibitors of the immunoproteasome: current status and future directions. Curr Pharm Des 2014. [PMID: 23181576 DOI: 10.2174/1381612811319220018] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a vital role in maintaining protein homeostasis and regulating numerous cellular processes. The proteasome, a multi-protease complex, is the key component of the UPS and has been validated as a therapeutic target by the FDA's approval of bortezomib and carfilzomib. These proteasome inhibitor drugs have substantially improved outcomes in patients with hematological malignancies and are currently being investigated for other types of cancer as well as several other diseases. These approved proteasome inhibitors target the catalytic activity of both the constitutive proteasome and the immunoproteasome indiscriminately, and their inhibitory effects on the constitutive proteasome in normal cells are believed to contribute to unwanted side effects. In addition, selective immunoproteasome inhibition has been proposed to have unique effects on other diseases, including those involving aberrant immune function. Initially recognized for its role in the adaptive immune response, the immunoproteasome is often upregulated in disease states such as inflammatory diseases and cancer, suggesting functions beyond antigen presentation. In an effort to explore the immunoproteasome as a potential therapeutic target in these diseases, the development of immunoproteasome-specific inhibitors has become the focus of recent studies. Owing to considerable efforts by both academic and industry groups, immunoproteasome-selective inhibitors have now been identified and tested against several disease models. These inhibitors also provide a valuable set of chemical tools for investigating the biological function of the immunoproteasome. In this review, we will focus on the recent efforts towards the development of immunoproteasome-selective inhibitors.
Collapse
Affiliation(s)
- Zachary Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, Kentucky 40536-0596, USA
| | | | | | | |
Collapse
|
18
|
Suszyńska-Zajczyk J, Wróblewski J, Utyro O, Luczak M, Marczak L, Jakubowski H. Bleomycin hydrolase and hyperhomocysteinemia modulate the expression of mouse proteins involved in liver homeostasis. Amino Acids 2014; 46:1471-80. [PMID: 24633403 DOI: 10.1007/s00726-014-1712-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/21/2014] [Indexed: 12/13/2022]
Abstract
The liver is the major contributor to homocysteine (Hcy) metabolism and fatty liver disease is associated with hyperhomocysteinemia. Bleomycin hydrolase (Blmh) is an aminohydrolase that also participates in Hcy metabolism by hydrolyzing Hcy-thiolactone. To gain insight into hepatic functions of Blmh, we analyzed the liver proteome of Blmh(-/-) and Blmh(+/+) mice in the absence and presence of diet-induced (high methionine) hyperhomocysteinemia using 2D IEF/SDS-PAGE gel electrophoresis and MALDI-TOF mass spectrometry. We identified eleven liver proteins whose expression was significantly altered as a result of the Blmh gene inactivation. The differential expression (Blmh(-/-) vs. Blmh(+/+)) of four liver proteins was lower, of two proteins was higher, and was further modified in mice fed with a hyperhomocysteinemic high-Met diet. The down-regulated proteins are involved in lipoprotein metabolism (ApoA1, ApoE), antigen processing (Psme1), energy metabolism (Atp5h, Gamt), methylglyoxal detoxification (Glo1), oxidative stress response (Sod1), and inactivation of catecholamine neurotransmitters (Comt). The two up-regulated proteins are involved in nitric oxide generation (Ddah1) and xenobiotic detoxification (Sult1c1). We also found that livers of Blmh(-/-) mice expressed a novel variant of glyoxalase domain-containing protein 4 (Glod4) by a post-transcriptional mechanism. Our findings suggest that Blmh interacts with diverse cellular processes-from lipoprotein metabolism, nitric oxide regulation, antigen processing, and energy metabolism to detoxification and antioxidant defenses-that are essential for liver homeostasis and that modulation of these interactions by hyperhomocysteinemia underlies the involvement of Hcy in fatty liver disease.
Collapse
|
19
|
Gohlke S, Mishto M, Textoris-Taube K, Keller C, Giannini C, Vasuri F, Capizzi E, D’Errico-Grigioni A, Kloetzel PM, Dahlmann B. Molecular alterations in proteasomes of rat liver during aging result in altered proteolytic activities. AGE (DORDRECHT, NETHERLANDS) 2014; 36:57-72. [PMID: 23690132 PMCID: PMC3889881 DOI: 10.1007/s11357-013-9543-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 05/08/2013] [Indexed: 06/02/2023]
Abstract
Aging induces alterations of tissue protein homoeostasis. To investigate one of the major systems catalysing intracellular protein degradation we have purified 20S proteasomes from rat liver of young (2 months) and aged (23 months) animals and separated them into three subpopulations containing different types of intermediate proteasomes with standard- and immuno-subunits. The smallest subpopulation ΙΙΙ and the major subpopulation Ι comprised proteasomes containing immuno-subunits β1i and β5i beside small amounts of standard-subunits, whereas proteasomes of subpopulation ΙΙ contained only β5i beside standard-subunits. In favour of a relative increase of the major subpopulation Ι, subpopulation ΙΙ and ΙΙΙ were reduced for about 55 % and 80 %, respectively, in aged rats. Furthermore, in all three 20S proteasome subpopulations from aged animals standard-active site subunits were replaced by immuno-subunits. Overall, this transformation resulted in a relative increase of immuno-subunit-containing proteasomes, paralleled by reduced activity towards short fluorogenic peptide substrates. However, depending on the substrate their hydrolysing activity of long polypeptide substrates was significantly higher or unchanged. Furthermore, our data revealed an altered MHC class I antigen-processing efficiency of 20S proteasomes from liver of aged rats. We therefore suggest that the age-related intramolecular alteration of hepatic proteasomes modifies its cleavage preferences without a general decrease of its activity. Such modifications could have implications on protein homeostasis as well as on MHC class I antigen presentation as part of the immunosenescence process.
Collapse
Affiliation(s)
- Sabrina Gohlke
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
| | - Michele Mishto
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
- />Centro Interdipartimentale di Ricerca sul Cancro “Giorgio Prodi”, University of Bologna, Bologna, Italy
| | - Kathrin Textoris-Taube
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
| | - Christin Keller
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
| | - Carolin Giannini
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
| | - Francesco Vasuri
- />“F. Addarii” Institute of Oncology and Transplant Pathology, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Elisa Capizzi
- />“F. Addarii” Institute of Oncology and Transplant Pathology, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Antonia D’Errico-Grigioni
- />“F. Addarii” Institute of Oncology and Transplant Pathology, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Peter-Michael Kloetzel
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
| | - Burkhardt Dahlmann
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
20
|
Ozbas-Gerceker F, Bozman N, Kok S, Pehlivan M, Yilmaz M, Pehlivan S, Oguzkan-Balci S. Association of an LMP2 Polymorphism with Acute Myeloid Leukemia and Multiple Myeloma. Asian Pac J Cancer Prev 2013; 14:6399-402. [DOI: 10.7314/apjcp.2013.14.11.6399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Conte M, Vasuri F, Trisolino G, Bellavista E, Santoro A, Degiovanni A, Martucci E, D'Errico-Grigioni A, Caporossi D, Capri M, Maier AB, Seynnes O, Barberi L, Musarò A, Narici MV, Franceschi C, Salvioli S. Increased Plin2 expression in human skeletal muscle is associated with sarcopenia and muscle weakness. PLoS One 2013; 8:e73709. [PMID: 23977392 PMCID: PMC3744478 DOI: 10.1371/journal.pone.0073709] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/22/2013] [Indexed: 11/28/2022] Open
Abstract
Human aging is associated with a progressive loss of muscle mass and strength and a concomitant fat accumulation in form of inter-muscular adipose tissue, causing skeletal muscle function decline and immobilization. Fat accumulation can also occur as intra-muscular triglycerides (IMTG) deposition in lipid droplets, which are associated with perilipin proteins, such as Perilipin2 (Plin2). It is not known whether Plin2 expression changes with age and if this has consequences on muscle mass and strength. We studied the expression of Plin2 in the vastus lateralis (VL) muscle of both healthy subjects and patients affected by lower limb mobility limitation of different age. We found that Plin2 expression increases with age, this phenomenon being particularly evident in patients. Moreover, Plin2 expression is inversely correlated with quadriceps strength and VL thickness. To investigate the molecular mechanisms underpinning this phenomenon, we focused on IGF-1/p53 network/signalling pathway, involved in muscle physiology. We found that Plin2 expression strongly correlates with increased p53 activation and reduced IGF-1 expression. To confirm these observations made on humans, we studied mice overexpressing muscle-specific IGF-1, which are protected from sarcopenia. These mice resulted almost negative for the expression of Plin2 and p53 at two years of age. We conclude that fat deposition within skeletal muscle in form of Plin2-coated lipid droplets increases with age and is associated with decreased muscle strength and thickness, likely through an IGF-1- and p53-dependent mechanism. The data also suggest that excessive intramuscular fat accumulation could be the initial trigger for p53 activation and consequent loss of muscle mass and strength.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine and Interdepartmental Centre L Galvani, CIG, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nitric oxide-dependent CYP2B degradation is potentiated by a cytokine-regulated pathway and utilizes the immunoproteasome subunit LMP2. Biochem J 2012; 445:377-82. [PMID: 22612225 PMCID: PMC3557507 DOI: 10.1042/bj20120820] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CYP2B proteins in rat hepatocytes undergo NO-dependent proteolytic degradation, but the mechanisms and the reasons for the specificity towards only certain P450 (cytochrome P450) enzymes are yet unknown. In the present study we found that down-regulation of CYP2B proteins by the NO donor NOC-18 is accelerated by pretreatment of the hepatocytes with IL-1 (interleukin-1β) in the presence of an NO synthase inhibitor, suggesting that an NO-independent action of IL-1 contributes to the lability of CYP2B proteins. The immunoproteasome subunit LMP2 (large multifunctional peptidase 2) was significantly expressed in hepatocytes under basal conditions, and IL-1 induced LMP2 within 6-12 h of treatment. CYP2B protein degradation in response to IL-1 was attenuated by the selective LMP2 inhibitor UK-101, but not by the LMP7 inhibitor IPSI. The results show that LMP2 contributes to the NO-dependent degradation of CYP2B proteins, and suggest that induction of LMP2 may be involved in the potentiation of this degradation by IL-1.
Collapse
|
23
|
Ebstein F, Kloetzel PM, Krüger E, Seifert U. Emerging roles of immunoproteasomes beyond MHC class I antigen processing. Cell Mol Life Sci 2012; 69:2543-58. [PMID: 22382925 PMCID: PMC11114860 DOI: 10.1007/s00018-012-0938-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 01/18/2012] [Accepted: 02/06/2012] [Indexed: 01/09/2023]
Abstract
The proteasome is a multi-catalytic protein complex whose primary function is the degradation of abnormal or foreign proteins. Upon exposure of cells to interferons (IFNs), the β1i/LMP2, β2i/MECL-1, and β5i/LMP7 subunits are induced and incorporated into newly synthesized immunoproteasomes (IP), which are thought to function solely as critical players in the optimization of the CD8(+) T-cell response. However, the observation that IP are present in several non-immune tissues under normal conditions and/or following pathological events militates against the view that its role is limited to MHC class I presentation. In support of this concept, the recent use of genetic models deficient for β1i/LMP2, β2i/MECL-1, or β5i/LMP7 has uncovered unanticipated functions for IP in innate immunity and non-immune processes. Herein, we review recent data in an attempt to clarify the role of IP beyond MHC class I epitope presentation with emphasis on its involvement in the regulation of protein homeostasis, cell proliferation, and cytokine gene expression.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Campus CVK, Oudenarderstr.16, 13347 Berlin, Germany
| | - Peter-Michael Kloetzel
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Campus CVK, Oudenarderstr.16, 13347 Berlin, Germany
| | - Elke Krüger
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Campus CVK, Oudenarderstr.16, 13347 Berlin, Germany
| | - Ulrike Seifert
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Campus CVK, Oudenarderstr.16, 13347 Berlin, Germany
- Institut für Molekulare und Klinische Immunologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
24
|
Bousquet-Dubouch MP, Fabre B, Monsarrat B, Burlet-Schiltz O. Proteomics to study the diversity and dynamics of proteasome complexes: from fundamentals to the clinic. Expert Rev Proteomics 2012; 8:459-81. [PMID: 21819302 DOI: 10.1586/epr.11.41] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This article covers the latest contributions of proteomics to the structural and functional characterization of proteasomes and their associated proteins, but also to the detection of proteasomes as clinical biomarkers in diseases. Proteasomes are highly heterogenous supramolecular complexes and constitute important cellular proteases controlling the pool of proteins involved in key cellular functions. The comprehension of the structure/function relationship of proteasomes is therefore of major interest in biology. Numerous biochemical methods have been employed to purify proteasomes, and have led to the identification of complexes of various compositions - depending on the experimental conditions and the type of strategy used. In association with protein separation and enrichment techniques, modern mass spectrometry instruments and mass spectrometry-based quantitative methods, they have led to unprecedented breakthroughs in the in-depth analysis of the diversity and dynamics of proteasome composition and localization under various stimuli or pathological contexts. Proteasome inhibitors are now used in clinics for the treatment of cancer, and recent studies propose that the proteasome should be considered as a predictive biomarker for various pathologies.
Collapse
|
25
|
Rodriguez KA, Edrey YH, Osmulski P, Gaczynska M, Buffenstein R. Altered composition of liver proteasome assemblies contributes to enhanced proteasome activity in the exceptionally long-lived naked mole-rat. PLoS One 2012; 7:e35890. [PMID: 22567116 PMCID: PMC3342291 DOI: 10.1371/journal.pone.0035890] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/27/2012] [Indexed: 02/07/2023] Open
Abstract
The longest-lived rodent, the naked mole-rat (Bathyergidae; Heterocephalus glaber), maintains robust health for at least 75% of its 32 year lifespan, suggesting that the decline in genomic integrity or protein homeostasis routinely observed during aging, is either attenuated or delayed in this extraordinarily long-lived species. The ubiquitin proteasome system (UPS) plays an integral role in protein homeostasis by degrading oxidatively-damaged and misfolded proteins. In this study, we examined proteasome activity in naked mole-rats and mice in whole liver lysates as well as three subcellular fractions to probe the mechanisms behind the apparently enhanced effectiveness of UPS. We found that when compared with mouse samples, naked mole-rats had significantly higher chymotrypsin-like (ChT-L) activity and a two-fold increase in trypsin-like (T-L) in both whole lysates as well as cytosolic fractions. Native gel electrophoresis of the whole tissue lysates showed that the 20S proteasome was more active in the longer-lived species and that 26S proteasome was both more active and more populous. Western blot analyses revealed that both 19S subunits and immunoproteasome catalytic subunits are present in greater amounts in the naked mole-rat suggesting that the observed higher specific activity may be due to the greater proportion of immunoproteasomes in livers of healthy young adults. It thus appears that proteasomes in this species are primed for the efficient removal of stress-damaged proteins. Further characterization of the naked mole-rat proteasome and its regulation could lead to important insights on how the cells in these animals handle increased stress and protein damage to maintain a longer health in their tissues and ultimately a longer life.
Collapse
Affiliation(s)
- Karl A. Rodriguez
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Yael H. Edrey
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Pawel Osmulski
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Maria Gaczynska
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Rochelle Buffenstein
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
26
|
The role of innate immunity in the pathogenesis of preneoplasia in drug-induced chronic hepatitis based on a mouse model. Exp Mol Pathol 2011; 91:653-9. [PMID: 21820428 DOI: 10.1016/j.yexmp.2011.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 07/20/2011] [Indexed: 01/28/2023]
Abstract
Innate immunity factors such as conversion of the 26S proteasome to form the immunoproteasome and the Toll-like receptor signaling pathways are activated in chronic hepatitis induced by the carcinogenic drug DDC. Over time, preneoplastic hepatocyte phenotypes appear in the liver parenchyma. These changed hepatocytes expand in number because they have a growth advantage over normal hepatocytes when responding to chronic liver injury. The changed hepatocytes can be identified using immunofluorescent antibodies to preneoplastic cells e.g. FAT10/UbD, A2 macroglobulin, glutathione transpeptidase, alpha fetoprotein, glycipan 3, FAS, and gamma glutamyl transpeptidase. The formation of the preneoplastic cells occurs concomitant with activation of the Toll-like receptor signaling pathways and the transformation of the 26S proteasome to form the immunoproteasome. This transformation is in response to interferon stimulating response element on the promoter of the FAT10/UbD gene. NFκB, Erk, p38 and Jnk are also up regulated. Specific inhibitors block these responses in vitro in a mouse tumor cell line exposed to interferon gamma. Mallory-Denk bodies form in these preneoplastic cells, because of the depletion of the 26S proteasome due to formation of the immunoproteasome. Thus, MDB forming cells are also markers of the preneoplastic hepatocytes. The UbD positive preneoplastic cells regress when the liver injury induced chronic hepatitis subsides. When the drug DDC is refed to mice and chronic hepatitis is activated, the preneoplastic cell population expands and Mallory-Denk bodies rapidly reform. This response is remembered by the preneoplastic cells for at least four months indicating that an epigenetic cellular memory has formed in the preneoplastic cells. This proliferative response is prevented by feeding methyl donors such as S-adenosylmethionine or betaine. Drug feeding reduces the methylation of H(3) K4, 9, and 27 and this response is prevented by feeding the methyl donors. After 8 to 15months of drug withdrawal in mice the preneoplastic liver cells persist as single or small clusters of cells in the liver lobules. Multiple liver tumors form, some of which are hepatocellular carcinomas. The tumors immunostain positively for the same preneoplastic markers as the preneoplastic cells. Similar cells are identified in human cirrhosis and hepatocellular carcinoma indicating the relevance of the drug model described here to the preneoplastic changes associated with human chronic hepatitis and hepatocellular carcinoma.
Collapse
|
27
|
Immunoproteasome expression is induced in mesial temporal lobe epilepsy. Biochem Biophys Res Commun 2011; 408:65-70. [DOI: 10.1016/j.bbrc.2011.03.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 03/28/2011] [Indexed: 01/17/2023]
|
28
|
The immunoproteasome in steatohepatitis: its role in Mallory-Denk body formation. Exp Mol Pathol 2011; 90:252-6. [PMID: 21256843 DOI: 10.1016/j.yexmp.2011.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/13/2011] [Indexed: 11/21/2022]
Abstract
Recently it has been shown that the expression of the immunoproteasome increased in proportion to the degree of chronic inflammation in both the liver cell cytoplasm and nuclei in liver biopsies from patients who had chronic active hepatitis or cirrhosis. In the present study, biopsies from patients with steatohepatitis, with or without Mallory-Denk body (MDB) formation, were studied by immunofluorescent staining. Normal liver showed colocalization of FAT10, LMP2, LMP7, and MECL-1 at the mitochondria. Only LMP2 and LMP7 were found in the cell nuclei. Liver biopsies from patients with steatohepatitis and MDB formation, and a case of hepatocellular carcinoma forming MDBs in the tumor cells, showed colocalization of FAT10 and ubiquitin with LMP2, LMP7 and MECL-1 within the MDB. This indicates involvement of the immunoproteasome in MDB formation in steatohepatitis cases and in a case of HCC forming MDBs. Prior studies have shown that the immunoproteasome was involved in drug-induced MDB formation using the same immunofluorescent colocalization approach as was used on these human liver biopsies. The increase in the immunoproteasome subunit proteins was made at the expense of the 26S proteasome. This indicates that the shift from the 26S to the immunoproteasome had occurred in the MDB positive hepatocytes.
Collapse
|