1
|
Cortez J, Torres CG, Parraguez VH, De Los Reyes M, Peralta OA. Bovine adipose tissue-derived mesenchymal stem cells self-assemble with testicular cells and integrates and modifies the structure of a testicular organoids. Theriogenology 2024; 215:259-271. [PMID: 38103403 DOI: 10.1016/j.theriogenology.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Mesenchymal stem cells (MSC) display self-renewal and mesodermal differentiation potentials. These characteristics make them potentially useful for in vitro derivation of gametes, which may constitute experimental therapies for human and animal reproduction. Organoids provide a spatial support and may simulate a cellular niche for in vitro studies. In this study, we aimed at evaluating the potential integration of fetal bovine MSCs derived from adipose tissue (AT-MSCs) in testicular organoids (TOs), their spatial distribution with testicular cells during TO formation and their potential for germ cell differentiation. TOs were developed using Leydig, Sertoli, and peritubular myoid cells that were previously isolated from bovine testes (n = 6). Thereafter, TOs were characterized using immunofluorescence and Q-PCR to detect testicular cell-specific markers. AT-MSCs were labeled with PKH26 and then cultured with testicular cells at a concentration of 1 × 106 cells per well in Ultra Low Attachment U-shape bottom (ULA) plates. TOs formed by testicular cells and AT-MSCs (TOs + AT-MSCs) maintained a rounded structure throughout the 28-day culture period and did not show significant differences in their diameters. Conversely, control TOs exhibited a compact structure until day 7 of culture, while on day 28 they displayed cellular extensions around their structure. Control TOs had greater (P < 0.05) diameters compared to TOs + AT-MSCs. AT-MSCs induced an increase in proportion of Leydig and peritubular myoid cells in TOs + AT-MSCs; however, did not induce changes in the overall gene expression of testicular cell-specific markers. STAR immunolabelling detected Leydig cells that migrated from the central area to the periphery and formed brunches in control TOs. However, in TOs + AT-MSCs, Leydig cells formed a compact peripheral layer. Sertoli cells immunodetected using WT1 marker were observed within the central area forming clusters of cells in TOs + AT-MSCs. The expression of COL1A associated to peritubular myoids cells was restricted to the central region in TOs + AT-MSCs. Thus, during a 28-day culture period, fetal bovine AT-MSCs integrated and modified the structure of the TOs, by restricting formation of branches, limiting the overall increase in diameters and increasing the proportions of Leydig and peritubular myoid cells. AT-MSCs also induced a reorganization of testicular cells, changing their distribution and particularly the location of Leydig cells.
Collapse
Affiliation(s)
- Jahaira Cortez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808 Chile; Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Santa Rosa 11315, Santiago 8820808 Chile
| | - Cristian G Torres
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808 Chile
| | - Víctor H Parraguez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808 Chile
| | - Mónica De Los Reyes
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808 Chile
| | - Oscar A Peralta
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808 Chile.
| |
Collapse
|
2
|
Singh N, Singh D, Bhide A, Sharma R, Bhowmick S, Patel V, Modi D. LHX2 in germ cells control tubular organization in the developing mouse testis. Exp Cell Res 2023; 425:113511. [PMID: 36796745 DOI: 10.1016/j.yexcr.2023.113511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/01/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
In the gonads of mammalian XY embryos, the organization of cords is the hallmark of testis development. This organization is thought to be controlled by interactions of the Sertoli cells, endothelial and interstitial cells with little or no role of germ cells. Challenging this notion, herein we show that the germ cells play an active role in the organization of the testicular tubules. We observed that the LIM-homeobox gene, Lhx2 is expressed in the germ cells of the developing testis between E12.5-E15.5. In Lhx2 knockout-fetal testis there was altered expression of several genes not just in germ cells but also in the supporting (Sertoli) cells, endothelial cells, and interstitial cells. Further, loss of Lhx2 led to disrupted endothelial cell migration and expansion of interstitial cells in the XY gonads. The cords in the developing testis of Lhx2 knockout embryos are disorganized with a disrupted basement membrane. Together, our results show an important role of Lhx2 in testicular development and imply the involvement of germ cells in the tubular organization of the differentiating testis. The preprint version of this manuscript is available at https://doi.org/10.1101/2022.12.29.522214.
Collapse
Affiliation(s)
- Neha Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Domdatt Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Anshul Bhide
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Richa Sharma
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Shilpa Bhowmick
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Vainav Patel
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
3
|
Nazifi S, Nazari H, Hassanpour H, Ahmadi E, Afzali A. Co‐culturing or conditioned medium of Sertoli cells: Which one supports in vitro maturation of bovine oocytes and developmental competency of resulting embryos? Vet Med Sci 2022; 8:2646-2654. [DOI: 10.1002/vms3.939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Sina Nazifi
- DVM Graduate Student, Faculty of Veterinary Medicine Shahrekord University Shahrekord Iran
| | - Hassan Nazari
- Research Institute of Animal Embryo Technology Shahrekord University Shahrekord Iran
| | - Hossein Hassanpour
- Department of Basic Sciences Faculty of Veterinary Medicine, Shahrekord University Shahrekord Iran
| | - Ebrahim Ahmadi
- Research Institute of Animal Embryo Technology Shahrekord University Shahrekord Iran
| | - Azita Afzali
- Clinical Embryologist Shahrekord University of Medical Sciences Shahrekord Iran
| |
Collapse
|
4
|
O'Donnell L, Smith LB, Rebourcet D. Sertoli cells as key drivers of testis function. Semin Cell Dev Biol 2021; 121:2-9. [PMID: 34229950 DOI: 10.1016/j.semcdb.2021.06.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Sertoli cells are the orchestrators of spermatogenesis; they support fetal germ cell commitment to the male pathway and are essential for germ cell development, from maintenance of the spermatogonial stem cell niche and spermatogonial populations, through meiosis and spermiogeneis and to the final release of mature spermatids during spermiation. However, Sertoli cells are also emerging as key regulators of other testis somatic cells, including supporting peritubular myoid cell development in the pre-pubertal testis and supporting the function of the testicular vasculature and in contributing to testicular immune privilege. Sertoli cells also have a major role in regulating androgen production within the testis, by specifying interstitial cells to a steroidogenic fate, contributing to androgen production in the fetal testis, and supporting fetal and adult Leydig cell development and function. Here, we provide an overview of the specific roles for Sertoli cells in the testis and highlight how these cells are key drivers of testicular sperm output, and of adult testis size and optimal function of other testicular somatic cells, including the steroidogenic Leydig cells.
Collapse
Affiliation(s)
- Liza O'Donnell
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia; Monash University, Clayton 3168, Victoria, Australia.
| | - Lee B Smith
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Diane Rebourcet
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
5
|
Xu C, Mohsin A, Luo Y, Xie L, Peng Y, Wang Q, Ahmed W, Hang H, Zhuang Y, Guo M. Inducing Non-genetically Modified Induced Embryonic Sertoli Cells Derived From Embryonic Stem Cells With Recombinant Protein Factors. Front Cell Dev Biol 2021; 8:533543. [PMID: 33585437 PMCID: PMC7875124 DOI: 10.3389/fcell.2020.533543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/13/2020] [Indexed: 11/19/2022] Open
Abstract
Embryonic Sertoli cells (eSCs) possess multiple supporting functions and research value in gonadal development and sex determination. However, the limitation of acquiring quality eSCs had hindered the further application. Herein, we successfully derived non-genetically modified (non-GM)-induced embryonic Sertoli-like cells (eSLCs) from mouse embryonic stem cells (ESCs) with a TM4 cell-derived conditioned medium containing recombinant endogenous protein factors Sry, Sox9, Sf1, Wt1, Gata4, and Dmrt1. These eSLCs were determined through morphology; transcriptional expression levels of stage-specific, epithelial, and mesenchymal marker genes; flow cytometry, immunofluorescence; and immunocytochemistry and functionally determined by coculture with spermatogonia stem cells. Results indicated that these eSLCs performed similarly to eSCs in specific biomarkers and expression of marker genes and supported the maturation of spermatogonia. The study induced eSLCs from mouse ESCs by defined protein factors. However, the inducing efficiency of the non-GM method was still lower than that of the lentiviral transduction method. Thus, this work established a foundation for future production of non-GM eSLCs for clinical applications and fundamental theory research.
Collapse
Affiliation(s)
- Chenze Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yanxia Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lili Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yan Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qizheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Waqas Ahmed
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, Shanghai, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Rebourcet D, O'Shaughnessy PJ, Smith LB. The expanded roles of Sertoli cells: lessons from Sertoli cell ablation models. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coemr.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
7
|
Xu C, Mohsin A, Luo Y, Xie L, Peng Y, Wang Q, Hang H, Zhuang Y, Guo M. Differentiation roadmap of embryonic Sertoli cells derived from mouse embryonic stem cells. Stem Cell Res Ther 2019; 10:81. [PMID: 30850007 PMCID: PMC6408820 DOI: 10.1186/s13287-019-1180-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background Embryonic Sertoli cells (eSCs) play an important role in sex determination and in male gonad development which makes them a very useful cell type for therapeutic applications. However, the deriving mechanism of Sertoli cells has been unclear and challenging to create a large number of quality eSCs. Therefore, this study aimed to create the eSCs induced from mouse embryonic stem (mES) cells by regulating defined factors and to explore the relevant regulatory mechanism. Methods Six inducing factors, Sry, Sox9, SF1, WT1, GATA4, and Dmrt1, were respectively transduced into mES cells by lentiviral infection according to the experimental design. The test groups were identified by development stage-specific markers, AMH, Emx2, SF1, and FasL, using flow cytometry. Induced eSCs were determined by FasL and AMH biomarkers under immunofluorescence, immunocytochemistry, and flow cytometry. Moreover, the pluripotency markers, gonad development-related markers, epithelial markers and mesenchymal markers in test groups were transcriptionally determined by qPCR. Results In this study, the co-overexpression of all the six factors effectively produced a large population of eSCs from mES cells in 35 days of culturing. These eSCs were capable of forming tubular-like and ring-like structures with functional performance. The results of flow cytometry indicated that the upregulation of GATA4 and WT1 contributed to the growth of somatic cells in the coelomic epithelium regarded as the main progenitor cells of eSCs. Whereas, SF1 facilitated the development of eSC precursor cells, and Sry and Sox9 promoted the determination of male development. Moreover, the overexpression of Dmrt1 was essential for the maintenance of eSCs and some of their specific surface biomarkers such as FasL. The cellular morphology, biomarker identification, and transcriptomic analysis aided in exploring the regulatory mechanism of deriving eSCs from mES cells. Conclusion Conclusively, we have elucidated a differentiation roadmap of eSCs derived from mES cells with a relevant regulatory mechanism. Through co-overexpression of all these six factors, a large population of eSCs was successfully induced occupying 24% of the whole cell population (1 × 105 cells/cm2). By adopting this approach, a mass of embryonic Sertoli cells can be generated for the purpose of co-culture technique, organ transplantation, gonadal developmental and sex determination researches. Electronic supplementary material The online version of this article (10.1186/s13287-019-1180-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chenze Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Yanxia Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Lili Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Yan Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Qizheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China. .,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China.
| |
Collapse
|
8
|
Salem M, Mirzapour T, Bayrami A, Sagha M. Germ cell differentiation of bone marrow mesenchymal stem cells. Andrologia 2019; 51:e13229. [DOI: 10.1111/and.13229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/31/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Maryam Salem
- Department of Biology, Faculty of Science University of Mohaghegh Ardabili Ardabil Iran
| | - Tooba Mirzapour
- Department of Biology, Faculty of Science University of Guilan Rasht Iran
| | - Abolfazl Bayrami
- Department of Biology, Faculty of Science University of Mohaghegh Ardabili Ardabil Iran
| | - Mohsen Sagha
- Research Laboratory for Embryology and Stem cells, Faculty of Medicine Ardabil University of Medical Science Ardabil Iran
| |
Collapse
|
9
|
Luo Y, Mohsin A, Xu C, Wang Q, Hang H, Zhuang Y, Chu J, Guo M. Co-culture with TM4 cells enhances the proliferation and migration of rat adipose-derived mesenchymal stem cells with high stemness. Cytotechnology 2018; 70:1409-1422. [PMID: 30032334 DOI: 10.1007/s10616-018-0235-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/07/2018] [Indexed: 01/16/2023] Open
Abstract
The proliferation and migration of mesenchymal stem cells (MSCs) are the efficiency determinants in MSCs transplant therapy. Sertoli cells considered as "nurse cell" possesses the ability to enhance the proliferation and migration of umbilical cord mesenchymal stem cells (UCMSCs). However, no reports about TM4 cells' effect on the proliferation and migration of adipose tissue-derived mesenchymal stem cells (ADSCs) have been found until at present research work. Therefore, this study investigates the effect of TM4 cells on the proliferation and migration of ADSCs. We found that the performance of proliferation and migration of ADSCs were improved significantly while maintaining their stemness and reducing their apoptosis rate. After co-culturing with TM4 cells, the co-cultured ADSCs demonstrated higher proportion of synthetic phase (S) cells and colony-forming units-fibroblastic (CFU-F) number, lower proportion of sub-G1 phase cells and enhanced osteogenic and adipogenic differentiation ability. Moreover, results confirmed the higher multiple proteins involved in cell proliferation and migration including expression of the phospho-Akt, mdm2, pho-CDC2, cyclin D1 CXCR4, MMP-2, as well as phospho-p44 MAPK and phospho-p38 MAPK in co-cultured ADSCs. Furthermore, the process of TM4 cells promoting the proliferation of ADSCs was significantly inhibited by the administration of the PI3K/AKT inhibitor LY294002. Obtained results indicated that TM4 cells through MAPK/ERK1/2, MAPK/p-38 and PI3K/Akt pathways influence the proliferation and migration of ADSCs. These findings indicated that TM4 cells were found effective in promoting stemness and migration of ADSCs, that proves adopted co-culturing technique as an efficient approach to obtain ADSCs in transplantation therapy.
Collapse
Affiliation(s)
- Yanxia Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Chenze Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Qizheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China. .,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China.
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China. .,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China.
| |
Collapse
|
10
|
Teubner A, Müller K, Bartmann C, Sieme H, Klug E, Zingrebe B, Schoon HA. Effects of an anabolic steroid (Durateston) on testicular angiogenesis in peripubertal stallions. Theriogenology 2015; 84:323-32. [DOI: 10.1016/j.theriogenology.2015.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 03/21/2015] [Accepted: 03/22/2015] [Indexed: 10/23/2022]
|
11
|
|
12
|
Tian H, Guo M, Zhuang Y, Chu J, Zhang S. Enhanced proliferation of bone marrow mesenchymal stem cells by co-culture with TM4 mouse Sertoli cells: involvement of the EGF/PI3K/AKT pathway. Mol Cell Biochem 2014; 393:155-64. [PMID: 24748323 DOI: 10.1007/s11010-014-2055-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/03/2014] [Indexed: 01/23/2023]
Abstract
Bone marrow mesenchymal stem cells (BM-MSCs) are considered as a promising option in the field of regenerative medicine and tissue engineering. However, little is known about how TM4 mouse Sertoli cells, which are known to enhance stem cells proliferation in co-culture, may influence the proliferation of BM-MSCs and which signaling pathways are involved in. To address these questions, an in vitro transwell system was used. We found that TM4 cells could produce soluble factors which enhanced the growth of BM-MSCs without inhibiting the multipotency. Furthermore, cell cycle analysis showed that co-culture with the TM4 cells accelerated the progress of BM-MSCs from the G1 to the S phase. The expression of the phospho-akt, mdm2, as well as pho-CDC2, and cyclin D1 were markedly upregulated in co-cultured BM-MSCs. The observed promoting effect was significantly inhibited by the administration of the PI3K/AKT inhibitor, LY294002. Among the various growth factors produced by TM4 cells, the epithelial growth factor (EGF) stimulated the proliferation of the BM-MSCs more significantly compared with the other growth factors examined in this study. Neutralization of EGF via a blocking antibody significantly limited the promoting growth effect in BM-MSCs. These results suggest that TM4 cells provide a favorable in vitro environment for BM-MSCs growth and imply the involvement of the EGF/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Huan Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. Box 329, 130 Meilong Rd, Shanghai, 200237, P.R. China
| | | | | | | | | |
Collapse
|
13
|
Zhang H, Liu B, Qiu Y, Fan JF, Yu SJ. Pure cultures and characterization of yak Sertoli cells. Tissue Cell 2013; 45:414-20. [PMID: 23938058 DOI: 10.1016/j.tice.2013.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/07/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
The culture of primary Sertoli cells has become an important resource in the study of their function. However, their use is limited because of contamination of isolated cells with other testicular cells, mainly germ cells. The aim was to establish technique to obtain pure yak Sertoli cells as well as to study the growth kinetics and biological characteristics of Sertoli cells in vitro. Two-step enzyme digestion was used to separate and culture yak Sertoli cells. Cultured using starvation method and the hypotonic treatment were also invented to get pure yak Sertoli cells. Furthermore, the purification of Yak Sertoli cells were identified according to their characteristics, such as bipolar corpuscular around the nucleus and expression of Fasl, in addition to their morphology. The average viability of the Sertoli cells was 97% before freezing and 94.5% after thawing, indicating that cryopreservation in liquid nitrogen had little influence on the viability of Sertoli cells. The growth tendency of yak Sertoli cells was similar to an S-shaped growth curve. Purified yak Sertoli cells frequently exhibited bipolar corpuscula in nucleus after Feulgen staining, and did have a positive reaction of Fasl by the immunocytochemical identification. After recovery chromosomal analysis of Sertoli cells had a normal chromosomal number of 60, comprising 29 pairs of autosomes and one pair of sex chromosomes. Assays for bacteria, fungi and mycoplasmas were negative. In conclusion, yak Sertoli cells have been successfully purified and cultured in vitro, and maintain stable biological characteristics after thawing. Therefore, it will not only preserve the genetic resources of yaks at the cellular level, but also provide valuable materials for transgenic research and feeder layer and nuclear donor cells in yak somatic cell cloning technology.
Collapse
Affiliation(s)
- Hua Zhang
- Academic of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| | | | | | | | | |
Collapse
|
14
|
Combined strategy of endothelial cells coating, Sertoli cells coculture and infusion improves vascularization and rejection protection of islet graft. PLoS One 2013; 8:e56696. [PMID: 23437215 PMCID: PMC3577699 DOI: 10.1371/journal.pone.0056696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/14/2013] [Indexed: 11/19/2022] Open
Abstract
Improving islet graft revascularization and inhibiting rejection become crucial tasks for prolonging islet graft survival. Endothelial cells (ECs) are the basis of islet vascularization and Sertoli cells (SCs) have the talent to provide nutritional support and exert immunosuppressive effects. We construct a combined strategy of ECs coating in the presence of nutritious and immune factors supplied by SCs in a co-culture system to investigate the effect of vascularization and rejection inhibition for islet graft. In vivo, the combined strategy improved the survival and vascularization as well as inhibited lymphocytes and inflammatory cytokines. In vitro, we found the combinatorial strategy improved the function of islets and the effect of ECs-coating on islets. Combined strategy treated islets revealed higher levels of anti-apoptotic signal molecules (Bcl-2 and HSP-32), survival and function related molecules (PDX-1, Ki-67, ERK1/2 and Akt) and demonstrated increased vascular endothelial growth factor receptor 2 (KDR) and angiogenesis signal molecules (FAk and PLC-γ). SCs effectively inhibited the activation of lymphocyte stimulated by islets and ECs. Predominantly immunosuppressive cytokines could be detected in culture supernatants of the SCs coculture group. These results suggest that ECs-coating and Sertoli cells co-culture or infusion synergistically enhance islet survival and function after transplantation.
Collapse
|
15
|
Dickinson LE, Lütgebaucks C, Lewis DM, Gerecht S. Patterning microscale extracellular matrices to study endothelial and cancer cell interactions in vitro. LAB ON A CHIP 2012; 12:4244-8. [PMID: 22992844 PMCID: PMC3500837 DOI: 10.1039/c2lc40819h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The extracellular matrix (ECM) of the tumor niche provides support to residing and migrating cells and presents instructive cues that influence cellular behaviours. The ECM protein fibronectin (Fn) enables vascular network formation, while hyaluronic acid (HA) is known to facilitate breast tumor development. To recapitulate aspects of the tumor microenvironment, we developed systems of spatially defined Fn and HA for the co-culture of endothelial colony forming cells (ECFCs) and breast cancer cells (BCCs). A micropatterned system was developed using sequential microcontact printing of HA and Fn. This approach supported the preferential adhesion of ECFCs to Fn, but did not support the preferential adhesion of BCCs to HA. Thus, we developed a microstructured analog to spatially organize BCC-laden HA micromolded hydrogels adjacent to ECFCs in fibrin hydrogels. These novel, miniaturized systems allow the analysis of the spatial and temporal mechanisms regulating tumor angiogenesis, and can be applied to mimic other microenvironments of healthy and diseased tissues.
Collapse
Affiliation(s)
- Laura E Dickinson
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences- Oncology Center, and the Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
16
|
Zhang F, Hong Y, Liang W, Ren T, Jing S, Lin J. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells. Biochem Biophys Res Commun 2012; 427:86-90. [PMID: 22975347 DOI: 10.1016/j.bbrc.2012.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/01/2012] [Indexed: 01/06/2023]
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of "nurse" cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P<0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.
Collapse
Affiliation(s)
- Fenxi Zhang
- Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
17
|
van Moorst M, Dass CR. Methods for co-culturing tumour and endothelial cells: systems and their applications. J Pharm Pharmacol 2011; 63:1513-21. [PMID: 22060281 DOI: 10.1111/j.2042-7158.2011.01352.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES The high levels of morbidity and mortality associated with cancer can be attributed to two main processes; the tumour's ability to rapidly proliferate and the process of metastasis. These key processes are facilitated by tumour-induced angiogenesis, which causes existing blood vessels to branch off and actively grow towards the tumour providing it with the nutrients and oxygen required for growth and the avenue through which it can metastasise to invade other tissues. This process involves complex interactions between tumour and endothelial cells and is at the forefront of modern biomedical research as anti-angiogenic therapies may hold the key to preventing tumour growth and spread. This review looks at modern co-culture systems used in the study of the tumour-endothelial cell relationship highlighting the applications and weaknesses of each model and analysing their uses in various tumour-endothelial cell investigations. KEY FINDINGS The tumour-endothelial cell relationship can be studied in vitro using co-culture systems that involve growing endothelial and tumour cells together so that the effects of dynamic interaction (either by direct cell contact or molecular cross-talk) can be monitored. These co-culture assays are quite accurate indicators of in-vivo growth and therefore allow more effective trialling of therapeutic treatments. CONCLUSIONS The application of co-culture systems are of fundamental importance to understanding the tumour-endothelial cell relationship as they offer a method of in-vitro testing that is highly indicative of in-vivo processes. Co-cultures allow accurate testing, which is cost effective and therefore can be utilised in almost all laboratories, is reproducible and technically simple to perform and most importantly has biological relevancy. The importance of this form of testing is such that it warrants further investment of both time and money to enhance the methodology such as to eliminate some of the levels of variability.
Collapse
Affiliation(s)
- Mallory van Moorst
- School of Biomedical and Health Sciences, Victoria University, St Albans, Australia
| | | |
Collapse
|