1
|
Kuo BJ, Lin SC, Tu YF, Huang PH, Lo YC. Study of individual domains contributing to MALT1 dimerization in BCL10-independent and dependent assembly. Biochem Biophys Res Commun 2024; 717:150029. [PMID: 38714015 DOI: 10.1016/j.bbrc.2024.150029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
The CARMA-BCL10-MALT1 (CBM) signalosome functions as a pivotal supramolecular module, integrating diverse receptor-induced signaling pathways to regulate BCL10-dependent NF-kB activation in innate and adaptive immunity. Conversely, the API2-MALT1 fusion protein in t(11; 18)(q21; q21) MALT lymphoma constitutively induces BCL10-independent NF-kB activation. MALT1 dimer formation is indispensable for the requisite proteolytic activity and is critical for NF-kB activation regulation in both scenarios. However, the molecular assembly of MALT1 individual domains in CBM activation remains elusive. Here we report the crystal structure of the MALT1 death domain (DD) at a resolution of 2.1 Å, incorporating reconstructed residues in previously disordered loops 1 and 2. Additionally, we observe a conformational regulation element (CRE) regulating stem-helix formation in NLRPs pyrin (PYD) within the MALT1 DD structure. The structure reveals a stem-helix-mediated dimer further corroborated in solution. To elucidate how the BCL10 filament facilitates MALT1 dimerization, we reconstitute a BCL10-CARD-MALT1-DD-IG1-IG2 complex model. We propose a N+7 rule for BCL10-dependent MALT1 dimerization via the IG1-IG2 domain and for MALT1-dependent cleavage in trans. Biochemical data further indicates concentration-dependent dimerization of the MALT1 IG1-IG2 domain, facilitating MALT1 dimerization in BCL10-independent manner. Our findings provide a structural and biochemical foundation for understanding MALT1 dimeric mechanisms, shedding light on potential BCL10-independent MALT1 dimer formation and high-order BCL10-MALT1 assembly.
Collapse
Affiliation(s)
- Bai-Jiun Kuo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Su-Chang Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Fan Tu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Po-Hui Huang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
2
|
Sheveleva O, Protasova E, Nenasheva T, Butorina N, Melnikova V, Gerasimova T, Sakovnich O, Kurinov A, Grigor’eva E, Medvedev S, Lyadova I. A Model of iPSC-Derived Macrophages with TNFAIP3 Overexpression Reveals the Peculiarities of TNFAIP3 Protein Expression and Function in Human Macrophages. Int J Mol Sci 2023; 24:12868. [PMID: 37629049 PMCID: PMC10454046 DOI: 10.3390/ijms241612868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Macrophages play a crucial role in the development and control of inflammation. Understanding the mechanisms balancing macrophage inflammatory activity is important to develop new strategies for treating inflammation-related diseases. TNF-α-induced protein 3 (TNFAIP3, A20) is a negative regulator of intracellular inflammatory cascades; its deficiency induces hyper-inflammatory reactions. Whether A20 overexpression can dampen macrophage inflammatory response remains unclear. Here, we generated human-induced pluripotent stem cells with tetracycline-inducible A20 expression and differentiated them into macrophages (A20-iMacs). A20-iMacs displayed morphology, phenotype, and phagocytic activity typical of macrophages, and they displayed upregulated A20 expression in response to doxycycline. A20 overexpression dampened the A20-iMac response to TNF-α, as shown by a decreased expression of IL1B and IL6 mRNA. A dynamic analysis of A20 expression following the generation of A20-iMacs and control iMacs showed that the expression declined in iMacs and that iMacs expressed a lower molecular weight form of the A20 protein (~70 kDa) compared with less differentiated cells (~90 kDa). A low-level expression of A20 and the predominance of a low-molecular-weight A20 form were also characteristic of monocyte-derived macrophages. The study for the first time developed a model for generating macrophages with an inducible expression of a target gene and identified the peculiarities of A20 expression in macrophages that likely underlie macrophage preparedness for inflammatory reactivity. It also suggested the possibility of mitigating inflammatory macrophage responses via A20 overexpression.
Collapse
Affiliation(s)
- Olga Sheveleva
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Elena Protasova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Tatiana Nenasheva
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Nina Butorina
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Victoria Melnikova
- Laboratory of Comparative Developmental Physiology, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia;
| | - Tatiana Gerasimova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Olga Sakovnich
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Alexander Kurinov
- Laboratory of Regeneration Problems, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia;
| | - Elena Grigor’eva
- Laboratory of Developmental Epigenetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyev Ave., 10, 630090 Novosibirsk, Russia; (E.G.); (S.M.)
| | - Sergey Medvedev
- Laboratory of Developmental Epigenetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyev Ave., 10, 630090 Novosibirsk, Russia; (E.G.); (S.M.)
| | - Irina Lyadova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| |
Collapse
|
3
|
Jiang YQ, Yang XY, Duan DQ, Zhang YY, Li NS, Tang LJ, Peng J, Luo XJ. Inhibition of MALT1 reduces ferroptosis in rat hearts following ischemia/reperfusion via enhancing the Nrf2/SLC7A11 pathway. Eur J Pharmacol 2023; 950:175774. [PMID: 37146710 DOI: 10.1016/j.ejphar.2023.175774] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023]
Abstract
The dysregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and/or solute carrier family 7 member 11 (SLC7A11) is believed to contribute to ferroptosis in the hearts suffered ischemia/reperfusion (I/R), but the mechanisms behind the dysregulation of them are not fully elucidated. Mucosa associated lymphoid tissue lymphoma translocation gene 1 (MALT1) can function as a paracaspase to cleave specified substrates and it is predicted to interact with Nrf2. This study aims to explore whether targeting MALT1 can reduce I/R-induced ferroptosis via enhancing the Nrf2/SLC7A11 pathway. The SD rat hearts were subjected to 1h-ischemia plus 3h-reperfusion to establish the I/R injury model, which showed myocardial injuries (increase in infarct size and creatine kinase release) and up-regulation of MALT1 while downregulation of Nrf2 and SLC7A11 concomitant with the increased ferroptosis, reflecting by an increase in glutathione peroxidase 4 (GPX4) level while decreases in the levels of acyl-CoA synthetase long chain family member 4 (ACSL4), total iron, Fe2+ and lipid peroxidation (LPO); these phenomena were reversed in the presence of MI-2, a specific inhibitor of MALT1. Consistently, similar results were achieved in the cultured cardiomyocytes subjected to 8h-hypoxia plus 12h-reoxygenation. Furthermore, micafungin, an antifungal drug, could also exert beneficial effect on mitigating myocardial I/R injury via inhibition of MALT1. Based on these observations, we concluded that inhibition of MALT1 can reduce I/R-induced myocardial ferroptosis through enhancing the Nrf2/SLC7A11 pathway; and MALT1 might be used as a potential target to seek novel or existing drugs (such as micafungin) for treating myocardial infarction.
Collapse
Affiliation(s)
- Ya-Qian Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| | - Xiao-Yan Yang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Dan-Qing Duan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Nian-Sheng Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Li-Jing Tang
- Department of Pharmacy, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
4
|
Rogers NM, Zammit N, Nguyen-Ngo D, Souilmi Y, Minhas N, Meijles DN, Self E, Walters SN, Warren J, Cultrone D, El-Rashid M, Li J, Chtanova T, O'Connell PJ, Grey ST. The impact of the cytoplasmic ubiquitin ligase TNFAIP3 gene variation on transcription factor NF-κB activation in acute kidney injury. Kidney Int 2023; 103:1105-1119. [PMID: 37097268 DOI: 10.1016/j.kint.2023.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 04/26/2023]
Abstract
Nuclear factor κB (NF-κB) activation is a deleterious molecular mechanism that drives acute kidney injury (AKI) and manifests in transplanted kidneys as delayed graft function. The TNFAIP3 gene encodes A20, a cytoplasmic ubiquitin ligase and a master negative regulator of the NF- κB signaling pathway. Common population-specific TNFAIP3 coding variants that reduce A20's enzyme function and increase NF- κB activation have been linked to heightened protective immunity and autoimmune disease, but have not been investigated in AKI. Here, we functionally identified a series of unique human TNFAIP3 coding variants linked to the autoimmune genome-wide association studies single nucleotide polymorphisms of F127C; namely F127C;R22Q, F127C;G281E, F127C;W448C and F127C;N449K that reduce A20's anti-inflammatory function in an NF- κB reporter assay. To investigate the impact of TNFAIP3 hypomorphic coding variants in AKI we tested a mouse Tnfaip3 hypomorph in a model of ischemia reperfusion injury (IRI). The mouse Tnfaip3 coding variant I325N increases NF- κB activation without overt inflammatory disease, providing an immune boost as I325N mice exhibit enhanced innate immunity to a bacterial challenge. Surprisingly, despite exhibiting increased intra-kidney NF- κB activation with inflammation in IRI, the kidney of I325N mice was protected. The I325N variant influenced the outcome of IRI by changing the dynamic expression of multiple cytoprotective mechanisms, particularly by increasing NF- κB-dependent anti-apoptotic factors BCL-2, BCL-XL, c-FLIP and A20, altering the active redox state of the kidney with a reduction of superoxide levels and the enzyme super oxide dismutase-1, and enhancing cellular protective mechanisms including increased Foxp3+ T cells. Thus, TNFAIP3 gene variants represent a kidney and population-specific molecular factor that can dictate the course of IRI.
Collapse
Affiliation(s)
- Natasha M Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Renal and Transplant Medicine Unit, Westmead Hospital, Westmead, New South Wales, Australia; Westmead Clinical School, University of Sydney, New South Wales, Australia
| | - Nathan Zammit
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Danny Nguyen-Ngo
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, South Australia, Australia; Environment Institute, Faculty of Sciences, University of Adelaide, South Australia, Australia
| | - Nikita Minhas
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Daniel N Meijles
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Eleanor Self
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Stacey N Walters
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Joanna Warren
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Daniele Cultrone
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Maryam El-Rashid
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Jennifer Li
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Tatyana Chtanova
- Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Innate and Tumour Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Renal and Transplant Medicine Unit, Westmead Hospital, Westmead, New South Wales, Australia; Westmead Clinical School, University of Sydney, New South Wales, Australia
| | - Shane T Grey
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
5
|
Jiang VC, Liu Y, Lian J, Huang S, Jordan A, Cai Q, Lin R, Yan F, McIntosh J, Li Y, Che Y, Chen Z, Vargas J, Badillo M, Bigcal JN, Lee HH, Wang W, Yao Y, Nie L, Flowers CR, Wang M. Cotargeting of BTK and MALT1 overcomes resistance to BTK inhibitors in mantle cell lymphoma. J Clin Invest 2023; 133:165694. [PMID: 36719376 PMCID: PMC9888382 DOI: 10.1172/jci165694] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/07/2022] [Indexed: 02/01/2023] Open
Abstract
Bruton's tyrosine kinase (BTK) is a proven target in mantle cell lymphoma (MCL), an aggressive subtype of non-Hodgkin lymphoma. However, resistance to BTK inhibitors is a major clinical challenge. We here report that MALT1 is one of the top overexpressed genes in ibrutinib-resistant MCL cells, while expression of CARD11, which is upstream of MALT1, is decreased. MALT1 genetic knockout or inhibition produced dramatic defects in MCL cell growth regardless of ibrutinib sensitivity. Conversely, CARD11-knockout cells showed antitumor effects only in ibrutinib-sensitive cells, suggesting that MALT1 overexpression could drive ibrutinib resistance via bypassing BTK/CARD11 signaling. Additionally, BTK knockdown and MALT1 knockout markedly impaired MCL tumor migration and dissemination, and MALT1 pharmacological inhibition decreased MCL cell viability, adhesion, and migration by suppressing NF-κB, PI3K/AKT/mTOR, and integrin signaling. Importantly, cotargeting MALT1 with safimaltib and BTK with pirtobrutinib induced potent anti-MCL activity in ibrutinib-resistant MCL cell lines and patient-derived xenografts. Therefore, we conclude that MALT1 overexpression associates with resistance to BTK inhibitors in MCL, targeting abnormal MALT1 activity could be a promising therapeutic strategy to overcome BTK inhibitor resistance, and cotargeting of MALT1 and BTK should improve MCL treatment efficacy and durability as well as patient outcomes.
Collapse
Affiliation(s)
| | - Yang Liu
- Department of Lymphoma and Myeloma and
| | | | | | | | | | - Ruitao Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fangfang Yan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Yijing Li
- Department of Lymphoma and Myeloma and
| | | | | | | | | | | | | | - Wei Wang
- Department of Lymphoma and Myeloma and
| | - Yixin Yao
- Department of Lymphoma and Myeloma and
| | - Lei Nie
- Department of Lymphoma and Myeloma and
| | | | - Michael Wang
- Department of Lymphoma and Myeloma and.,Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Schiesser S, Hajek P, Pople HE, Käck H, Öster L, Cox RJ. Discovery and optimization of cyclohexane-1,4-diamines as allosteric MALT1 inhibitors. Eur J Med Chem 2021; 227:113925. [PMID: 34742013 DOI: 10.1016/j.ejmech.2021.113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/19/2022]
Abstract
Inhibition of mucosa-associated lymphoid tissue lymphoma translocation protein-1 (MALT1) is a promising strategy to modulate NF-κB signaling, with the potential to treat B-cell lymphoma and autoimmune diseases. We describe the discovery and optimization of (1s,4s)-N,N'-diaryl cyclohexane-1,4-diamines, a novel series of allosteric MALT1 inhibitors, resulting in compound 8 with single digit micromolar cell potency. X-ray analysis confirms that this compound binds to an induced allosteric site in MALT1. Compound 8 is highly selective and has an excellent in vivo rat PK profile with low clearance and high oral bioavailability, making it a promising lead for further optimization.
Collapse
Affiliation(s)
- Stefan Schiesser
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183, Mölndal, Sweden.
| | - Peter Hajek
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183, Mölndal, Sweden
| | - Huw E Pople
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183, Mölndal, Sweden; School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Helena Käck
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Pepparedsleden 1, 43183, Mölndal, Sweden
| | - Linda Öster
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Pepparedsleden 1, 43183, Mölndal, Sweden
| | - Rhona J Cox
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183, Mölndal, Sweden
| |
Collapse
|
7
|
Thys A, Douanne T, Bidère N. Post-translational Modifications of the CARMA1-BCL10-MALT1 Complex in Lymphocytes and Activated B-Cell Like Subtype of Diffuse Large B-Cell Lymphoma. Front Oncol 2018; 8:498. [PMID: 30474008 PMCID: PMC6237847 DOI: 10.3389/fonc.2018.00498] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
Piracy of the NF-κB transcription factors signaling pathway, to sustain its activity, is a mechanism often deployed in B-cell lymphoma to promote unlimited growth and survival. The aggressive activated B-cell like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) exploits a multi-protein complex of CARMA1, BCL10, and MALT1 (CBM complex), which normally conveys NF-κB signaling upon antigen receptors engagement. Once assembled, the CBM also unleashes MALT1 protease activity to finely tune the immune response. As a result, ABC DLBCL tumors develop a profound addiction to NF-κB and to MALT1 enzyme, leaving open a breach for therapeutics. However, the pleiotropic nature of NF-κB jeopardizes the success of its targeting and urges us to develop new strategies. In this review, we discuss how post-translational modifications, such as phosphorylation and ubiquitination of the CBM components, as well as, MALT1 proteolytic activity, shape the CBM activity in lymphocytes and ABC DLBCL, and may provide new avenues to restore vulnerability in lymphoma.
Collapse
Affiliation(s)
- An Thys
- Team SOAP, CRCINA, Institut National de la Santé et de la Recherche Médicale, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - Tiphaine Douanne
- Team SOAP, CRCINA, Institut National de la Santé et de la Recherche Médicale, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - Nicolas Bidère
- Team SOAP, CRCINA, Institut National de la Santé et de la Recherche Médicale, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| |
Collapse
|
8
|
Bikker R, Christmann M, Preuß K, Welz B, Friesenhagen J, Dittrich-Breiholz O, Huber R, Brand K. TNF phase III signalling in tolerant cells is tightly controlled by A20 and CYLD. Cell Signal 2017. [DOI: 10.1016/j.cellsig.2017.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Ginster S, Bardet M, Unterreiner A, Malinverni C, Renner F, Lam S, Freuler F, Gerrits B, Voshol J, Calzascia T, Régnier CH, Renatus M, Nikolay R, Israël L, Bornancin F. Two Antagonistic MALT1 Auto-Cleavage Mechanisms Reveal a Role for TRAF6 to Unleash MALT1 Activation. PLoS One 2017; 12:e0169026. [PMID: 28052131 PMCID: PMC5214165 DOI: 10.1371/journal.pone.0169026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/09/2016] [Indexed: 11/18/2022] Open
Abstract
The paracaspase MALT1 has arginine-directed proteolytic activity triggered by engagement of immune receptors. Recruitment of MALT1 into activation complexes is required for MALT1 proteolytic function. Here, co-expression of MALT1 in HEK293 cells, either with activated CARD11 and BCL10 or with TRAF6, was used to explore the mechanism of MALT1 activation at the molecular level. This work identified a prominent self-cleavage site of MALT1 isoform A (MALT1A) at R781 (R770 in MALT1B) and revealed that TRAF6 can activate MALT1 independently of the CBM. Intramolecular cleavage at R781/R770 removes a C-terminal TRAF6-binding site in both MALT1 isoforms, leaving MALT1B devoid of the two key interaction sites with TRAF6. A previously identified auto-proteolysis site of MALT1 at R149 leads to deletion of the death-domain, thereby abolishing interaction with BCL10. By using MALT1 isoforms and cleaved fragments thereof, as well as TRAF6 WT and mutant forms, this work shows that TRAF6 induces N-terminal auto-proteolytic cleavage of MALT1 at R149 and accelerates MALT1 protein turnover. The MALT1 fragment generated by N-terminal self-cleavage at R149 was labile and displayed enhanced signaling properties that required an intact K644 residue, previously shown to be a site for mono-ubiquitination of MALT1. Conversely, C-terminal self-cleavage at R781/R770 hampered the ability for self-cleavage at R149 and stabilized MALT1 by hindering interaction with TRAF6. C-terminal self-cleavage had limited impact on MALT1A but severely reduced MALT1B proteolytic and signaling functions. It also abrogated NF-κB activation by N-terminally cleaved MALT1A. Altogether, this study provides further insights into mechanisms that regulate the scaffolding and activation cycle of MALT1. It also emphasizes the reduced functional capacity of MALT1B as compared to MALT1A.
Collapse
Affiliation(s)
- Stefanie Ginster
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Maureen Bardet
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Adeline Unterreiner
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Claire Malinverni
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Florian Renner
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Stephen Lam
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Felix Freuler
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Bertran Gerrits
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Johannes Voshol
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Thomas Calzascia
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Catherine H. Régnier
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Rainer Nikolay
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Laura Israël
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Frédéric Bornancin
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
- * E-mail:
| |
Collapse
|
10
|
Elton L, Carpentier I, Staal J, Driege Y, Haegman M, Beyaert R. MALT1 cleaves the E3 ubiquitin ligase HOIL-1 in activated T cells, generating a dominant negative inhibitor of LUBAC-induced NF-κB signaling. FEBS J 2015; 283:403-12. [DOI: 10.1111/febs.13597] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Lynn Elton
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology; Ghent University; Belgium
| | - Isabelle Carpentier
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology; Ghent University; Belgium
| | - Jens Staal
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology; Ghent University; Belgium
| | - Yasmine Driege
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology; Ghent University; Belgium
| | - Mira Haegman
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology; Ghent University; Belgium
| | - Rudi Beyaert
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology; Ghent University; Belgium
| |
Collapse
|
11
|
Reihill JA, Malcomson B, Bertelsen A, Cheung S, Czerwiec A, Barsden R, Elborn JS, Dürkop H, Hirsch B, Ennis M, Kelly C, Schock BC. Induction of the inflammatory regulator A20 by gibberellic acid in airway epithelial cells. Br J Pharmacol 2015; 173:778-89. [PMID: 26013851 DOI: 10.1111/bph.13200] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE NF-κB-driven inflammation is negatively regulated by the zinc finger protein A20. Gibberellic acid (GA3 ) is a plant-derived diterpenoid with documented anti-inflammatory activity, which is reported to induce A20-like zinc finger proteins in plants. Here, we sought to investigate the anti-inflammatory effect of GA3 in airway epithelial cells and determine if the anti-inflammatory action relates to A20 induction. EXPERIMENTAL APPROACH Primary nasal epithelial cells and a human bronchial epithelial cell line (16HBE14o-) were used. Cells were pre-incubated with GA3 , stimulated with Pseudomonas aeruginosa LPS; IL-6 and IL-8 release, A20, NF-κB and IκBα expression were then evaluated. To determine if any observed anti-inflammatory effect occurred via an A20-dependent mechanism, A20 was silenced using siRNA. KEY RESULTS Cells pre-incubated with GA3 had significantly increased levels of A20 mRNA (4 h) and protein (24 h), resulting in a significant reduction in IL-6 and IL-8 release. This effect was mediated via reduced IκBα degradation and reduced NF-κB (p65) expression. Furthermore, the anti-inflammatory action of GA3 was abolished in A20-silenced cells. CONCLUSIONS AND IMPLICATIONS We showed that A20 induction by GA3 attenuates inflammation in airway epithelial cells, at least in part through its effect on NF-κB and IκBα. GA3 or gibberellin-derived derivatives could potentially be developed into anti-inflammatory drugs for the treatment of chronic inflammatory diseases associated with A20 dysfunction.
Collapse
Affiliation(s)
- J A Reihill
- Centre for Infection and Immunity, Queen's University of Belfast, Belfast, UK
| | - B Malcomson
- Centre for Infection and Immunity, Queen's University of Belfast, Belfast, UK
| | - A Bertelsen
- Centre for Infection and Immunity, Queen's University of Belfast, Belfast, UK
| | - S Cheung
- Centre for Infection and Immunity, Queen's University of Belfast, Belfast, UK
| | - A Czerwiec
- Centre for Infection and Immunity, Queen's University of Belfast, Belfast, UK
| | - R Barsden
- Centre for Infection and Immunity, Queen's University of Belfast, Belfast, UK
| | - J S Elborn
- Centre for Infection and Immunity, Queen's University of Belfast, Belfast, UK
| | - H Dürkop
- Institute für Pathodiagnostik, Berlin, Germany
| | - B Hirsch
- Charité-University, Institute of Pathology, Berlin, Germany
| | - M Ennis
- Centre for Infection and Immunity, Queen's University of Belfast, Belfast, UK
| | - C Kelly
- Northern Ireland Centre for Stratified Medicine, University of Ulster, Londonderry, UK
| | - B C Schock
- Centre for Infection and Immunity, Queen's University of Belfast, Belfast, UK
| |
Collapse
|
12
|
Afonina IS, Elton L, Carpentier I, Beyaert R. MALT1--a universal soldier: multiple strategies to ensure NF-κB activation and target gene expression. FEBS J 2015; 282:3286-97. [PMID: 25996250 DOI: 10.1111/febs.13325] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/19/2015] [Indexed: 12/27/2022]
Abstract
The paracaspase MALT1 (mucosa associated lymphoid tissue lymphoma translocation gene 1) is an intracellular signaling protein that plays a key role in innate and adaptive immunity. It is essential for nuclear factor κB (NF-κB) activation and proinflammatory gene expression downstream of several cell surface receptors. MALT1 has been most studied in the context of T-cell receptor-induced NF-κB signaling, supporting T-cell activation and proliferation. In addition, MALT1 hyperactivation is associated with specific subtypes of B-cell lymphoma, where it controls tumor cell proliferation and survival. For a long time, MALT1 was believed to function solely as a scaffold protein, providing a platform for the assembly of other NF-κB signaling proteins. However, this view changed dramatically when MALT1 was found to have proteolytic activity that further fine-tunes signaling. MALT1 proteolytic activity is essential for T-cell activation and lymphomagenesis, suggesting that MALT1 is a promising therapeutic target for the treatment of autoimmune diseases and distinct lymphoma entities. However, interference with MALT1 activity may pose a dangerous threat to the normal functioning of the immune system and should be evaluated with great care. Here we discuss the current knowledge on the scaffold and protease functions of MALT1, including an overview of its substrates and the functional implications of their cleavage.
Collapse
Affiliation(s)
- Inna S Afonina
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lynn Elton
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Isabelle Carpentier
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Rudi Beyaert
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology, Ghent University, Belgium
| |
Collapse
|
13
|
Bornancin F, Renner F, Touil R, Sic H, Kolb Y, Touil-Allaoui I, Rush JS, Smith PA, Bigaud M, Junker-Walker U, Burkhart C, Dawson J, Niwa S, Katopodis A, Nuesslein-Hildesheim B, Weckbecker G, Zenke G, Kinzel B, Traggiai E, Brenner D, Brüstle A, St. Paul M, Zamurovic N, McCoy KD, Rolink A, Régnier CH, Mak TW, Ohashi PS, Patel DD, Calzascia T. Deficiency of MALT1 Paracaspase Activity Results in Unbalanced Regulatory and Effector T and B Cell Responses Leading to Multiorgan Inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:3723-34. [DOI: 10.4049/jimmunol.1402254] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/07/2015] [Indexed: 01/08/2023]
|
14
|
Ma Y, Liao Z, Xu Y, Zhong Z, Wang X, Zhang F, Chen S, Yang L, Luo G, Huang X, Huang S, Wu X, Li Y. Characteristics of CARMA1-BCL10-MALT1-A20-NF-κB expression in T cell-acute lymphocytic leukemia. Eur J Med Res 2014; 19:62. [PMID: 25384343 PMCID: PMC4228272 DOI: 10.1186/s40001-014-0062-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/28/2014] [Indexed: 11/30/2022] Open
Abstract
Background Knowledge of the oncogenic signaling pathways of T-cell acute lymphoblastic leukemia (T-ALL) remains limited. Constitutive aberrant activation of the nuclear factor kappa B (NF-κB) signaling pathway has been detected in various lymphoid malignancies and plays a key role in the development of these carcinomas. The zinc finger-containing protein, A20, is a central regulator of multiple NF-κB-activating signaling cascades. A20 is frequently inactivated by deletions and/or mutations in several B-and T-cell lymphoma subtypes. However, few A20 mutations and polymorphisms have been reported in T-ALL. Thus, it is of interest to analyze the expression characteristics of A20 and its regulating factors, including upstream regulators and the CBM complex, which includes CARMA1, BCL10, and MALT1. Methods The expression levels of CARMA1, BCL10, MALT1, A20, and NF-κB were detected in peripheral blood mononuclear cells (PBMCs) from 21 patients with newly diagnosed T-ALL using real-time PCR, and correlations between the aberrant expression of these genes in T-ALL was analyzed. Sixteen healthy individuals, including 10 males and 6 females, served as controls. Results Significantly lower A20 expression was found in T-ALL patients (median: 4.853) compared with healthy individuals (median: 8.748; P = 0.017), and significantly increased expression levels of CARMA1 (median: 2.916; P = 0.034), BCL10 (median: 0.285; P = 0.033), and MALT1 (median: 1.201; P = 0.010) were found in T-ALL compared with the healthy individuals (median: 1.379, 0.169, and 0.677, respectively). In contrast, overexpression of NF-κB (median: 0.714) was found in T-ALL compared with healthy individuals (median: 0.335; P = 0.001). A negative correlation between the MALT1 and A20 expression levels and a positive correlation between CARMA1 and BCL10 were found in T-ALL and healthy individuals. However, no negative correlation was found between A20 and NF-κB and the MALT1 and NF-κB expression level in the T-ALL group. Conclusions We characterized the expression of the CARMA-BCL10-MALT1-A20-NF-κB pathway genes in T-ALL. Overexpression of CARMA-BCL10-MALT in T-ALL may contribute to the constitutive cleavage and inactivation of A20, which enhances NF-κB signaling and may be related to T-ALL pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiuli Wu
- Institute of Hematology, Jinan University, Guangzhou 510632, China.
| | | |
Collapse
|
15
|
Alternative expression pattern of MALT1-A20-NF-κB in patients with rheumatoid arthritis. J Immunol Res 2014; 2014:492872. [PMID: 24971370 PMCID: PMC4058209 DOI: 10.1155/2014/492872] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/27/2014] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disorder; abnormal T cell immunity plays a critical role in the development of RA. Recently, A20 was identified as a key negative regulator for T cell activation and inflammatory signaling and may be involved in RA pathogenesis. In this study, we analyzed the expression level of A20, NF-κB, and A20 regulatory factor mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) in patients with RA. Real-time PCR was used to determine the expression level of MALT1, MALT-V1, A20, and NF-κB genes in RA and healthy individuals (HI). Significantly lower A20 expression was found in RA patients compared with those in the healthy group, while NF-κB overexpression could be detected in patients with RA. Moreover, the MALT1 and MALT1-V1 expression level was downregulated in RA patients. A positive correlation between MALT1 and A20 and MALT1-V1 and A20 was found in patients with RA, and a tendency towards a negative correlation was found between MALT1 and NF-κB, MALT1-V1 and NF-κB, and A20 and NF-κB. In conclusion, we first characterized the alternative expression pattern of MALT1, A20, and NF-κB in RA, which may be related to abnormal T cell activation.
Collapse
|
16
|
Abnormal expression of A20 and its regulated genes in peripheral blood from patients with lymphomas. Cancer Cell Int 2014; 14:36. [PMID: 24790527 PMCID: PMC4005402 DOI: 10.1186/1475-2867-14-36] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/16/2014] [Indexed: 01/03/2023] Open
Abstract
Background Cell-mediated immunity is often suppressed in patients with hematological malignancies. Recently, we found that low T cell receptor (TCR)-CD3 signaling was related to abnormal expression of the negative regulator of nuclear factor kappa B (NF-κB) A20 in acute myeloid leukemia. To investigate the characteristics of T cell immunodeficiency in lymphomas, we analyzed the expression features of A20 and its upstream regulating factor mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) and genes downstream of NF-κB in patients with different lymphoma subtypes, including T cell non-Hodgkin lymphoma (T-NHL), B cell non-Hodgkin lymphoma (B-NHL) and NK/T cell lymphoma (NK/T-CL). Methods Real-time PCR was used to determine the expression level of the MALT1, MALT-V1 (variant 1), A20 and NF-κB genes in peripheral blood mononuclear cells (PBMCs) from 24 cases with T-NHL, 19 cases with B-NHL and 16 cases with NK/T-CL, and 31 healthy individuals (HI) served as control. Results Significantly lower A20 and NF-κB expression was found in patients with all three lymphoma subtypes compared with the healthy controls. Moreover, the MALT1 expression level was downregulated in all three lymphoma subtypes. A significant positive correlation between the expression level of MALT1 and A20, MALT1-V1 and A20, MALT1-V1 and NF-κB, and A20 and NF-κB was found. Conclusions An abnormal MALT1-A20-NF-κB expression pattern was found in patients with lymphoma, which may result a lack of A20 and dysfunctional MALT1 and may be related to lower T cell activation, which is a common feature in Chinese patients with lymphoma. This finding may at least partially explain the molecular mechanism of T cell immunodeficiency in lymphomas.
Collapse
|
17
|
The role of A20 in the pathogenesis of lymphocytic malignancy. Cancer Cell Int 2012; 12:44. [PMID: 23134590 PMCID: PMC3518150 DOI: 10.1186/1475-2867-12-44] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 11/04/2012] [Indexed: 01/15/2023] Open
Abstract
Autoimmune phenomena were identified in many different cases of hematological diseases and solid tumors, which may be due to alterations in the expression and function of the NF-κB signaling pathway. Recently, a number of studies have shown that the deletion or mutation of A20, a negative regulator of NF-κB, is frequently found in lymphomas, suggesting that it may be a linker between the altered immune response and leukemogenesis. The aim of this review is to summarize current findings of the A20 biological functions and its molecular mechanism as a tumor suppressor and immune regulator. The identification of A20 mutations and deletions in lymphocytic malignancy and the predictive significance of these aberrations are also reviewed.
Collapse
|
18
|
A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat Rev Immunol 2012; 12:774-85. [PMID: 23059429 DOI: 10.1038/nri3313] [Citation(s) in RCA: 404] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A20 (also known as TNFAIP3) is a potent anti-inflammatory signalling molecule that restricts multiple intracellular signalling cascades. Recent studies in three general areas have converged to highlight the clinical and biological importance of A20. First, human genetic studies have strongly linked polymorphisms and mutations in the gene encoding A20 to inflammatory, autoimmune and malignant diseases. Second, studies in gene-targeted mice have revealed that A20 regulates multiple immune cell functions and prevents experimental diseases that closely mimic human conditions. Third, biochemical studies have unveiled complex mechanisms by which A20 regulates ubiquitin-dependent nuclear factor-κB and cell-survival signals. Taken together, these studies are revealing the importance of A20-mediated regulation of ubiquitin-dependent signalling in human disease.
Collapse
|
19
|
Abstract
The paracaspase domain of MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) is a component of a gene translocation fused to the N-terminal domains of the cellular inhibitor of apoptosis protein 2. The paracaspase itself, commonly known as MALT1, participates in the NF-κB (nuclear factor κB) pathway, probably by driving survival signals downstream of the B-cell antigen receptor through MALT1 proteolytic activity. We have developed methods for the expression and purification of recombinant full-length MALT1 and its constituent catalytic domain alone. Both are activated by dimerization without cleavage, with a similar dimerization barrier to the distantly related cousins, the apical caspases. By using positional-scanning peptidyl substrate libraries we demonstrate that the activity and specificity of full-length MALT1 is recapitulated by the catalytic domain alone, showing a stringent requirement for cleaving after arginine, and with striking peptide length constraints for efficient hydrolysis. Rates of cleavage (kcat/Km values) of optimal peptidyl substrates are in the same order (103–104 M−1·s−1) as for a putative target protein CYLD. Thus MALT1 has many similarities to caspase 8, even cleaving the putative target protein CYLD with comparable efficiencies, but with diametrically opposite primary substrate specificity.
Collapse
|
20
|
Structural Determinants of MALT1 Protease Activity. J Mol Biol 2012; 419:4-21. [PMID: 22366302 DOI: 10.1016/j.jmb.2012.02.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 11/21/2022]
|
21
|
McAllister-Lucas LM, Baens M, Lucas PC. MALT1 protease: a new therapeutic target in B lymphoma and beyond? Clin Cancer Res 2011; 17:6623-31. [PMID: 21868762 DOI: 10.1158/1078-0432.ccr-11-0467] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The identification of mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1) as a gene that is perturbed in the B-cell neoplasm MALT lymphoma, already more than a decade ago, was the starting point for an intense area of research. The fascination with MALT1 was fueled further by the observation that it contains a domain homologous to the catalytic domain of caspases and thus, potentially, could function as a protease. Discoveries since then initially revealed that MALT1 is a key adaptor molecule in antigen receptor signaling to the transcription factor NF-κB, which is crucial for lymphocyte function. However, recent discoveries show that this function of MALT1 is not restricted to lymphocytes, witnessed by the ever-increasing list of receptors from cells within and outside of the immune system that require MALT1 for NF-κB activation. Yet, a role for MALT1 protease activity was shown only recently in immune signaling, and its importance was then further strengthened by the dependency of NF-κB-addicted B-cell lymphomas on this proteolytic activity. Therapeutic targeting of MALT1 protease activity might, therefore, become a useful approach for the treatment of these lymphomas and, additionally, an effective strategy for treating other neoplastic and inflammatory disorders associated with deregulated NF-κB signaling.
Collapse
Affiliation(s)
- Linda M McAllister-Lucas
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
22
|
Rosebeck S, Rehman AO, Lucas PC, McAllister-Lucas LM. From MALT lymphoma to the CBM signalosome: three decades of discovery. Cell Cycle 2011; 10:2485-96. [PMID: 21750409 DOI: 10.4161/cc.10.15.16923] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The advent of molecular cytogenetics has led to the elucidation of genetic abnormalities that cause various congenital and oncological disorders. In B cell lymphoma, for example, a number of chromosomal translocations have been identified in and associated with the etiology of specific subtypes of lymphoma. Several recurrent chromosomal translocations have been identified in extranodal marginal zone B cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma). Cloning and characterization of the products of three mutually exclusive translocation breakpoints found in MALT lymphoma led to the discovery of a novel NF-κB-activating complex comprising the CARMA, Bcl10, and MALT1 proteins. This "CBM signalosome" acts downstream of the antigen receptors in lymphocytes as well as a number of non-lymphoid cell-surface receptors involved in a variety of biological processes. CBM signalosome activity is important for normal cellular functions and is perturbed in neoplastic and inflammatory disorders, making it a viable target for novel therapeutic design.
Collapse
Affiliation(s)
- Shaun Rosebeck
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
23
|
Zhou CL, Lu R, Lin G, Yao Z. The latest developments in synthetic peptides with immunoregulatory activities. Peptides 2011; 32:408-14. [PMID: 20979984 DOI: 10.1016/j.peptides.2010.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 10/11/2010] [Accepted: 10/18/2010] [Indexed: 02/02/2023]
Abstract
In the past few years, many researches have provided us with much data demonstrating the abilities of synthetic peptides to impact immune response in vitro and in vivo. These peptides were designed according to the structure of some important protein molecules which play a key role in immune response, so they act with specific targets. The class I and II MHC-derived peptides inhibit the TCR recognition of antigen peptide-MHC complex. Rationally designed CD80 and CD154-binding peptides block the interaction between cell surface costimulatory molecules on antigen-presenting cells (APCs) and T cells. Some peptides were designed to inhibit the activities of cell signal proteins, including JNK, NF-κB and NFAT. Some peptide antagonists competitively bind to important cytokines and inhibit their activities, such as TNF-α, TGF-β and IL-1β inhibitory peptides. Adhesion molecule ICAM-1 derived peptides block the T cell adhesion and activation. These immunoregulatory peptides showed therapeutic effect in several animal models, including collagen-induced arthritis (CIA), autoimmune cystitis model, murine skin transplant model and cardiac allograft model. These results give us important implications for the development of a novel therapy for immune mediated diseases.
Collapse
Affiliation(s)
- Chun-lei Zhou
- Department of Immunology, Tianjin Medical University, Tianjin 300070, China
| | | | | | | |
Collapse
|
24
|
Abstract
Caspases are intracellular proteases that are best known for their function in apoptosis signaling. It has become evident that many caspases also function in other signaling pathways that propagate cell proliferation and inflammation, but studies on the inflammatory function of caspases have mainly been limited to caspase-1-mediated cytokine processing. Emerging evidence, however, indicates an important contribution of caspases as mediators or regulators of nuclear factor-κB (NF-κB) signaling, which plays a key role in inflammation and immunity. Much still needs to be learned about the mechanisms that govern the activation and regulation of NF-κB by caspases, and this review provides an update of this area. Whereas apoptosis signaling is dependent on the catalytic activity of caspases, they mainly act as scaffolding platforms for other signaling proteins in the case of NF-κB signaling. Caspase proteolytic activity, however, counteracts the pro-survival function of NF-κB by cleaving specific signaling molecules. A striking exception is the paracaspase mucosa-associated lymphoid tissue 1 (MALT1), whose adaptor and proteolytic activity are both needed to initiate a full blown NF-κB response in antigen-stimulated lymphocytes. Understanding the role of caspases and MALT1 in the regulation of NF-κB signaling is of high interest for therapeutic immunomodulation.
Collapse
|